跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃富昌
研究生(外文):Fu-Chuang Huang
論文名稱:土壤結構及化性對有機污染物吸/脫附性之研究
論文名稱(外文):The effects of Soil Structure and Chemical Properties on the Adsorption / Desorption of Volatile Organic Compounds
指導教授:李俊福李俊福引用關係
指導教授(外文):Jiunn-Fw Lee
學位類別:博士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:218
中文關鍵詞:土壤有機質吸附脫附等溫吸附線遲滯現象
外文關鍵詞:montmorillniteadsorption/desorptionisothermpeat
相關次數:
  • 被引用被引用:63
  • 點閱點閱:568
  • 評分評分:
  • 下載下載:126
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
土壤是一複雜物質,由無機相與有機相兩大部分所組成,在吸附污染物時,可視為雙重吸附劑,其中無機相部份之吸附特性和一般傳統吸附劑類似,而有機相部份則是靠分配程序(partitioning)來進行吸附。由於土壤可同時進行吸附及分配程序,因此其於自然環境中對有機污染物之作用機制較一般無機固體吸附劑來得複雜,此兩種作用也決定了有機污染物在環境中的傳輸與宿命。
本研究乃以分子量相近、分子結構差異甚大之有機化合物(同樣含有6個碳而分子結構不同之扁平結構的苯、直鏈的正己烷及椅型的環己烷)為吸附質,探討有機化合物之立體效應對土壤吸/脫附之影響,以明確掌握分子結構對吸/脫附的影響,同時以含有高有機質之Florida Peat(有機質含量占86.4%)為吸附劑,進行至較高P/Po之氣態吸/脫附實驗,並比較低相對壓力及高相對壓力下之吸附圖象,以明確掌握其吸附機制。另以含有機質與無機質的紗帽山土(有機質含量占27.3%)做為氣態吸/脫附實驗之吸附劑,以釐清土壤無機相與有機相之吸附作用。綜合不同有機質含量的研究結果,比較無機相與有機相之吸附作用,進一步釐清其吸/脫附機制及影響因子,並掌握土壤無機相與有機相對不同有機污染物的吸附選擇性。
藉由Pseudo-first order kinetic model 、Pseudo-second order kinetic model、Intraparticle diffusion model 及The Elovich rate equation四組動力學模式來瞭解土樣進行吸/脫附之傳輸途徑。以土壤無機相結構而言(鈣-蒙特石、鈦-蒙特石),四種動力學模式之線性關係均相當不錯,又以Intraparticle diffusion model模式之SSE值較小。初步判斷土壤無機相結構對有機化合物吸附動力行為較趨於孔洞之擴散。以土壤有機相結構而言(Florida Peat),四種動力學模式之線性關係亦均相當不錯,在低相對壓力時以Intraparticle diffusion model模式之SSE值較小;但在中、高相對壓力時,則以The Elovich rate equation更適宜。初步推論,土壤高有機相結構對有機化合物吸附動力行為,瞬間以無機相之吸附(adsorption)為主,慢慢的轉為有機相的分配作用(partitioning)為主。
吸附直鏈型的正己烷與椅型的環己烷時,含土壤無機相與有機相的紗帽山土吸附量大於高有機相之Florida Peat。亦即吸附脂肪族碳氫化合物時,土壤無機相之吸附作用較有機相之分佈作用佔優勢。吸附含苯環之苯時,由於土壤有機質中含有aromatic compounds會產生π-π鍵作用力,使苯易分佈於土壤中。亦即吸附含苯環之有機化合物時,土壤有機相之分佈作用較無機相之吸附作用佔優勢。吸附具極性的水時,由於土壤有機質本質含有許多親水性官能基,使水分子易分佈到土壤中。亦即吸附極性有機化合物時,土壤有機相之分佈作用以極性化合物較佔優勢。
以高土壤有機質含量之Florida Peat吸附有機化合物,吸附量順序:Water> Benzene >>Hexane>Cyclohexane。因土壤有機質中含有會產生π-π鍵作用力的aromatic compounds及親水性官能基,易使水分子及苯分佈至土壤中;另一個可能的原因為水及苯具有較高的溶解度參數,會產生較強的聚合力,使水分子及苯易溶入土壤有機質內,因此造成極大之吸附量。至於非極性之環己烷與正己烷,其吸附量均相當低,尤其是環己烷,吸附量很低,脫附率亦相對的低,推論其椅型的立體結構是造成其難被吸/脫附的主因。
Abstract
The effects of soil structure and chemical properties on the adsorption/desorption of volatile organic compounds were evaluated. The migration and the fates of nonionic organic compounds in soils are found to be highly depended on their vapor-phase sorptive behavior. However, it is difficult to explicit the mechanism of adsorption/desorption due to the complexity of environmental medium.
Vapor-phase adsorption/desorption isotherms of water, benzene, hexane, and cyclohexane on dry soil with different soil organic matters, such as Ca-montmorillonite, Ti-montmorillonite, Shamon Mountain Soil and Florida Peat, were gravimetrically measured under 15°C, 20°C and 25°C. The surface area, pore structure, and adsorption/desorption characteristic were analyzed to show the soil structure and chemical properties effect on the adsorption/desorption of VOCs.
After exchanged with metal cations, the porous structure of the soil mineral fraction was significanting changed. The results demonstrate that Ti-montmorillnite possess higher surface area, extensive pore size distribution, and better pore connection. Both the surface area and the pore structure of soil were characterized based on the classical and fractal analyses of the nitrogen adsorption isotherms. The surface fractal dimension D was calculated from their nitrogen isotherms using the fractal version of FHH (Frenkel-Halsay-Hill) equation. The results revealed that a smaller metal cation on the clay may slightly increase D values as a result of the increase in the BET surface area and the decrease in the pore size.
The adsorption capacity of Florida Peat is greater than that of the Shamon Mountain Soil for the sorption of water and benzene, owing to the Florida Peat contains aromatic groups. Conversely, the mineral fraction was significant for aliphatic compounds, and the soil organic matter was quite significant for aromatic compounds. The steric structure of molecular effect on VOCs adsorption for soil, following the order:the plane form-benzene>the chain form-hexane>the chair form-cyclohexane.
The experimental data were examined by the four sorption kinetic model:the pseudo-first order equation, the pseudo-second order equation, the intraparticle diffusion model and the Elovich rate equation. According to the sum of the errors squared (SSE), it showed that the intraparticle diffusion model fitted the data well, and the Elovich rate equation fitted the Florida Peat data well at relatively high pressure.
目 錄

目 次 頁次
目 錄 I
圖目錄 III
表目錄 VIII

第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 5

第二章 文獻回顧 7
2-1 土壤之基本性 質……………………………………………….. 7
2-2 吸附理論 12
2-3 土壤的吸持作用 34
2-4 影響土壤吸附揮發性有機污染物的因子…………………… 43
2-5 碎形幾何簡介………………………………………………… 52
2-6 吸附熱力學上之研究……………..………………………….. 59
2-7 分子內聚能………………………………………………….. 60
2-7-1 影響分子內聚能之因素………….……………………… 62
2-8 吸附動力學上之研究……………………..………………….. 63

第三章 實驗設備、材料與方法 69
3-1 實驗內容 69
3-2 實驗設備 75
3-2-1 氮氣吸附孔隙儀(ASAP) 75
3-2-2 X光繞射儀(XRD) 78
3-2-3 掃描式電子顯微鏡(SEM) 80
3-2-4 微量天平 81
3-2-5 恆溫水浴槽 82
3-2-6 真空抽氣機 83
3-2-7 真空冷凍乾燥機 83
3-2-8 熱重量分析儀 (TGA) 83
3-2-9 熱微差掃描分析儀 (DSC) 負責人基本資料 84
3-3 實驗材料 85
3-3-1 吸附劑 85
3-3-2 吸附質 88
3-4 實驗步驟 ……………………….…………………………….. 93
3-4-1 實驗設備配置 93
3-4-2 實驗步驟 95

第四章 土壤無機相結構對有機化合物吸/脫附行為之影響.……….. 98
4-1 土樣基本性質 99
4-1-1 黏土上過渡金屬陽離子置換率 99
4-1-2 BET比表面積、孔徑體積、平均孔徑與孔徑分佈……. 100
4-1-3 X-ray繞射分析 110
4-1-4 表面結構影像………….………………………………… 111
4-1-5 熱性質分析……….……...………………………………. 111
4-2 苯、正己烷及環己烷之等溫吸/脫附實驗 116
4-2-1 15℃、20℃及25℃等溫吸/脫附實驗 116
4-2-2 等溫吸/脫附實驗之比較 126
4-2-3 吸附熱…………………………………………………… 128
4-2-4 等溫吸/脫附動力曲線…………………………………... 135
4-2-5 吸附之動力學模式………………………………………. 142

第五章 土壤有機相結構對有機化合物吸/脫附行為之影響…………... 147
5-1 土樣基本性質 148
5-1-1 BET比表面積、孔徑體積、平均孔徑與孔徑分佈 148
5-1-2 土樣表面特性分析 151
5-2 苯、正己烷及環己烷之等溫吸/脫附實驗…………………… 155
5-2-1 15℃及25℃等溫吸/脫附實驗…………………………... 155
5-2-2 等溫吸/脫附實驗之比較…………………………………. 163
5-2-3 吸附熱.…………………………………………………….. 167
5-2-4 等溫吸/脫附動力曲線……………………………………. 170
5-2-5 吸附之動力學模式.……………………………………….. 174
5-3 土壤無機相/有機相對有機化合物吸/脫附行為之影響……… 179
5-3-1 土樣之基本特性..……………………….………………… 179
5-3-2 等溫吸/脫附實驗結果比較.……………………………… 184
5-3-3 低相對壓力下之吸附行為.………………..……………… 190
5-3-4 水分子對吸附行為之影響.…………………..…………… 192

第六章 結論與建議……………………………………………………… 197
6-1 結論 197
6-2 建議 202
參考文獻…………………………………………………………………. 204

圖 目 錄
圖2-1 土壤的形成與組成…….…………………………………..….… 7
圖2-2 部分黏土礦物之結晶型態示意圖……………………………… 8
圖2-3 土壤質地分佈圖………………………………………………… 11
圖2-4 等壓時,物理吸附及化學吸附間之轉移吸附示意圖………… 14
圖2-5 芳香族(aromatic)化合物之Kow與水溶解度間的關係圖……… 17
圖2-6 Langmuir吸附位置示意圖……………………………………… 21
圖2-7 BET吸附位置示意圖…………………………………….…..…. 21
圖2-8 吸附勢能示意圖………………………………………….…..…. 23
圖2-9 典型的四種等溫吸附作用分類………………………………… 25
圖2-10 等溫吸附的四個型態…………………………………….…..…. 25
圖2-11 吸附等溫曲線基本型態示意圖………………………….…..…. 26
圖2-12 孔洞結構吸/脫附現象示意圖……………………………..……. 29
圖2-13 IUPAC的四種遲滯曲線(hysteresis loop)………………….…… 31
圖2-14 吸附等溫線圖例…………………………..…..………………… 33
圖2-15 VOCs存在土壤中的型態之示意圖…………..………………… 37
圖2-16 土壤中五種成分對非極性有機化合物之吸附示意圖………… 38
圖2-17 土壤團粒中不同之擴散機制…………………………………… 40
圖2-18 有機化合物在土壤環境中傳輸途徑示意圖…………………… 41
圖2-19 有機化合物在土壤或沉澱物團粒間吸持位置示意圖…..….…. 42
圖2-20 不同水份相對含量(R.H.)對吸附的影響……………………..… 46
圖2-21 不同土壤有機質含量對吸附的影響……..…………………..… 49
圖2-22 碎形與非碎形物體在不同比例尺放大下結構差異性示意圖… 55
圖2-23 自相似性是其組成部分以某種方式與整體相似的形之示意圖 55
圖2-24 不同的量測單位長度所得到的海岸線總長度示意圖…..…..… 56
圖3-1 研究流程………………………………………………………… 70
圖3-2 BET原理適用範圍示意圖……………….……..…….………… 76
圖3-3 不同相對壓力範圍與孔洞結構之關係圖…..…..……………… 76
圖3-4 XRD自礦物的反射示意圖.……………………..……………… 80
圖3-5 Cahn微量天平示意圖.…………………………..……………… 82
圖3-6 矽四面體之結構與矽四面體之結構圖………………………… 86
圖3-7 鋁八面體之結構與鋁八面體之結構圖………………………… 86
圖3-8 蒙特石之構造與結晶型態示意圖……………………………… 86
圖3-9 含過渡金屬黏土樣品備製流程圖……………………………… 88
圖3-10 苯分子結構示意圖……………………………………………… 90
圖3-11 正己烷分子結構示意圖………………………….………...…… 91
圖3-12 環己烷的椅式構形和船式構形………………………………… 91
圖3-13 環己烷的椅式構形示意圖……………………………………… 92
圖3-14 實驗配置示意圖…….……………………………………...…… 94
圖3-15 實驗配置實像圖…….……………………………………...…… 95
圖4-1 過渡金屬陽離子蒙特石對氮氣的吸/脫附等溫曲線……..….… 101
圖4-2 土樣孔徑分佈圖(PSD)…………..……………………………… 104
圖4-3 鈦-蒙特石層間隙示意圖……………..…………………….…… 106
圖4-4 實驗數據和碎形FHH方程式之擬合圖……………….….…… 109
圖4-5 不同表面特性黏土之XRD繞射圖譜………….……….……… 111
圖4-6 土樣之表面影像(放大2萬倍)………………….……………… 111
圖4-7 土壤膨潤石的脫水曲線及熱差分析示意圖…………………… 112
圖4-8 不同黏土之熱差及熱重分析曲線……………………………… 114
圖4-9 鈣-及鈦-蒙特石在25℃下對苯、正己烷及環己烷之等溫吸附曲線……………………………………………………………… 117
圖4-10 鈣-及鈦-蒙特石在20℃下對苯及正己烷之等溫吸附曲線……. 118
圖4-11 鈣-及鈦-蒙特石在15℃下對苯及正己烷之等溫吸附曲線…… 118
圖4-12 鈣-蒙特石在25℃對水、苯、正己烷及環己烷之等溫吸附曲線 120
圖4-13 鈦-蒙特石在25℃對水、苯、正己烷及環己烷之等溫吸附曲線 120
圖4-14 15℃下,鈣-蒙特石與鈦-蒙特石吸附苯與正己烷之等溫吸/脫附曲線……………..…………………………..………………… 123
圖4-15 25℃下,鈣-蒙特石與鈦-蒙特石吸附苯與正己烷之等溫吸/脫附曲線……………..…………………………..………………… 124
圖4-16 鈣-蒙特石之FTIR光譜圖………………………………………. 125
圖4-17 鈦-蒙特石之FTIR光譜圖……………………………………… 125
圖4-18 鈣-蒙特石在15℃、20℃及25℃下對苯的吸附曲線…………. 129
圖4-19 鈦-蒙特石在15℃、20℃及25℃下對苯的吸附曲線………….. 129
圖4-20 鈦-蒙特石在15℃、20℃及25℃下對正己烷的吸附曲線…….. 130
圖4-21 苯在鈦-蒙特石之等容吸附熱.…………..……………………… 131
圖4-22 苯在鈣-蒙特石之等容吸附熱.…………………..……………… 132
圖4-23 正己烷在鈣-蒙特石之等容吸附熱.……………………..……… 132
圖4-24 鈣-蒙特石與鈦-蒙特石吸附苯及正己烷的吸附反應熱..……… 134
圖4-25 不同型態土壤環境反應達到平衡所需時間的範圍…………… 136
圖4-26 土壤化學反應的速率決定階段示意圖………………………… 136
圖4-27 鈣-蒙特石在15℃下吸附苯的吸附動力曲線.…………………. 138
圖4-28 鈦-蒙特石在15℃下吸附苯的吸附動力曲線.…………………. 138
圖4-29 鈣-蒙特石在15℃下吸附正己烷的吸附動力曲線…………….. 139
圖4-30 鈦-蒙特石在15℃下吸附正己烷的吸附動力曲線.……………. 139
圖4-31 鈣-蒙特石在25℃下吸附苯的吸附動力曲線………………….. 140
圖4-32 鈦-蒙特石在25℃下吸附苯的吸附動力曲線.…………………. 140
圖4-33 鈣-蒙特石在25℃下吸附正己烷的吸附動力曲線.……………. 141
圖4-34 鈦-蒙特石在25℃下吸附正己烷的吸附動力曲線.……………. 141
圖4-35 以Pseudo-first order equation 解析Ca-蒙特石及Ti-蒙特石吸附苯及正己烷之動力曲線……………………………………… 145
圖4-36 以Pseudo-second order equation 解析Ca-蒙特石及Ti-蒙特石吸附苯及正己烷之動力曲線…………………………………… 145
圖4-37 以Intraparticle diffusion model 解析Ca-蒙特石及Ti-蒙特石吸附苯及正己烷之動力曲線……………………………………… 146
圖4-38 The Elovich rate equation 解析Ca-蒙特石及Ti-蒙特石吸附苯及正己烷之動力曲線…………………………………………… 146
圖5-1 紗帽山土與Florida Peat之氮氣吸/脫附等溫曲線……………. 149
圖5-2 土樣孔徑分佈圖(PSD)………………………………………….. 150
圖5-3 實驗數據和碎形FHH方程式之擬合示意圖………………….. 150
圖5-4 紗帽山土與Florida Peat之XRD繞射圖譜…………………… 153
圖5-5 土樣之表面影像(放大2萬倍)……………….………………… 153
圖5-6 紗帽山土之FTIR光譜圖………………….…………………… 154
圖5-7 Florida Peat之FTIR光譜圖……………………………………. 154
圖5-8 紗帽山土在25℃下對正己烷、環己烷、苯及水之等溫吸附曲線……………..………………………………………………….. 156
圖5-9 Florida Peat在25℃對正己烷、環己烷、苯及水之等溫吸附曲線………………………………………………………………… 156
圖5-10 紗帽山土在25℃下對四種吸附質之最大吸附量……………… 158
圖5-11 Florida Peat在25℃下對四種吸附質之最大吸附量.………….. 158
圖5-12 腐植酸構造示意圖……………………………………………… 160
圖5-13 紗帽山土在15℃下對正己烷及苯之等溫吸附曲線…………… 162
圖5-14 紗帽山土在相對壓力0.8時對正己烷及苯之最大吸附量……. 162
圖5-15 紗帽山土在25℃對四種吸附質之等溫吸/脫附曲線………….. 165
圖5-16 Florida Peat在25℃對四種吸附質之等溫吸/脫附曲線.………. 166
圖5-17 紗帽山土在15℃及25℃下對苯的吸附曲線…………..…..….. 168
圖5-18 紗帽山土在15℃及25℃下對正己烷的吸附曲線…………….. 168
圖5-19 紗帽山土在15℃及25℃下吸附苯的等容吸附熱…………….. 169
圖5-20 紗帽山土在15℃及25℃下吸附對正己烷的等容吸附熱…….. 169
圖5-21 Florida Peat 在25℃下對苯的脫附動力曲線.…………………. 171
圖5-22 Florida Peat 在25℃不同相對壓力下對苯的吸附動力曲線….. 172
圖5-23 Florida Peat 在25℃不同相對壓力下對苯的脫附動力曲線….. 173
圖5-24 以Pseudo-first order equation 解析不同相對壓力下Florida Peat吸附苯之動力曲線………………………………………… 176
圖5-25 以Pseudo-second order equation解析不同相對壓力下Florida Peat吸附苯之動力曲線………………………………………… 176
圖5-26 以Intraparticle diffusion model解析不同相對壓力下Florida Peat吸附苯之動力曲線………………………………………… 177
圖5-27 The Elovich rate equation解析不同相對壓力下Florida Peat吸附苯之動力曲線………………………………………………… 177
圖5-28 (A)微孔洞(micropore)及(B)中孔洞(mesopore)固體的t-plot圖. 181
圖5-29 四種土樣之氮氣吸/脫附等溫曲線…………...………………… 182
圖5-30 四種土樣的t-plot圖.………………...…………..……………… 183
圖5-31 土樣孔徑分佈圖……………………….……...………………… 183
圖5-32 不同土樣對有機化合物之等溫吸附曲線……………………… 187
圖5-33 不同土樣在相對壓力P/Po=0.8時之最大吸附量……………… 188
圖5-34 不同土樣對Benzene之等溫吸附曲線線性化示意圖…………. 189
圖5-35 不同土樣對Hexane之等溫吸附曲線線性化示意圖………….. 189
圖5-36 不同土樣在低相對壓力下之等溫吸附曲線……………..….…. 191
圖5-37 Florida Peat 在水系統中吸附苯及環己烷的吸附平衡曲線.….. 192
圖5-38 水系統中土壤有機相結構吸附苯之吸附等溫線……………… 194
圖5-39 水系統中土壤有機相結構吸附環己環之吸附等溫線………… 194
圖5-40 紗帽山土在水系統及氣態系統對苯之吸附等溫線…………… 195
圖5-41 紗帽山土在水系統及氣態系統對環己烷之吸附等溫線……… 195
圖5-42 Florida Peat在水系統及氣態系統對苯之吸附等溫線………… 196
圖5-43 Florida Peat在水系統及氣態系統對環己烷之吸附等溫線…… 196

表 目 錄
表2-1 土壤粒部特性…………………………………………………… 11
表2-2 物理吸附與化學吸附之特性差異……………………………… 14
表2-3 吸附(adsorption)與兩相間分佈(partitioning)之比較…….…..… 15
表2-4 土壤中五種成分對非極性有機化合物之吸脫附機制及動力的定性比較………………………………………………………… 39
表2-5 碎形幾何學與傳統歐氏幾何學的比較.….…………..………… 53
表3-1 吸附質基本性質……………………....………………………… 89
表3-2 各文獻之系統操作參數…………..………..…………………… 96
表4-1 黏土表面之過渡金屬陽離子置換率…………………………… 99
表4-2 不同表面特性黏土之比表面積及孔隙性質分析表…………… 103
表4-3 不同黏土熱反應過程之脫水去除率………………………...…. 115
表4-4 常見有機質之官能基振動模式及其在FTIR光譜範圍分佈表.. 122
表4-5 BET法求得之吸附係數(C)與單層飽和吸附量……………….. 127
表4-6 The sum of the squares of the errors(SSE) and r2 of kinetic models……………………………………………………………. 144
表5-1 紗帽山土及Florida Peat有機碳含量…………………………… 148
表5-2 紗帽山土及Florida Peat比表面積及孔隙性質.….……………. 148
表5-3 土壤有機質(SOM)中重要的官能基一覽表.…..………….….… 159
表5-4 吸附質(有機化合物)之溶解度參數……………………….….… 160
表5-5 紗帽山土與Florida Peat在25℃下對四種吸附質之脫附率.…. 164
表5-6 Florida Peat 在不同相對壓力下對苯吸附之四種動力學模式 分析……………………………………………………………… 178
表5-7 土樣之基本性質………………………………………………… 180
表5-8 四種土樣在25℃下對四種吸附質之脫附率…………………… 185
參考文獻
高文弘、周賢孟譯著(原著:Osipow, L. I., “Surface Chemistry,”),“界面化學”,黎明書店,第四版,台北(1988)。
張仲民,“普通土壤學”,國立編譯館,台北(1989)。
李中光,“芳香族蒸氣在pentasil沸石上之吸附現象”,博士論文,國立中央大學化學工程研究所,中壢(1992)。
李宗仰, “ 地文水文時空變化之碎形結構及其應用”,碩士論文,國立成功大學水利及海洋工程研究所,台南(1995)。
張清裕,“有機滲液對黏土及改良黏土之滲透性與有機污染物阻滯能力之影響”,碩士論文,國立中央大學環境工程研究所,中壢(1995)。
廖平喜,“聚合物化學”,高立圖書有限公司,二版,台北(1996)。
陳百合,“不同土壤組成對界面活性劑吸附機制之研究”,碩士論文,國立中央大學環境工程研究所,中壢(1996)。
楊琇婷,“土壤吸附界面活性劑對土壤/水系統中有機污染物傳輸行為之影響”,碩士論文,國立中央大學環境工程研究所,中壢(1996)。
陳世裕,“土壤中揮發性有機物質傳及吸附行為之研究”,博士論文,國立台灣大學環境工程研究所,台北(1996)。
王一雄,“土壤環境污染與農藥”,明文書局,台北(1997)。
王一雄、陳尊賢、李達源,“土壤污染學”,國立空中大學,台北(1997)。
胡德欽譯,“土壤力學”,高立圖書有限公司,台北(1997)。
張美玲,“揮發性有機物氣體在土壤中吸脫附動力”,博士論文,國立台灣大學環境工程研究所,台北(1998a)。
張仁福,“土壤污染防治學”,高雄復文圖書出版社,高雄(1998b)。
倪雅惠,“揮發性有機物污染土壤復育工程中之吸附行為-各種土壤成份對吸附之貢獻”,碩士論文,國立台灣大學環境工程研究所,台北(1998)。

楊迪光,“相對溼度對土壤吸附揮發性有機物機制之影響”,碩士論文,國立台灣大學環境工程研究所,台北(1998)。
陳佩貞,“揮發性有機物於土壤中慢吸脫附行為之探討—不同黏土礦物的影響”,碩士論文,國立台灣大學環境工程研究所,台北(1999)。
王明光,“土壤環境礦物學”,藝軒圖書出版社,台北(2000)。
林百顯,“不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究”,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
鄭淑君,“甲苯於不同黏土礦物中吸附動力現象之探討”,碩士論文,國立台灣大學環境工程研究所,台北(2000)。
王振興,“氣-固多層吸附理論與層析之研究”,博士論文,國立台灣科技大學化學工程研究所,台北(2000)。
曾文妮,“土壤無機相結構對揮發性有機污染物吸/脫附行為之影響”,碩士論文,國立中央大學環境工程研究所,中壢(2001)。
葉佩雯,“分子間作用力影響土壤中非離子有機物傳輸行為之研究”,碩士論文,國立中央大學環境工程研究所,中壢(2002)。
施養信,“土壤異質性對有機污染物在土壤中吸脫附行為之影響”,博士論文,國立台灣大學環境工程研究所,台北(2002)。
梁瑜玲,“甲苯在三種黏土礦物下長時間吸附機制”,碩士論文,國立台灣大學環境工程研究所,台北(2002)。
黃鈺雯,“含氯揮發性有機物於黏土礦物上之化學結構轉化及吸/脫附動力”,碩士論文,國立台灣大學環境工程研究所,台北(2003)。
Amacher, M. C., “Methods of obtaining and analyzing kinetic data.-In Rates of Soil Chemical Processes,” (Sparks, D. L., and D. L. Suarez), SSSA Spec. Publ., 27, pp.19-59(1991).
Aochi, Y. O., and W. J. Farmer, “Spectroscopic Evidence for the Rate-Limited Accumulation of a Persistent Fraction of 1.2-Dichloroethane Sorbed onto Clay Minerals,” Environmental Science & Technology, 29, pp. 1760-1765(1995).
Arnell, J.C., amd H. L. McDermott, “ Proceedings of the Second International Congress on Surface Activity ”, II, Butterworths, London, pp.113(1957).
ASAP 2000 Accelerated Surface Area and Porosimetry System, Operator’s Manual, V2.02, MICROMERITICS INSTRUMENT CORPORATION, Norcross, GA(1992).
Astumian, R. D., and Z. A. Schelly, “Geometric Effects of Reduction of Dimensionality in Interfacial Reaction,” J. Am. Chem. Soc., 106, pp. 304-308(1986).
Avnir, D., D. Farin, and P. Pfeifer, “ Chemistry in Noninteger Dimensions between Two and Three. II. Fractal Surfaces of Adsorbents,” J. Chem. Phys., 79, pp.3566-3571(1983).
Avnir, D., D. Farin, and P. Pfeifer, “ Molecular Fractal Surfaces,” Nature, 308, pp.261-263(1984).
Avnir, D., and M. Jaroniec, “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials,” Langmuir, 5, pp.1431-1433(1989).
Avnir, D., and D. Farm, “Fractal Scaling Laws in Heterogeneous Chemistry 1. Adsorptions, Chemisorptions and Interactions Between Adsorbates ,” New Journal of Chemistry-Nouveau Journal de Chimie, 14, pp.197-206(1990).
Avnir, D., D. Farm, and P. Pfeifer, “ A Discussion of Some Aspects of Surface Fractality and of Its Determinations,” New J. Chem.,16, pp.439-449(1992).
Ball, P.C., and R. Evans, “ On the Mechanism for Hysteresis of Gas Adsorption on Mesoporous Substrates,” Europhysics Letters,” 4, pp.715-721(1987).
Ball, W. P., and P. V. Roberts, “ Long-term sorption of halogenated organic chemicals by aquifer material. 2. Interparticle diffusion,” Environmental Science & Technology, 25, pp.1237-1249(1991).
Bansal, R. C., J. B. Jean, and F. Stoeeckli, “Active Carbon,” Marcel Dekker, INC., New York(1988).
Batterman, S., A. Kulshrestha, and H. Chang, “Hydrocarbon Vapor Transport in Low Moisture Soils,” Environmental Science & Technology, 29, pp.171-180(1995).
Berck, D. W., “Zeolites Molecular Sieves:Structure, Chemistry and Use,” Wiley, New York(1974).

Bering, B. P., M. M. Dubinin, and V. V. Serpinsky, “Theory of Volume Filling for Vapor Adsorption,” Journal of Colloid and Interface Science, 21, pp.378-393(1966).
Brunauer, S., P. H. Emmett, and E. Teller, “ Adsorption of Gas in Multimolecular Layers,” J. Am. Chem. Soc., 60, pp.309-319(1938).
Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem. Soc., 62, pp.1723(1940).
Brusseau, M. L., R. E. Jessup, and P. S. C. Rao, “ Modeling the transportof solutes influced by multiprocess nonequilibrium,” Water Resour. Res., 25, pp.1971-1988(1989).
Brusseau, M. L., R. E. Jessup, and P. S. C. Rao, “Nonequilibrium Sorption of Organic Chemicals: Elucidation of Rate Limiting Process,” Environmental Science & Technology, 25, pp.134- 142(1991).
Campagnolo, J. F., and A. Akgerman, “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents,” J. Hazard. Mater., 49, pp.231-245(1996).
Cesar, G. L., R. M. Jose, and D. J. Wilson, “Groundwater Clean Up by In-Site Sparing VII Volatile Organic Compounds Concentration Rebound Cased by Diffusions After Shut Down,” Separation Science and Technology, 29, pp.1509-1528(1994).
Cheung, C. W., J. F. Porter, and G. Mckay, “ Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char,” Water Research., 35, pp.605-612 (2001).
Chien, S. H., and W. R. Clayton, “Application of Elovich equation to the kinetics of phosphate release and sorption in soils,” Soil Sci. Soc. Am. J., 44, pp.265-268(1980).
Chiou, C. T., P. E. Peter, and V. H. Freed, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds,” Science, 206, pp. 831-832(1979).
Chiou, C. T., and D. W. Schmedding, “Partitioning Organic Compounds in Octanol-water,” Environmental Science & Technology, 16, pp. 4-10(1982).
Chiou, C. T., P. E. Peter, and D. W. Schmedding, “Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter nd water,” Environmental Science & Technology, 17, pp. 227-231(1983).
Chiou, C. T., T. D. Shoup, and P. E. Peter, “Mechanistic Roles of Soil Humus and Minerals in the Sorption of Nonionic Organic Compounds from Aqueous and Organic Solution,” Org. Geochem., 8, pp.9-14(1985a).
Chiou, C. T., and T. D. Shoup, “Soil Sorption of Organic Vapors and Effects of Humidity on Sorptive Mechanism and Capacity,” Environmental Science & Technology, 19, pp.1196-1200(1985b).
Chiou, C. T., R. L. Malcolm, T. I. Brinton, and D. E. Kile, “Water Solubility Enhancement of Some Organic Pollutants and Pesticides by Dissolved Humic and Fuivic Acids,” Environmental Science & Technology, 20, pp.502-508(1986).
Chiou, C. T., D. E. Kile, T. I. Brinton, R. L. Malcolm, and J. A. Leenheer, “A Comparison of Water Solubility Enhancements of Organic Solutes by Aquatic Humic Materials and Commerical Humic Acids,” Environmental Science & Technology, 21, pp. 1231-1234(1987).
Chiou, C. T., D. E. Kile, and R. L. Malcolm, “Sorption of Vapors of Some Organic Liquids on Soil Humic Acid and Its Relation to Partition of Organic Compounds in Soil Organic Matter,” Environmental Science & Technology, 22, pp.298-303(1988).
Chiou, C. T., J. F. Lee, and S. A. Boyd, “The Surface Area of Soil Organic Matter,” Environmental Science & Technology, 24, pp. 1164-1166(1990).
Chiou, C. T., D. W. Rutherford, and M. Manes, “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data,” Environmental Science & Technology, 27, pp.1567-1574(1993).
Chiou, C. T., and D. E. Kile, “Effect of polar and nonpolar groups on the solubility of organic compounds in soil organic matter,” Environmental Science & Technology, 28, pp.1139-1144(1994).
Chiou, C. T., S. E. Macgroddy, and D. E. Kile, “Partition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments”, Environmental Science & Technology, 32, pp. 264-269(1998).
Cornelissen, G., C. M. Van Noort, J. R. Parsons, and H. A. J. Govers, “Temperature Dependence of Slow Sorption and Desorption Kinetics of Organic Compounds in Sediments,” Environmental Science & Technology, 31, pp.454-460(1997).
Cseri, T., S. Békássy, F. Figueras, and S. Rizner, “Benzylation of aromatics on ion-exchanged clays,” J. Mol. Catal. A-Chem., 98, pp.101-107(1995).
de Boer, J.H., “The Structure and Properties of Porous Material,” Butterworths, London(1958).
Doner, H. E., and M. M. Mortland, “Benzene Complexes with Cu (II) ontmorillonite,” Science, 166, pp.1406-1407(1969).
Dubinin, M. M., “In Progress in Surface and Membrane Science,” Academic Press, New York(1975).
Dural, N. H., and C. H. Chen, “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils,” J. of Hazard. Mater., 53, pp.75-92(1997).
Ertl, G., H. Knözinger, and J. Weitkamp,“ Handbook of Heterogeneous Catalysis,” VCH D-69451 Weinheim, pp.1508(1997).
Fares, A., B. T. Kindt, P. Lapuma, and G. P. Perram, “Desorption Kinetics of Trichloroethylene from Powered Soils,” Environmental Science & Technology, 29, pp.1564-1568(1995).
Farrell, J., D. Grassias, and J. Martin, “Investigation of Mechanisms Contributing to slow Desorption of Hydrophobic Organic Compounds from Mineral Solids,” Environmental Science & Technology, 33, pp.1237-1243(1999).
Feller, C., E. Schouller, F. Thomas, J. Rouiller, and A. J. Herbillon, “N2-BET Specific Surface Areas of Some Low Activity Clay Soils and Their Relationship with Secondary Constituents and Organic Matter Contents,” Soil. Sci., 153, pp.293- 299(1992).
Garg, D. R., and D. M. Ruthven, “ The performance of Molecular Sieve Adsorption Columns:Systems with Macropore Diffusion Control,” Chem. Eng. Sci., 29, pp.1961-1967(1974).
Goss, K. U., “Effects of Temperature and Relative Humidity on the Sorption of organic Vapors on Quartz Sand,” Environmental Science & Technology, 26, pp.2287-2294(1992).
Goss, K. U., “Effects of temperature and relation humidity on the sorption of organic vapors on clay minerals,” Environmental Science & Technology, 27, pp.2127-2132(1993).

Goss, K. U., and S. J. Eisenreich, “Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relation humidity,” Environmental Science & Technology, 31, pp.2827-2832(1997).
Grathwohl, P., “Influence of Organic Matter from Soils and Sediments from Various Origins on the Sorption of Some Chlorinated Aliphatic Hydrocarbons: Implications on Koc Correlations,” Environmental Science & Technology, 24, pp.1687-1693(1990).
Gray, M. J., R. C. Mebane, H. N. Womack, and T. R. Rybolt, “ Molecular Mechanics and Molecular Cross-Sectional Areas:A Comparison with Molecules Adsorption on Solid Surfaces,” Journal of Colloid and Interface Science, 170, pp.98-101(1995).
Gregg, S. J., and K. S. W. Sing, “Adsorption, Surface Area and Porosity,” Academic Press Inc., New York(1967).
Gregg, S. J., and K. S. W. Sing, “Adsorption, Surface Area and Porosity,” Academic Press Inc., London(1982).
Halsey, G. D., “Physical Adsorption on Non-Uniform Surface,” Journal of Chemical Physics, 16, pp.931-937(1965).
Handbook of CHEMISTRY and PHYSICS, 68th, CRC Press. CRC Handbook of Solubility Parameter on Other Cohesion Parameters(1988).
Harkins,W. D., and G. Jura, J. Am. Chem. Soc., 66, pp.1366(1944).
Hermosin, M.C., and J. Cornejo, “Binding mechanism of 2,4-dichlorophenoxyacetic acid by organo-clays,” J. Environ. Qual., 22, pp.325-331(1993).
Hill, T. L., P. H. Emmett, and L. G. Joyner, J. Am. Chem. Soc., 73, pp.5102(1951).
Ho, Y. S., and G. Mckay, “ A Comparision of chemisorption kinetic models applied to pollutant removal on various sorbents,” Trans. Inst. Chem. Engng., 76B, pp.1-10(1998).
Ho, Y. S., and G. Mckay, “ Pseudo-second order model for sorption process,” Process Biochemistry, 34, pp.451-465(1999a).
Ho, Y. S., and G. Mckay, “ Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash,” J. Environmental Science and Health, A34, pp.1179-1204(1999b).
Huang, F. C., J. F. Lee, C. K. Lee, W. N. Tseng, and L. C. Juang, “ Effects of Exchange Titanium Cations on the Pore Structure and Adsorption Characteristics of Montmorillonite,” J. Colloid Interf. Sci., 256, pp.360-366(2002).
IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31, pp.578(1972).
Jankowska, H., A. Swiatkowski, and J. Choma, “Active Carbon,” Ellis Horwood, New York(1991).
Jaroniec, M., and R. Madey, “Physical Adsorption on Heterogeneous Solids,” Elsevier, Amsterdam(1988).
Jenny, H., “Factors of Soil Formation,” McGraw-Hill, New York(1941).
Johnston C. T., T. Tipton, S. L. Trabus, C. Erickson, and D. A. Stone, “Vapor-phase sorption of p-xylene on Co- and Cu-exchanged Saz-1 montmorillonite,” Environmental Science & Technology, 26, pp.382-390(1992).
Juang, R. S., F. C. Wu, and R. L. Tseng, “ Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels,” J. Colloids and Interface Science., 227, pp.437-444(2000).
Juang, R. S., F. C. Wu, and R. L. Tseng, “ Characterization and use of activated Carbons prepared from bagasses for liquid-phase adsorption,” Colloids and Surface A:Physicochemical and Engineering Aspects, 201, pp.191-199(2002).
Jury, W. A., W. F. Spencer, and W. J. Farmer, “Behavior Assessment Model for Trace Organic in Soil, 1. Model Description,” J. Environ. Qual., 12, pp. 558-564(1983).
Kango, R. A., and J. G. Quinn, “Adsorption Studies of Xylenes and Ethylbenzene on Soil and Humic Acid by a Purge Trap Gas Chromatographic Method,” Chmosphere, 19, pp. 1269-1276(1989).
Karickhoff, S. W., and K. R., Morris, “Sorption dynamics of hydrophobic pollutants in sediment suspensions,” Environmental Toxicology and Chemistry, 4, pp.469-479(1985).
Ketelsen, H., and M. W. Sigrid, “ Adsorption of brilliant blue FCF by soils,” Geoderma, 90, pp.131-145(1999).

Keytes, B. R., and G. D. Silcox, “Fundamental Study of the Thermal Desorption of Toluene from Montmorillonite Clay Particles,” Environmental Science & Technology, 28, pp.849(1994).
Kohki, E., K. Tomonori, N. Kohji, M. Tomoo, and K. Kaneda, “Simple and clean synthesis of 9,9-bis【4-(2-hydroxyethoxy)phenyl】fluorene from the aromatic alkylation of phenoxyrthanol with fluoren-9-one catalysed by titanium cation-exchanged montmorillonite,” Green Chemistry, 2, pp.157-160(2000).
Lambert, S. M., “Functional Relationship Between Sorption in Soil and Chemical Structure,” Journal of Agric. Food Chem., 15, pp.572-576(1976).
Lee, C. K., “Fractal surface analysis by using capillary condensation data,” Industrial & Engineering Chemistry Research, 37, pp.3939-3942(1998).
Lee, C. K., and C. S. Tsay, “ Surface fractal dimensions of alumina and aluminum borate from nitrogen isotherms,” J. Phys. Chem. B, 102, pp.4123-4130(1998a).
Lee, J. F., Y. C. Wang, and Y. C. Chang, “ Permeation of Modified Clays with Organic Permeants,” Journal of Chinese Institute of Environmental Engineering, 8, pp.207-214(1998b).
Lee, J. F., C. K. Lee, and L. C. Juang, “ Size Effects of Exchange Cation on the Pore Structure and Surface Fractality of Montmorillonite,” J. Colloid Interf. Sci, 217, pp.172-176(1999).
Lee, J. F., P. M. Liao, C. C. Kuo, H. T. Yang, and C. T. Chiou, “Influence of a Nonionic Surfactant (Triton X-100) on Contaminant Distribution between Water and Several Soil Solids,” J. Colloid Interf. Sci, 229, pp.445-452(2000).
Li, J., and C. J. Werth, “Evaluating Competitive Sorption Mechanisms of Volatile Organic Compounds in Soils and Sediments Using Polymers and Zeolites,” Environmental Science & Technology, 35, pp.568-574(2001).
Lin, T. F., “Diffusion and sorption of water vapor and benzene within a dry model soil organic matter,” Water Science & Technology, 35, pp.131-138(1997).
Liu, Z., S. Laha, and R. G. Luthy, “Surfactant Solubilization of Policyclic Aromatic Hydrocarbon Compounds in Soil-Water Suspensions,” Water Science & Technology, 29, pp.903-913(1995).
Lowell, S., and J. E. Shields, “ Power surface area and porosity,” Chapman & Hall Publishers, New York(1984).
Luthy, R. G., G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gshwend, J. J. Pignatello, M. Reinhard, S. J. Traina, Jr. W. J. Weber, and J. C. Westall, “Sequestration of Hydrophobic Organic Contaminations by Geosorbents,” Environmental Science & Technology, 31, pp. 3341-3347(1997).
Mackay, D., and W. Y. Shiu, “A Critical Review of Henry’ Law Constants for Chemicals of Environmental Interest,” J. Phys. Chem. Ref. Data, 10(4), pp.1175-1199 (1981).
Mader, B. T., K. Uwe-Goss, and S. J. Eisenreich, “Sorption of Nonionic ydrophobic Organic Chemicals to Mineral Surface,” Environmental Science & Technology, 31, pp.1079-1086(1997).
Maes, N., I. Heylen, P. Cool, and E. F. Vansant, “The relation between the synthesis of pillared clays and their resulting porosity,” Appl. Clay Sci., 12, pp.43-60(1997).
Magee, R. W., “Rubber Div.,” J. Am. Chem. Soc. Meeting, Pittsburgh, Pa., Oct., pp.11-14(1994).
Mandelbrot, B. B., “ The Fractal Geometry of Nature,” W.H. Freeman, San Francisco(1982).
Maron, S. H., and J. B. Lando, “Fundamental of Physical Chemistry,” 台北圖書有限公司,台北(1989)。
McBride, M. B., “Environmental Chemistry of Soils,” Oxford University Press, Inc., New York, pp.344-345(1994).
McCarthy, J. F., and J. M. Zachara, “Subsurface transport of Contaminant,” Environmental Science & Technology, 23, pp.496-501(1989).
McClokey, W. B., and D. E. Bayer, “Thermodynamics of Fluridone Adsorption and Desorption on Three California Soils,” Soil Sci. Sco. Am. J. 51, pp. 605-612(1987).
Mignard, E., and J. C. Benet, “Diffusion of Methyl Bromide in Soil,” J. Soil. Sci., 40, pp.151-165(1989).
Mikhail, R. H., S. Brunauer, and E. E. Boder, “Investigations of Complete Pore Structure Analysis,” Journal of Colloid and Interface Science, 26, pp.45-53(1968).
Mooney, R. W., A. G. Keenan, and L. A. Wood, “Adsorption of Water Vapor by Montmorillonite II Effect of Exchangeable Ions and Lattice Swelling as Measure by X-ray Diffraction,” J. Am. Chem. Soc.,74, pp.1367-1374(1952).
Mortland, M. M., “Mechanisms of Adsorption of Nonhumic Organic Species by Clays,” Interactions of Soil Mineral with Natural Organics and Microbes, Huang, P. M., and Schnitzer, M. Eds., SSSA Special Publication(17), Soil Sci. Am. Inc. Madison, U.S.A., pp. 61-66(1989).
Murphy, E. M., J. M. Zachara, and S. C. Smith, “Influence of mineral-bound humic substarces on the sorption of hydrophobic organic compounds,” Environmental Science & Technology, 24, pp.1507-1516(1990).
Neimark, A. V., “ A New Approach to the Determination of the Surface Fractal Dimension of Porous Solids,” Physical A, 191, pp.258-262(1992).
Noll, K. E., V. Gounaris, and W. S. Hou, “ Adsorption technology for air and water pollution control,” Lewis Pubbishers, Inc., pp.32-34(1992).
Ong, S. K., and L. W. Lion, “Mechanisms for Trichloroethylene Vapor Sorption onto Soil Minerals,”J.Environ.Qual.,20,pp.80-188(1991a).
Ong, S. K., and L. W. Lion, “Trichloroethylene vapor sorption onto soil minerals,” Soil Sci. Soc. Am. J., 55, pp.1559-1568(1991b).
Ong, S. K., and L.W. Lion, “Effects of Soil Properties and Moisture on the Sorption f Trichloroethylene Vapor,” Water Res., 26, pp. 2287-2294(1992).
Pannell, K. D., S. A. Boyd, and L. M. Abriola, “Surface Area of Soil Organic Matter Reexamined,” Soil. Sci. Soc. Am. J., 59, pp. 1010-1018(1995).
Pfeifer, P., and M. Obert, “ Fractals:basic concepts and terminology, in The Fractal Approach to Heterogeneous Chemistry:Surface, Colloids, Polymers, ” Avnir, D., Ed., John Wiley & Sons, New York, USA., pp.11-40(1989).
Pfeifer, P., J. Krim, Y. J. Wu, and M. W. Cole, “ Multilayer Adsorption on a Fractally Rough-Surface,” Physical Review Letters, 62, pp.1997-2000(1989).
Pfeifer, P., and M.W. Cole, “ Fractals in Surface Science Scattering and Thermodynamics of Adsorbed Films. 2,” New Journal of Chemistry,14, pp.221-232(1990).
Pingatello, J. J.,“Sorption Dynamics of Organic Compounds in Soil and Sediments,” Reactions and Movement of Organic Chemicals in Soils. Soil Science Society of America, Wisconsin. pp.45-80(1989).
Pingatello, J. J., and B. Xing, “Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles,” Environmental Science & Technology, 30, pp.1-11(1996).
Portsmouth, R.L., and L.F. Gladden, “Determination of Pore Connectivity by Mercury Porosimetry,” Chemical Engineering Science, 46, pp.3023-3036(1991).
Qaisi, K. M., K. S. Ro, W. D., Constant, and M. L. Smith, “ Soil-Water partitioning and mass transfer kinetics of 2,4,6-tritrotoluene in highly contaminated soil,” J. Environmental Sci. Health., A31, pp.2079-2085(1997).
Reid, R. C., J. M. Prausnitz, and B. E. Poling, “ The properties of Gases & Liquids,” McGraw-Hill Book Company, New York(1988).
Ruiz, J., R. Bilbao, and M. B. Murillo, “Adsorption of Different VOC onto Soil Minerals from Gas Phase: Influence of Mineral, Type of VOC, and Air Humidity,” Environmental Science & Technology, 32, pp.1079-1084(1998).
Rutherford, D. W., and C. T. Chiou, “Effect of Water Saturation in Soil Organic Matter on the Partition of Organic Compounds,” Environmental Science & Technology, 26, pp.965- 970(1992).
Ruthven, D. M., and K. F. Loughlin, “The Diffusion Resistance of Molecular Sieve Pellets,” Can. J. Chem. Eng., 28, pp.550(1972).
Ruthven, D. M., “Principles of Adsorption and Adsorption Process,” John Wiley & Sons(1984).
Sawhney, B. L., and K. Brown, “Reactions and Movement of Organic Chemicals in Soil,” Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, USA. (1989).
Sawhney, B. L., and M. P. N. Gent, “ Hydrophobicity of Clay surface:sorption of 1,2-Dibromoethane and Trichloroethene,” Clay and Clay Minerals, 38, pp.14-20(1990).
Schnitzer, M., and H. Kodama, “Interactions between Organic and Inorganic Components in Particle-Size Fractions Separated from Four Soils,” Soil. Sci. Soc. Am. J., 56, pp.1099-1105(1992).
Schulten, H. R., and M. Schnitzer, “A state of the art structural concept for humic substances,” Naturwissenschaften 80, pp.29-30(1993).
Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden, “Environmental Organic Chemistry,” Wiely-Interscience Publication, John Willey & Sons, Inc., New York, pp.331(1993).
Smith, J. A., C. T. Chiou, J. A. Kammer, and D. E. Kile, “Effect of Soil Moisture on Sorption of Trichloroethylene Vapor to Vandose-Zone Soil at Picatinny Arsenal, New Jersey,” Environmental Science & Technology, 24, pp.676-683(1990).
Sparks, D. L., “Kinetics of Soil Chemical Processes,” Academic Press, San Diego(1989).
Sparks, D. L., “Environmental Soil Chemistry,” Academic Press, San Diego(1995).
Sposito, G., “The Surface Chemistry of Soil,” Oxford University Press, New York(1984).
Steinberg, S. M., J. J. Pignatello, and B. L. Sawhney, “Persistence of 1,2-Dibromoethane in Soils: Entrapment in Intraparticle Micropores, ” Environ. Sci. Technol., 21, pp.1201-1208(1987).
Steinberg, S. M., J. S. Schmeltzer, and D. K. Kreamer, “Sorption of benzene and trichloroethylene on a desert soil: Effects of moisture and organic matter,” Chemosphere, 33, pp.961-980(1996).
Sun, Q., and L. Yan, “ The adsorption of basic dyes from aqueous solution on modified peat-resin particle,” Water Research, 37, pp.1535-1544(2003).
Suzuki, M., “ Adsorption Engineering,” Elsevier Science Publidhers B. V. (1990).
Szekely, J., J. W. Evans, and Y. S. Hong, “ Gas-Solid Reaction,” Academic Press, Inc., New York(1976).
Tate III, Robert L., Soil organic matter, John Wiley & Sons (1987).
Thlbaud, C., C. Erkey, and A. Akgerman, “Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography,” Environmental Science & Technology, 26, pp.1159-1164(1992).
Tien, C., “Adsorption Calculations and Modeling,” New York, Butterworths, Boston(1994).
Tivadar, C., B. Sándor, F. François, and R. Sándor, “ Benzy-lation of Aromatics on Ion-Exchanged Clays,” J. of Molecular Catalysis A: Chemical, 98, pp.101-107(1995).
Travis, C. C., and J. M. Mac Innis, “Vapor Extraction of Organics from Subsurface Soils:Is It Effect?” Environmental Science & Technology, 26, pp.1885-1887(1992).
Waksman, S. A., and K. R. Stevens, “ A critical study of the methods for determining the nature and abundance of soil organic matter,” Soil Sci., 30, pp.97-116(1930).
Weber, Jr. W. J., and J. P. Gould, “Evolution of a technology,” J. Environ. Eng. Div., 110, pp.899-917(1984).
Weber, Jr. W. J., and E. H. Smith, “Simulation and Design Models for Adsorption Process,” Environmental Science & Technology, 21, pp. 1040-1050(1987).
Weber, J. B., and C. T. Miller, “Organic Chemical Movement Over and Through Soil,” in Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America, Wisconsin, USA, pp. 305-334(1989).
Weber, W. Jr., P. M. Mcginley, and L. E. Katz, “A Distributed Reactivity Model for Sorption by Soils and Sediments,” Environmental Science & Technology, 26, pp.1955-1962(1992).
Weidenhaupt, A., C. Arnold, S. R. Muller, S. B. Haderlein, and R. P. Schwarzenbach, “Sorption of Organic Biocides to Mineral Surface,” Environmental Science & Technology, 31, pp. 2603-2609(1997).
Weissmahr, K. W., S. B. Haderlein, and R. P. Schwarzenbach, “In Situ Spectroscopic Investigations of Adsorption Mechanism of Nitroaromatic Compounds at Clay Minerals,” Environmental Science & Technology, 31, pp.240-247(1997).
Worrall F., A. Parker, J. E. Rau, and A. Johnson, “ A study of the adsorption kinetics of isoproturon on soil and subsoil,” Chemosphere, 34, pp.71-86(1997).
Wu, S. C., and P. M. Gschwend, “Sorption kinetic of Hydrophobic Organic Compounds of Natural Sediments and Soils,” Environmental Science & Technology, 20, pp.717-725(1986).
Yaws, C., H. C. Yang, and X. Pan, “Henry’s Law Constants for Organic Compounds in Water,” Chemical Engineering, 31, pp. 179-185(1991).
Yin, Y., “ Adsorption isotherm on fractally porous materials,” Langmuir, 7, pp.216-217(1991).
Zhu, B. Y., and T. Gu, “Surfactant Adsorption at Soil-Liquid Interfaces,” Advances in colloid and interface science, 37, pp.1-32 (1991).
Zhou, H., H. Li, and O. Xu, “Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters,” Environmental Science & Technology, 29, pp.1401-1406(1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top