跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王浩宇
研究生(外文):Hao-Yu Wang
論文名稱:超音速高溫衝擊流流場與熱傳特性之分析
論文名稱(外文):The analysis of flow field and heat transfer characteristics of supersonic hot impinging jet
指導教授:曾重仁
指導教授(外文):Chung-Jen Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:103
中文關鍵詞:超音速衝擊流熱輻射離散座標法高溫衝擊流
外文關鍵詞:the discrete-ordinates methodradiationhot impinging jetsupersonic impinging jet
相關次數:
  • 被引用被引用:1
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文係應用數值方法,探討在考慮輻射效應下,超音速高溫衝擊流的流場與熱傳分析。整個幾何模型由於軸對稱,簡化成二維模型。而紊流模式採用k-�梩珓活C輻射熱傳利用離散座標法求解,包含放射、吸收與散射效應。數值計算主分為三大部分,第一部分為改變噴嘴出口條件,第二部分為考慮輻射熱傳效應,調整各項參數,第三部分為探討周圍障礙物之影響。
在高溫超音速噴流時輻射熱傳效應對衝擊板表面之溫度與熱傳分布有很大的影響,且輻射熱傳遠比對流熱傳大,對於流體的速度和溫度場則影響甚小。增加出口速度會造成壁面溫度增加,輻射熱傳量增加,但對流熱傳量減少。改變出口壓力時,在軸心附近的溫度會逐漸下降,輻射熱傳量減少,對流熱傳量增加,遠離軸心時三者變化趨勢則會反轉。
改變氣體吸收係數對衝擊面輻射熱傳量會有極大的影響,氣體吸收係數增加,輻射熱傳量逐漸減少。較高的壁面放射率可令衝擊面溫度降低,但溫度梯度則會增加。探討不同光學厚度與散射比的關係時,發現散射比較小時,光學厚度對衝擊面輻射熱傳量影響較大,散射比越高,光學厚度的影響越小。
加入圍阻體會使流場產生迴流,不同圍阻體高度會改變迴流區的範圍與強度,對衝擊流場與溫度場產生些許的影響,如衝擊面溫度、輻射熱傳量、軸心壓力與溫度等,其變化趨勢為先增加再減少。增加圍阻體與軸心的距離會令圍阻體的溫度與熱傳分布皆逐漸下降,迴流區對衝擊流場的影響亦逐漸減少。
The flow and heat transfer characteristics of a hot supersonic impinging jet are studied. Two-dimensional cylindrical, steady, turbulent flow is simulated using a k-ε model. The discrete-ordinates method is used to solve the radiative transfer equation for radiation. Solutions are presented for the temperature distribution, heat flux, and pressure along the impingement wall. The mach number, pressure, and temperature along the axisymmetric line are also presented. The numerical results can be divided into three parts. For the first part, we change the condition of the jet at nozzle exit. For the second part, the radiation effects are considered and the radiative properties of the fluid are adjusted. For the third part, the influence of the presence of a surrounding object on the impingement wall is studied.
The results show, for hot supersonic impinging jet, the radiative transfer has great effects on the temperature and heat flux on the impingement surface. The radiative heat flux is much more than the convective heat flux. For the fluid, radiation effects have only minor influences on velocity and temperature fields. As the jet velocity at the nozzle exit increases, the radiative heat flux increases, but the convective heat flux decreases. When changing the pressure at the nozzle exit, the temperature, radiative heat flux on the impingement wall near the axisymmetic line decreases with pressure increase, and the convective heat flux decreases to zero. On the other hand, far away from the axisymmetic line, the trend reverses.
The gas absorption coefficient is very important to the radiative heat flux on the impingement wall. When the gas absorption coefficient increases, the radiative heat flux decreases. An increase in the wall emissivity reduces the temperature of the impingement wall, but increases the temperature gradient. If scattering albedo is increased, the influence of the optical thinkness on the radiative heat flux on the impingement surface is decreased.
When a surrounding object is placed on the impingement plate, the fluid that impinges onto the wall circulates back to the jet center. The strength and size of the circulation depend on the location and height of the object. As a result of this interaction between the circulation and the main jet stream, the convective and radiative heat fluxes, and the temperature on the surface of the surrounding object decrease as the object is moved away from the jet center line.
目錄
頁次
中文摘要 Ⅰ
英文摘要 III
致謝 V
目錄 Ⅵ
表目錄 IX
圖目錄 X
符號表 XX
第一章 緒論 1
1.1前言 1
1.2超音速衝擊流介紹 2
1.3超音速衝擊流文獻回顧 5
1.4輻射熱傳文獻回顧 8
1.5研究動機 11
第二章 數學模型與數值方法 18
2.1物理模型與基本假設 18
2.2統御方程式 19
2.2.1流場統御方程式 19
2.2.2紊流方程式 20
2.2.3輻射熱傳方程式 22
2.2.4邊界條件 23
2.3數值方法 24
2.4數值方法驗證與各樣測試 28 2.4.1數值方法驗證 28
2.4.2格點獨立測試 29
2.4.3離散座標測試 30
第三章 結果與討論 36
3.1噴嘴出口溫度之影響 37
3.2噴嘴出口溫度(含輻射熱傳)之影響 38
3.3噴嘴出口速度之影響 40
3.4噴嘴出口壓力之影響 43
3.5氣體吸收係數之影響 44
3.6壁面放射率的影響 46
3.7散射比與光學厚度之影響 47
3.8圍阻體高度之影響 48
3.9圍阻體與軸心間距離之影響 51
第四章 結論與建議 96
4.1結論 96
4.2未來研究方向與建議 98
參考文獻 99
















表目錄
頁次
表2-1 標準 紊流模型係數 21
表2-2 鬆弛係數設定 26
表2-3 S8之各相位角重與方向餘弦 31
表2-4 格點獨立測試 29
表2-5 離散座標測試 30












圖目錄
頁次
圖1-1 衝擊流之流場結構圖 12
圖1-2 欠膨脹超音速噴流示意圖 12
圖1-3 過膨脹超音速噴流示意圖 13
圖1-4 欠膨脹超音速噴流之流場結構圖 13
圖1-5 欠膨脹超音速噴流噴嘴之流場結構圖 14
圖1-6(a) 低度欠膨脹超音速噴流(PR<1.5)之流場結構圖 14
圖1-6(b) 低度欠膨脹超音速噴流(PR增加)之流場結構圖 15
圖1-6(c) 接近高度欠膨脹超音速噴流(PR接近2)之流場結構圖 15
圖1-6(d) 高度欠膨脹超音速噴流(PR≧2)之流場圖 16
圖1-7 停滯區之流場結構圖(無環流) 16
圖1-8 停滯區之流場結構圖(有環流) 17
圖2-1 二維軸對稱噴流流場計算區域示意圖 32
圖2-2 數值方法驗證,衝擊面之壓力分布 33
圖2-3 數值方法驗證,壁面之輻射熱傳分布 33
圖2-4 格點獨立測試,軸心線之馬赫數分布 34
圖2-5 格點獨立測試,衝擊面之溫度分布 34
圖2-6 離散座標測試,衝擊面之溫度分布 35
圖2-7 離散座標測試,衝擊面之輻射熱傳分布 35
圖3-1 基本模型之流場分布圖 52
圖3-2 基本模型之溫度場分布圖 52
圖3-3 基本模型之流場放大圖 53
圖3-4 基本模型之密度場放大圖 53
圖3-5 Ma=2.0,PR=2.7,改變噴嘴出口溫度時,
衝擊面之對流熱傳分布 54
圖3-6 Ma=2.0,PR=2.7,改變噴嘴出口溫度時,
衝擊面之溫度分布 54
圖3-7 Ma=2.0,PR=2.7,噴嘴出口溫度2327K,
R=0.15m之流場速度向量放大圖 55
圖3-8 Ma=2.0,PR=2.7,噴嘴出口溫度2327K,
R=0.15m之溫度場放大圖 55
圖3-9 Ma=2.0,PR=2.7,改變噴嘴出口溫度時,
衝擊面之壓力分布 56
圖3-10 Ma=2.0,PR=2.7,改變噴嘴出口溫度時,
軸心線之馬赫數分布 56
圖3-11 Ma=2.0,PR=2.7,改變噴嘴出口溫度時,
軸心線之壓力分布 57
圖3-12 Ma=2.0,PR=2.7,改變噴嘴出口溫度時,
軸心線之溫度分布 57
圖3-13 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,衝擊面之輻射熱傳分布 58
圖3-14 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,衝擊面之對流熱傳分布 58
圖3-15 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,衝擊面之溫度分布 59
圖3-16 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,衝擊面之壓力分布 59
圖3-17 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,軸心線之馬赫數分布 60
圖3-18 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,軸心線之壓力分布 60
圖3-19 Ma=2.0,PR=2.7, =2m-1, =0.5,改變噴嘴出口
溫度(含輻射熱傳)時,軸心線之溫度分布 61
圖3-20 有限容積之能量平衡 61
圖3-21 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,衝擊面之輻射熱傳分布 62
圖3-22 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,衝擊面之對流熱傳分布 62
圖3-23 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,衝擊面之溫度分布 63
圖3-24 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,衝擊面之壓力分布 63
圖3-25 PR=2.7,Tjet=2327K, =2m-1, =0.5,
噴嘴出口速度3馬赫,R=0.3m之流場放大圖 64
圖3-26 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,軸心線之馬赫數分布 64
圖3-27 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,軸心線之壓力分布 65
圖3-28 PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口速度時,軸心線之溫度分布 65
圖3-29 Ma=1.75流場放大圖 66
圖3-30 Ma=1.75流場速度向量放大圖 66
圖3-31 Ma=2流場放大圖 67
圖3-32 Ma=2流場速度向量放大圖 67
圖3-33 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,衝擊面之輻射熱傳分布 68
圖3-34 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,衝擊面之對流熱傳分布 68
圖3-35 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,衝擊面之溫度分布 69
圖3-36 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,衝擊面之壓力分布 69
圖3-37 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,軸心線之馬赫數分布 70
圖3-38 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,軸心線壓力分布 70
圖3-39 Ma=2.0,Tjet=2327K, =2m-1, =0.5,
改變噴嘴出口壓力時,軸心線之溫度分布 71
圖3-40 Ma=2.0,PR=2.7,Tjet=2327K, =0.5,
改變氣體吸收係數時,衝擊面之輻射熱傳分布 71
圖3-41 Ma=2.0,PR=2.7,Tjet=2327K, =0.5,
改變氣體吸收係數時,衝擊面之對流熱傳分布 72
圖3-42 Ma=2.0,PR=2.7,Tjet=2327K, =0.5,
改變氣體吸收係數時,衝擊面之溫度分布 72
圖3-43 Ma=2.0,PR=2.7,Tjet=2327K, =0.5,
改變氣體吸收係數時,軸心線之溫度分布 73
圖3-44 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1,
改變壁面放射率時,衝擊面之輻射熱傳分布 73
圖3-45 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1,
改變壁面放射率時,衝擊面之對流熱傳分布 74
圖3-46 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1,
改變壁面放射率時,衝擊面之溫度分布 74
圖3-47 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.1,
改變光學厚度時,衝擊面之輻射熱傳分布 75
圖3-48 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.1,
改變光學厚度時,衝擊面之對流熱傳分布 75
圖3-49 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.1,
改變光學厚度時,衝擊面之溫度分布 76
圖3-50 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.1,
改變光學厚度時,軸心線之溫度分布 76
圖3-51 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.5,
改變光學厚度時,衝擊面之輻射熱傳分布 77
圖3-52 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.5,
改變光學厚度時,衝擊面之對流熱傳分布 77
圖3-53 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.5,
改變光學厚度時,衝擊面之溫度分布 78
圖3-54 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.5,
改變光學厚度時,軸心線之溫度分布 78
圖3-55 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.9,
改變光學厚度時,衝擊面之輻射熱傳分布 79
圖3-56 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.9,
改變光學厚度時,衝擊面之對流熱傳分布 79
圖3-57 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.9,
改變光學厚度時,衝擊面之溫度分布 80
圖3-58 Ma=2.0,PR=2.7,Tjet=2327K,散射比0.9,
改變光學厚度時,軸心線溫度分布 80
圖3-59 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,衝擊面之輻射熱傳分布 81
圖3-60 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,衝擊面之對流熱傳分布 81
圖3-61 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,衝擊面之溫度分布 82
圖3-62 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,衝擊面之壓力分布 82
圖3-63 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,軸心線之馬赫數分布 83
圖3-64 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,軸心線之壓力分布 83
圖3-65 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,軸心線之溫度分布 84
圖3-66 圍阻體高度H=0.05流場分布圖 84
圖3-67 圍阻體高度H=0.05溫度場分布圖 85
圖3-68 圍阻體高度H=0.15流場分布圖 85
圖3-69 圍阻體高度H=0.15溫度場分布圖 86
圖3-70 圍阻體高度H=0.25流場分布圖 86
圖3-71 圍阻體高度H=0.25溫度場分布圖 87
圖3-72 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,R=0.15m軸向方向溫度分布 87
圖3-73 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,圍阻體壁面之輻射熱傳分布 88
圖3-74 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,圍阻體壁面之對流熱傳分布 88
圖3-75 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,圍阻體壁面之溫度分布 89
圖3-76 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體高度時,圍阻體壁面壓力之分布 89
圖3-77 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,衝擊面之輻射熱傳分布 90
圖3-78 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,衝擊面之對流熱傳分布 90
圖3-79 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,衝擊面之溫度分布 91
圖3-80 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,衝擊面之壓力分布 91
圖3-81 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,軸心線之馬赫數分布 92
圖3-82 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,軸心線之壓力分布 92
圖3-83 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,軸心線之溫度分布 93
圖3-84 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,圍阻體壁面之輻射熱傳分布 93
圖3-85 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,圍阻體壁面之對流熱傳分布 94
圖3-86 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,圍阻體壁面之溫度分布 94
圖3-87 Ma=2.0,PR=2.7,Tjet=2327K, =2m-1, =0.5,
改變圍阻體與軸心間距離時,圍阻體壁面之壓力分布 95
[1]Martin, H., ”Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces,” Advanced Heat Transfer, Vol. 13, 1977, pp. 1-60.
[2]Button, D. L., and Wilcox, D., ”Impingement Heat Transfer - A Bibliography 1890-1975”, Previews Heat Transfer, Vol. 4, 1978, pp. 83-98.
[3]Viskanta, R., ”Heat Transfer to Impinging Isothermal Gas Flame Jets,” Experimental Thermal and Fluid Science, Vol. 6, 1993, pp. 111-134.
[4]Gubanova O. I., Lunev V. V., and Plastinina L. N., ”The Central Breakaway Zone with Interaction between a Supersonic Underexpanded Jet and a Barrier,” Fluid Dynamics, Vol. 6, 1973, pp. 289.
[5]Carling, J. C., and Hunt, B. L., ”The Near Wall Jet of Normally Impinging, Uniform, Axisymmetric, Supersonic Jet,” Journal of Fluid Mechanics, Vol. 66, 1974, pp. 159-176.
[6]Kalghatgi, G. T., and Hunt, B. L., ”The Occurrence if Stagnation Bubbles in Supersonic Jet Impingement Flows,” Aeronautical Quarterly, Vol. 22, 1976, pp. 169-185.
[7]Lamont, P. J., and Hunt, B. L., ”The Impingement of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates,” Journal of Fluid Mechanism, Vol. 100, 1980, pp. 471-511.
[8]Dash, S. M., and Wolf, D. E., ”Interactive in Supersonic Jet Mixing Problems, Part1: Phenomenology and Numerical Modeling Techniques,” AIAA Journal, Vol. 22, 1984, pp. 905-913.
[9]Chuech, S. G., Lai, M. C., and Feath, G. M., ”Structure of Turbulent Sonic Underexpanded Free Jets,” AIAA Journal, Vol. 27, 1989, pp. 545-559.
[10]Cumber, P. S., Fairweather, M., Falle, S. A .E. G., and Giddings, J. R., ”Prediction of The Structure of Turbulent, Moderately Underexpanded Jets,” Journal of Fluids Engineering, Vol. 116, 1994, pp. 707-713.
[11]Cumber, P. S., Fairweather, M., Falle, S. A .E. G., and Giddings, J. R., ”Prediction of The Structure of Turbulent, Highly Underexpanded Jets,” Journal of Fluids Engineering, Vol. 117, 1995, pp. 599-604.
[12]Cumber, P. S., Fairweather, M., Falle, S. A .E. G., and Giddings, J. R., ”Prediction of Impacting Sonic and Supersonic Jets,” Journal of Fluids Engineering, Vol. 119, 1997, pp. 83-89.
[13]Sarker, S., Erlebacher, G., Hussaini, M. Y., and Kreiss, H. O., ”The Analysis and Modeling of Dilatational Terms in Compressible Turbulence,” Journal of Fluid Mechanics, Vol. 227, 1991, pp. 473-493.
[14]Kim, K. H., and Chang, K. S., ”Axismeetric Impingement of a Hot Jet on a Flat Plate: Equilibrium Flow Analysis of High-Temperature Air,” Shock Waves, Vol. 4, 1994, pp. 155-162.
[15]陳玉芬, ”超音速噴流和聲波之數值研究,” 成功大學航太所碩士論文, 1996
[16]Chandrasekhar, S., ”Radiative Transfer,” Dover Publications, New York, 1996.
[17]Ozisik, M. N., Li, H. Y., and Tsai, J. R., ”Two-Dimensional Radiation in a Cylinder with Spatially Varying Albedo,” Journal of Thermophysics, Vol. 6, 1992, No. 1, pp. 180-182.
[18]Jendoubi, S., Lee, H. S., and Kim, T. K., ”Solutions for Radiatively Participating Media in a Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 213-219.
[19]Coelho, P. J., Goncalves, J. M., and Trivic, D. N., ”Modelling of Radiative Heat Transfer in Enclosures with Obstacles,” Int. J. Heat Mass Transfer, Vol. 41, 1998, pp. 745-756.
[20] Kaykol, N., Selcuk, N., Campbell, I., Omer, L. G., ”Performance of Discrete Ordinates Method in a Gas Turbine Combustor simulator,” Experimental Thermal and Fluid Science, Vol. 21, 2000, pp. 134-141.
[21]Jones, W. P., and Launder, B. E., ”The Prediction of Laminarization with a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transfer, Vol. 15, 1972, pp. 301-314.
[22]Rodi, W., ”Influence of Buoyancy and Rotation on Equations for Turbulent Length Scale,” Proceeding 2nd Symposium On Turbulent Shear Flows, 1979.
[23]Lauder, B. E., and Spalding, D. B., ”The Numerical Computation of Turbulent Flow, Computing Method In Applied Mechanics & Engineering,” Vol. 3, 1974, pp. 269.
[24]Tahry, E., and Sherif, H., ” Equation for Compressible Reciprocating Engine Flows,” AIAA Journal of Energy, Vol. 7, 1983, No. 4, pp. 345-353.
[25]Boussinesq, J., Theorie Anaytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris, 1903.
[26]Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, Chap. 15, 1993, pp. 541-571.
[27]Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere, Washington, Chap. 13, 1992, pp. 597-681.
[28]Menart, J., ”Radiative Transport in a Two-Dimensional Axisymmetric Thermal Plasma Using the S-N Discrete Ordinates Method on a Line-by-Line Basis,” Journal of Quantum Spectroscopy and Radiative Transfer, Vol. 67, 2000, pp. 273-291.
[29]Jendoubi, S., Lee H. S., and Kim T. K., ”Discrete Ordinates Solutions for Radiatively Participating Media in Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 356-364.
[30]Carlson, B. G., and Lathrop, K. D., ”Discrete-Ordinates Angular Quadrature of the Neutron Transport Equation”, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory, 1965.
[31]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., Chap. 6, 1980.
[32]Clark, G. C., Chu, C. M., and Churchill, S. W., ”Angular Distribution Coefficients for Radiation Scattered by a Spherical Particle,” Journal of the Optical Society of America, Vol. 47, 1980, pp. 1505-1509.
[33] Thynell, S. T., ”Treatment of Radiation Heat Transfer in Absorbing, Emitting, Scattering Two-Dimensional Cylindrical Media,” Numerical Heat Transfer, Vol. 17, 1990, pp. 449- 472.
[34]Tseng, C. J., and Peng S. C., ”Effects of Gas Radiation on the Performance of a Hot Impinging Round Jet,” Transactions of the Aeronautical and Astronautical Society of the ROC,” Accepted for publication.
[35]Wang, H. Y., and Tseng, C. J., ”Gas Radiation Effects on Thermal Characteristics of a Laminar Hot Impinging Round Jet,” Proceedings of the 20th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, pp.1043-1049.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top