跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍栢岳
研究生(外文):Bo-Yue Lan
論文名稱:MARC應用於薄板雷射成型之分析
論文名稱(外文):A study on the deformation of laser formed sheet using MARC.
指導教授:葉維磬
指導教授(外文):Wei-Ching Yeh
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:有限元素法薄板雷射成型
外文關鍵詞:Laser FormingMARCFEMBuckling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本文應用MARC有限元素軟體分析雷射加工板材成型問題。為暸解MARC應用於雷射成型問題的可靠性及妥適性,本文首先利用雷射加工板材成型的實驗比較模擬的準確性,並分別探討加工製程中雷射功率、雷射光徑、板材厚度及加熱時間對於成型角度的影響,進而探討雷射成型機制中溫度梯度機制(Temperature gradient mechanism)與挫屈機制(Buckling mechanism)之差異性,並提出對成型角度臨界值之預測方法。
Laser forming is an effective and efficient manufacturing technology.In the laser formong process,the bending angle is affected by the temperature distribution and gradient,the mechanical and thermal properties of the sheet metal material,and the process parameters. In this paper,we will use a 3D FEM simulation analysis of the bending angle for different laser powers,laser beam diameters,sheet thicknesses,and heating times.Furthermore,study the differentia between Temperature gradient mechanism and Buckling mechanism.
目錄
摘要 Ⅰ
目錄 Ⅱ
圖表說明 Ⅴ
第一章 緒論
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 7
第二章

2-1 有限元素分析基本概念 9
2-2 材料性質定義 12
2-3 熱傳理論 13
2-3-1 基本條件假設 13
2-3-2 熱傳平衡方程 13
2-4 力學理論 16
2-4-1 基本條件假設 16
2-4-2 應力應變增量式 16
2-5 結構耦合熱傳分析模式 21
2-5-1 熱-力學耦合控制方程 22
第三章 MARC有限元素軟體簡介
3-1 MARC 之架構與各部功能介紹 24
3-2 MARC 分析求解技術定義 25
3-2-1 參考座標系統 25
3-2-2 非線性代數方程組疊代求解方法 26
3-2-3 收斂性判斷依據 28
3-2-4 元素技術 29
第四章 結果與討論
4-1 MARC分析結果之驗證 32
4-1-1 熱變形問題 32
4-1-2 熱機耦合問題 33
4-1-3 驗證結果 39
4-2 板材雷射加工成型分析 40
4-2-1雷射功率對於成型角度的影響 41
4-2-2雷射光徑對於成型角度的影響 42
4-2-3板材厚度對於成型角度的影響 43
4-2-4加熱時間對於成型角度的影響 44
4-2-5成型角度臨界值的初步推測 45
第五章 結論與建議
5-1 結論 47
5-2 建議 48
參考文獻 50
附錄一 78
參考文獻
[1] R.W. McCarthby, Thermo-mechanical forming of steel plates using laser line heat, PhD thesis, Massachusetts Institute of Technology, 1985.
[2] Y. Namba, Laser forming in space, International Conference on Lasers’85, editors:Wang C.P., pp.403-407, 1986.
[3] Y. Namba, Laser forming of metal and alloys, Proceedings of LAMP, Osaka, pp.37-44, 1987.
[4] K. Scully, Laser line heating, Journal of Ship Production 3, 237-246, 1987.
[5] M. Geiger, F. Vollertsen and G. Deinzer, “Flexible straightening of car body shells by laser forming”, Sheet Metal and Stamping Symposium SAE Special Publication, Vol. 944, Warrendale, PA, pp.37-44, 1993.
[6] M. Geiger, H. Arnet and F. Vollertsen, Laser forming, Manufacturing Systems, NO.24, Vol.1, pp.43-47, 1995.
[7] C.L. Yau, K.C. Chan and W.B. Lee, Laser bending of lead frame materials, Journal of Materials Processing Technology, Vol.82, pp.117-121, 1998.
[8] J. Widlaszewski, Precise laser bending, Laser Assisted Net shape Engineering 2 Proceeding of the LAME’97, eds: M. Geiger, F. Vollertsen, pp.393-398, 1997.
[9] S. Silve, B. Podschies, W.M. Steen and K.G. Watkins, Laser forming –a new vocabulary for objects, F-ICALEO, pp.87-96, 1999.
[10] F. Vollertsen and M. Geiger, The mechanisms of laser forming, Annals of the CIRP, Vol42, pp.301-304, 1993.
[11] F. Vollertsen, M. Geiger and W.M. Li, FDM and FEM simulation of laser forming: a comparative study, Advanced Technology of Plasticity, Proceedings of the fourth International Conference on Technology of Plasticity, Beijing, P.R. China, pp.1793-1798, 1993.
[12] F. Vollertsen, An analytical model for laser bending, Lasers in Engineering, Vol.2, pp.261-276, 1994.
[13] F. Vollertsen, M. Rodle, Models for the temperature gradient mechanism of laser bending, Lasers Assisted Net Shape Engineering, Proceedings of the LAME’94, Meisenbach Bamberg, Vol.1, pp.371-378, 1994.
[14] H. Arnet, F. Vollertsen, Extending laser bending for the generation of convex shapes, Proceedings of the Institution Engineering, J. Eng. Manuf. B, Vol.209, pp.433-442, 1995.
[15] F. Vollertsen, I. Komel and R. Kals, The laser bending of steel foils for microparts by the buckling mechanism-a model, Modeling Simulation Material Science, pp.107-119, 1995.
[16] P.J. Cheng, S.C. Lin, An analytical model for the temperature field in the laser forming of sheet metal, Journal of Materials Processing Technology, Vol.101, pp.260-267, 2000.
[17] P.J. Cheng, S.C. Lin, An analytical model to estimate angle formed by laser, Journal of Materials Processing Technology, Vol.108, pp314-319, 2000.
[18] An.K. Kyrsanidi, Th.B. Kermanidis and Sp.G. Pantelakis, An analytical model for the prediction of distortions caused by the laser forming process, Journal of Materials Processing Technology, Vol.104, pp.94-102, 2000.
[19] J. Lawrence, M.J. Schmidt and L. Li, The forming of mild steel plates with a 2.5KW high power diode laser, International Journal of Machine & Manufacture, Vol.41, pp.967-977, 2001.
[20] Wu. Shichun, Ji. Zhong, FEM simulation of the temperature field during the laser forming of sheet metal, Journal of Materials Processing Technology, Vol.74, pp.89-95, 1998.
[21] An.K. Kyrsanidi, Th.B. Kermanidis and Sp.G. Pantelakis, Numerical and experimental investigation of the laser forming process, Journal of Materials Processing Technology, Vol.87, pp281-290, 1999.
[22] H. Thomas, Development of irradiation strategies for 3D laser forming, Journal of Materials Processing Technology, Vol.103, pp.102-108, 2000.
[23] W.C. Li, Y.L. Yao, Buckling based laser forming process: concave or convex, ICALEO, Laser Material Processing, pp.220-229, 2000.
[24] W.C. Li, Y.L. Yao, Numerical and experimental investigation of laser induced tube bending, D-ICALEO, Laser Material Processing, pp.53-62, 2000.
[25] G. Yu, K. Masubuchi, T. Maekawa and N.M. Patrikalakis, FEM simulation of laser forming of metal plates, Journal of Manufacturing Science and Engineering, Vol.123, pp.405-410, 2001.
[26] Wu. Shichun, Ji. Zhong, FEM simulation of the deformation field during the laser forming of sheet metal, Journal of Materials Processing technology, Vol.121, pp.269-272, 2002.
[27] G. Chen, X. Xu, C.C. Poon and A.C. Tam, Experimental and Numerical Studies on Microscale Bending of Stainless Steel with Pulsed Laser, Transactions of the ASME, Vol.66, pp.772-779, 1999.
[28] Kun-Chou Lee, Jehnming Lin, Transient deformation of thin metal sheets during pulsed laser forming, Optics & Laser Technology 34, pp.639-648, 2002.
[29] Hsieh-Shen Hsieh, Jehnming Lin, Thermal—Mechanical analysis on the transient deformation during pulsed laser forming, Journal of Machine Tools & Manufacture 44, pp.191-199, 2004.
[30] J. Kraus, Basic processes in laser bending of extrusions using upsetting mechanism, Lasers Assisted Net Shape Engineering 2, Proceedings of the LAME’97, Meisenbach Bamberg, Vol.2, pp.431-438, 1997.
[31] S. Holzer, H. Arnet and M. Geiger, Physical and numerical modeling of the buckling mechanism, Laser Assisted Net shape Engineering, Proceedings of the LANE’94, Vol.1, pp.379-386, 1994.
[32] H. Arnet, F. Vollertsen, Extending laser bending for the generation of convex shapes, Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 209, pp.433-442, 1995.
[33] Z. Hu, R. Kovacevic and M. Labudovic, Experimental and numerical modeling of buckling instability of laser sheet forming, Journal of Machine Tools & Manufacture 42, pp.1427-1439, 2002.
[34] “Theory and user information”, MARC Analysis Research Corporation. Volume A. Version K7.
[35] G. Chen, X. Xu, C.C. Poon and A.C. Tam, Experimental and Numerical Studies on Microscale Bending of Stainless Steel with Pulsed Laser, Transaction of the ASME, Vol.66, pp.772-779, 1999.
[36] W.F. Chen, D.J. Ham, Plasticity for Structural Engineers, Springer-Verlag New York, 1988.
[37] 吳立仁, 鋼板熱彎成形模擬分析研究,國立成功大學,pp.18-20, 2002.
[38] Lu Zhang, P. Michaleris, Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process, Finite Elements in Analysis and Design, Vol.40, pp.383-405, 2004.
[39] A.C. Ugural, Stresses in Plates and Shells, McGraw-Hill Book Company, pp.192-193, 1981.
[40] G.Chen, X. Xu, C.C. Poon and A.C. Tam, Experimental and numerical studies on micro-scale bending of stainless with pulsed laser, ASME Journal of Applied Mechanics 66, pp.772-779, 1999.
[41] Y. Ueda, K. Iida, M. Saito and A. Okamoto, Finite element model and residual stress calculation for multi-pass welded joint between a sheet metal and the penetrating pipe, Modeling of Casting, Welding and Advanced Solidification Processes-V, pp.219-227, 1991.
[42] F.P. Incropera, D.P. de Witt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 1996.
[43] Guan Yanjin, Sun Sheng, Zhao Guoqun and Luan Yiguo, Finite element modeling of laser bending of pre-loaded sheet metals, Journal of Materials Processing Technology, Vol.142, pp.400-407, 2003.
[44] Dunjun Chen, Shichun Wu and Miaoquan Li, Deformation behaviours of laser curve bending of sheet metals, Journal of Materials Processing Technology, Vol.148, pp.30-34, 2004.
[45] “MSC.MARC 中文基礎教材”,MSC. Software Corporation.
[46] “MARC 有限元素軟體高階應用訓練課程訓練教材”,行政院國科會國家高速電腦中心,V.2, 2002.
[47] “Element Library”, MARC Analysis Research Corporation. Volume B. Version K7.
[48] “Demonstration Problems”, MARC Analysis Research Corporation. Volume E, Part Ⅲ. Version K7.
[49] “Mentat Ⅱ User’s Guide”, MARC Analysis Research Corporation. Version K7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top