跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:秦若鈺
研究生(外文):Jo-Yu Chin
論文名稱:大氣常見有機氣膠分析及有機/無機混合氣膠含水特性之研究
論文名稱(外文):Atmospheric Organic Aerosol Analysis and Hygroscopic Properties of the mixed Inorganic-Organic Aerosol
指導教授:李崇德李崇德引用關係
指導教授(外文):Chung-Te Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:165
中文關鍵詞:有機氣膠二元酸混合氣膠氣膠含水量潮解點相對溼度再結晶點相對濕度
外文關鍵詞:organic aerosoldicarboxylic acidaerosol water contentcrystalization relative humiditydeliquescence relative humidity
相關次數:
  • 被引用被引用:12
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
許多探討大氣輻射作用(Curry et al., 1995; Hegg et al., 1996)、酸性沈降機制(Zhuang et al., 1999a; Zhuang et al., 1999b)、雲霧形成機制(Tabazadeh et al., 1997; Hu and Abbatt, 1997)、區域能見度(Hanel, 1976; Tang, 1980)、氣膠化學組成與人體健康風險評估(Li et al., 1992; Li and Hopke, 1994)與許多熱力學模式及氣候變遷模式等,皆與大氣氣膠含水量有重大關係(Boucher and Anderson, 1995)。
本研究藉由建立GC/MS分析技術,瞭解大氣中常見的吸濕性有機氣膠二元酸與左旋葡萄醣的成分與含量,另外以GC-TCD氣膠含水量分析儀(Chang and Lee, 2002)量測有機氣膠與有機/無機混合氣膠的含水特性,探討大氣常見有機氣膠對典型無機鹽類的吸濕特性影響。
郊區大氣氣膠中總二元酸平均濃度為364±208 ngm-3,濃度範圍為13~906 ngm-3,總二元酸約佔PM2.5的1.8±1.2%、總碳成分的7.7±4.2%、有機碳的9.7 ±5.1%;從物種分布可知oxalic acid 最多,約佔總有機二元酸的76±12%,其次分別為succinic acid (C4)、malonic acid (C3)、glutaric acid (C5)與adipic acid (C6)。都會區大氣氣膠中總二元酸平均濃度486±217 ngm-3,濃度範圍為184~1049 ngm-3,總二元酸約佔PM2.5的1.2±0.5%、總碳成分的2.7±1.2%、有機碳的3.2±1.4% ;從物種分布可知也是oxalic acid 最多,約佔總有機二元酸的81±5%,其次分別為succinic acid (C4)、malonic acid (C3)、glutaric acid (C5)與adipic acid (C6)。在另外的醣類物種分析中,都會區大氣中左旋葡萄醣可作為燃燒氣膠的指標,且與碳成分有相同的趨勢。
在氣膠含水量研究方面,氣膠粒徑會影響glutaric acid有機氣膠的潮解點相對濕度(DRH),對於再結晶相對濕度(CRH)則較無影響。在有機/無機不同混合比例研究中(以oxalic acid與硫酸銨混合),當oxalic acid有機含量愈高會使硫酸銨的DRH與CRH提早發生,混合氣膠含水量隨著有機氣膠的比例增加而下降。
在有機/無機相同混合比例研究中(以oxalic acid、malonic acid、succinic acid、glutaric acid和硫酸銨與氯化鈉進行混合),oxalic acid不影響氯化鈉氣膠DRH,但會使硫酸銨的DRH提早,且均使兩種無機氣膠的CRH提早發生;malonic acid則使無機氣膠DRH提早,並延後其CRH;succinic acid不影響無機氣膠DRH,但使其CRH提早發生;glutaric acid不影響氯化鈉氣膠DRH,稍微提早硫酸銨的DRH,且均使CRH稍微提早。在含水量方面,只有glutaric acid會加強氣膠亞穩態水量,其他皆為抑制氯化鈉與硫酸銨的吸濕與亞穩態水量。整體而言,氯化鈉、硫酸銨受四種有機氣膠影響的含水量有不同的特性。
Abstract
Hygroscopic aerosols are significant in aerosol radiative forcing, acid deposition, formation of clouds and fogs, regional visibility, climate change, and human health assessment (Curry et al., 1995 ; Hegg et al., 1996;Zhuang et al., 1999a ; Zhuang et al., 1999b;Tabazadeh et al., 1997; Hu and Abbatt, 1997;Li and Hopke, 1994). Recently, the effect of organic component of a mixed aerosol on its water content has drawn a great attention. The thermal-equilibrium model for inorganic-organic mixed aerosols apparently needs experimental data to validate.
This study modified analytical methods for the determination of straight chain dicarboxylic acids (C2-C10) and levoglucosan in atmospheric aerosol using gas chromatography/mass spectrometry (GC/MS). In addition, a gas chromatography/thermal conductivity detector (GC/TCD, Chang and Lee, 2002) is applied for measuring water mass of pure dicarboxylic acids and internally mixed inorganic-organic aerosols. The objectives are investigating particle size on the humidogram of dicarboxylic acids and studying the effects of organic component to the aerosol water associated with inorganic aerosol typically found in the atmosphere.
The average of total dicaroxylic acids (C2-C10) of rural aerosol at Shi-Men site was 364±208 ngm-3 and the percentages to PM2.5, total carbon, and organic carbon were 1.8±1.2%, 7.7±4.2%, and 9.7±5.1%, respectively. In contrast, the average of total dicaroxylic acids (C2-C10) of urban aerosol at Hsin-Chuang site was 486±217 ngm-3 and the percentages to PM2.5, total carbon, and organic carbon were 1.2±0.5%、2.7±1.2% and 3.2±1.4%, respectively. Oxalic acid (C2) was the most abundant dicarboxylic acid and was 81±5% and 76±12% of total dicaroxylic acids at urban and rural site. For other important species, levoglusan is identified as a potential marker for biomass burning in atmospheric aerosol.
In the study of aerosol hygroscopic properties, the results show bigger particle tends to retard water uptake of glutaric acid during deliquescence cycle but without a major influence on efflorescence cycle. Oxalic acid exerts its influence on reducing water uptake and lowering the DRH(Deliquescence Relative Humidity) and CRH(Crystallization Relative Humidity) of the inorangic component salt in a mixed aerosol.
For inorganic aerosol (NaCl and (NH4)2SO4) mixed with organic aerosol (oxalic acid, succinic acid, malonic acid and glutaric acid) at the same mass ratio, the orangics show varied individual effects on the mixed inorganic aerosols. Oxalic acid exerts no influence on the DRH of NaCl but tends to lower the DRH of (NH4)2SO4. Malonic acid lowers the DRH of the associated inorganic salt and delays its CRH. Succinic acid has no effect on the DRH of the associated inorganic salt but makes its CRH occurring at higher RH. Glutaric acid shows no effect on the DRH of NaCl but slightly lower the DRH of (NH4)2SO4. Glutaric acid also pushes CRH of both inorganic salts to a slightly higher value. For the effect of organic component to the aerosol water of a mixed salt, glutaric acid is the only one which enhances metastable water content. In summary, the water content of NaCl and (NH4)2SO4 is influenced individually by the incorporated four organic components.
目錄
中文摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 前 言 1
1.1研究動機 1
1.2研究內容與目的 2
第二章 文獻回顧 3
2.1大氣微粒中常見的有機成分 3
2.1.1大氣微粒中常見的有機種類與含量 3
2.1.2大氣微粒中低分子量二元酸的來源與特性 6
2.1.3大氣微粒中左旋葡萄醣的來源與特性 12
2.1.5有機物種的分析儀器與方法 14
2.2氣膠含水特性 18
2.2.1無機氣膠含水特性 19
2.2.2有機氣膠含水特性 23
2.2.3有機無機混合氣膠物含水特性 28
2.3氣膠含水量量測方法 30
2.3.1秤重法 30
2.3.2 TDMA (tandem differential mobility analyzer)法 31
2.3.3 EDB(electrodynamic balance)法 32
2.3.4 RSMS (rapid single-particle mass spectrometry)法 33
2.3.5 FTIR (fourier transform infrared spectroscopy)法 33
2.3.6 Karl Fischer法 33
2.3.7 EA-TCD法 33
2.3.8其他量測方法 34
2.4影響氣膠含水特性的因子 34
2.4.1溫度 34
2.4.2大氣濕度 36
2.4.3氣膠物種組成 37
2.4.3氣膠粒徑 38
2.4.4氣膠混合方式 38
2.4.5氣膠亞穩定特性(metastability) 39
2.5氣膠含水特性對環境的衝擊 39
2.5.1氣膠質量濃度量測 39
2.5.2 酸性沉降 40
2.5.3 氣膠光學性質 41
2.5.4 氣候變遷 43
2.5.5人體健康 45
第三章 研究方法 47
3.1研究流程架構 47
3.2二元有機酸分析方法 48
3.2.1化學藥劑與實驗器材 48
3.2.2實驗步驟 50
3.2.3分析儀器設備及分析條件設定 51
3.2.4分析定量方法 52
3.3左旋葡萄聚醣、甘露聚醣與半乳聚醣分析方法 54
3.3.1化學藥劑與實驗器材 54
3.3.2實驗步驟 55
3.3.3分析儀器設備及分析條件的設定 56
3.3.4分析定量方法 57
3.4大氣氣膠的採樣規劃與分析 58
3.4.1採樣地點介紹 58
3.4.2大氣氣膠採樣設備 60
3.4.3採樣濾紙的處理與保存 64
3.4.4質量濃度分析方法 64
3.4.5碳成份分析方法 65
3.4.6水溶性離子分析方法 66
3.5 GC-TCD氣膠含水量量測系統 67
3.5.1 GC-TCD量測原理 68
3.5.2 GC-TCD量測系統單元 70
3.5.3偵測極限 74
3.5.4萃取時間與調理時間 74
3.6含水特性實驗流程 76
3.6.1氣膠產生與採集設備 78
3.6.2氣膠顯微觀察 79
第四章 結果與討論 81
4.1大氣氣膠常見二元酸分析方法 81
4.1.1水溶性二元酸酯化劑選擇實驗結果 81
4.1.2水溶性二元酸樣本前處理方法修正 82
4.1.3樣本前處理回收率測試 84
4.1.4有機二元酸的定性與檢量線的製作 85
4.2左旋葡萄醣、甘露聚醣及半乳聚醣分析方法建立 87
4.2.1建立醣類樣本前處理方法 87
4.2.2醣類樣本前處理回收率測試 90
4.2.4 醣類矽烷衍生物GC層析方法測試 90
4.2.5醣類矽烷衍生物檢量線製作 94
4.3大氣氣膠中二元酸與左旋葡萄醣含量分析結果 95
4.3.1大氣微粒PM2.5有機二元酸含量與分布結果 95
4.3.2有機二元酸相互關係比較結果 100
4.3.3有機二元酸與其他成分初步比較結果 105
4.3.4台北縣都會區左旋葡萄醣大氣含量與分布分析結果 107
4.4純無機氣膠含水特性 109
4.4.1 純氯化鈉氣膠的含水特性 109
4.4.2 純硫酸銨氣膠含水特性 111
4.5純有機氣膠含水特性 113
4.5.1粒徑對有機氣膠含水量的影響 113
4.5.2 glutaric acid氣膠含水特性 115
4.5.3 malonic acid氣膠含水特性 118
4.5.4 succinic acid 與oxalic acid氣膠含水特性 120
4.6氯化鈉與4種有機二元酸混合氣膠含水特性 121
4.6.1氯化鈉與oxalic acid混合氣膠的含水特性 121
4.6.2氯化鈉與malonic acid混合氣膠含水特性 123
4.6.3氯化鈉與succinic acid混合氣膠含水特性 126
4.6.4氯化鈉與glutaric acid內混合氣膠含水特性 127
4.6.5氯化鈉與二元酸混合氣膠含水特性彙整結果 129
4.7硫酸銨與4種有機二元酸內混合氣膠含水特性 131
4.7.1硫酸銨與oxalic acid內混合氣膠的含水特性 131
4.7.2硫酸銨與malonic acid混合氣膠的潮解特性 133
4.7.3硫酸銨與succinic acid混合氣膠的潮解特性 134
4.7.4硫酸銨與glutaric acid混合氣膠的潮解特性 136
4.7.5硫酸銨與二元酸混合氣膠吸濕特性彙整結果 138
4.8不同混合比例無機/有機混合氣膠含水特性 139
第五章 結論與建議 142
5.1結論 142
5.2建議 144
第六章 參考文獻 145
附錄一 口試委員意見與回覆 161
Allen, G.A., 1998. Invited comments on: “real time liquid water mass measurement for airborne particulates”. Aerosol Science and Technology 29, 563-565.
Andrews, E., Larson, S.M., 1993. Effect of surfactant layers on the size changes of aerosol particles as a function of relative humidity. Environmental Science and Technology 27, 857-865.
Ansari, A.S., Pandis, S.N., 1999a. Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmospheric Environment 33, 745-757.
Ansari, A.S., Pandis, S.N., 1999b. An analysis of our models predicting the partitioning of semivolatile inorganic aerosol components. Aerosol Science and Technology 31, 129-153.
Ansari, A.S., Pandis, S.N., 2000. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior, Environmental Science and Technology 34, 71-77.
Anthony, J.P., Paul, J.D., Sonia, M.K., 2003. Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids, Atmospheric Environment 37, 4243-4251.
Bassett, M., Seinfeld, J.H., 1984. Atmospheric equilibrium model of sulfate and nitrate aerosols Ⅱ. Particle size analysis. Atmospheric Environment 18, 1163-1170.
Bilde, M., Svenningsson, B., Monster, J., Rosenorn, T., 2003. Even-odd alternation of evaporation rates and vapor pressure of C3-C9 dicarboxylic acids aerosols. Environmental Science and Technology 37, 1371-1378.
Boucher, O., Anderson, T.L., 1996. GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of Geophysical Research 100, 26117-26134.
Carson, P.G., Neubauer, K.P., Johnston, M.V., and Wexler, A.S., 1995. On-line chemical analysis of aerosols by rapid single-particle mass spectrometry. Journal of Aerosol Science 26, 535-545.
Chamberlian, A.C., Chadwick, R.C., 1953. Deposition of airborne radioiodine vapor. Nucleonics 8, 22-25.
Chan, C.K., Flagan, R.H., Seinfeld, J.H., 1992. Water activities of NH4NO3-(NH4)2SO4 solutions. Atmospheric Environment 26, 1661-1673.
Chan, C.K., Liang, Z., Zheng, J., Clegg, S.L., Brimblecombe, P., 1997. Thermodynamic properties of aqueous aerosols to high supersaturation: Ⅰ-measurements of water activity of the system Na+-Cl--NO3--SO42--H2O at ~ 298.15K. Aerosol Science and Technology 27, 324-344.
Chang, S.Y., Lee, C.T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atomspheric Environment 36, 1521-1530.
Chen, Y. Y., Lee, W.M.G., 1999. The hygroscopic characteristics of aeosol with surface-active organic compounds. Chemosphere 38, 2431-2448.
Chen, Y. Y. Lee, W.M.G., 2001. The effect of surfactants on the deliquescence of sodium chloride. Journal of Environmental Science and Health. Part A. Toxic/Hazardous Substances & Environmental Engineering A36 , 229-242.
Choi, M.Y., Chan C.K., 2002. Continuous measurements of the water activities of aqueous droplets of water-soluble organic compounds. J. Phys. Chem. A 106, 4566-4572.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. A thermodynamic model ofthe system H+-NH4+-Na+-SO42--NO3--CL-H2O at 298.15 K. Journal of Physical Chemistry 102, 2155-2171.
Cohen, M.D., Flagan, R.C., Seinfeld, J.H., 1987. Studies of concentrated electrolyte solutions using the electrodynamic balance: 2. Water activity for mixed-electrolyte solutions. Journal of Physical Chemistry 91, 4575-4582.
Cruz, C.N., Pandis, S.N., 1999. Condensation of organic vapors on an externally mixed aerosol population, Aerosol Science and Technology 31, 392-407.
Cruz, C.N., Pandis, S.N., 2000. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol. Environmental Science and Technology 34, 4313-4319.
Curry, J.A., Schramm, J.L., Serreze, M.C., Ebert, E.E., 1995. Water vapor feedback over the Aretic Ocean. Journal of Geophysical Research 100, 14223-14229.
Cziczo, D.J., Nowak, J.B., Hu, J.H., Abbatt, J.P.D., 1997. Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: observation of deliquescence and crystallization. Journal of Geophysical Research 102, 18843-18850.
Denbigh, K., 1981. The principles of chemical equilibrium 4thed., Cambridge University Press, Cambridge.
Decesari, S., Facchini, M.C., Fuzzi, S., 2000. Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach. Journal of Geophysical Research 105, 1481-1489.
Dua, S.K., Hopke, P.K., 1996. Hygroscopic growth of assorted indoor aerosols. Aerosol Science and Technology 24, 151-160.
Ge, Z., Wexler, A.S., Johnston, M.V., 1996. Multicomponent aerosol crystallization. Journal of Colloid and Interface Science 183, 68-77.
Ge, Z., Wexler, A.S., Johnston, M.V., 1998. Deliquescence behavior of multicomponent aerosols. Journal of Physical Chemistry 102A, 173-180.
Green, D.W., Maloney, J.O., Perry, R.H., 1984. Perry’s Chemical engineers’ handbook, New York: McGraw-Hill.
Grosjean, D., Cauwenberghe, K.V., Schmid, J.P., Kelly, P.E., Pitts, Jr.,J.N., 1978. Identification of C3-C10 aliphatic dicarboxylic acids in airbone particulate matter. Environmental Science and Technology 12,313-317.
Ha, Z., Choy, L., Chan, C. K., 2000. Study of water activities of supersaturated aerosols of sodium and ammonium salts. Journal of Geophysical Research 105D, 11699-11709.
Hameri, K., Charison, R, J., Hansson, H. C., Jaccobson, M., 1997. Hygroscopic properties of ammonium sulfate aerosols mixing with slightly soluble organic compoumd. Journal of Aerosol Science 28, S153-S154.
Han, J.H., Martin, S.T., 1999. Heterogeneous nucleation of the efflorescence of (NH4)2SO4 particles internally mixed with Al2O3, TiO2, and ZrO2. Journal of Geophysical Research 104, 3543-3553.
Hanel, G., 1976. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics 19, 74-183.
Hansson, H.C., Rood, M.J., Koloutsou-Vakakis, S., Hämeri, K., Orsini, D., Wiedensohler, A., 1998. NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds. Journal of Atmospheric Chemistry 31, 321-346.
Hatakeyamas, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environmental Science and Technology 21, 52-57.
Hegg, D.A., Covert, D.S., Rood, M.J., Hobbs, P.V., 1996. Measurements of aerosol optical properties in marine air. Journal of Geophysical Research 101, 12893-12903.
Hemming, B.L., Seinfeld, J.H., 2001. On the Hygroscopic Behavior of Atmospheric Organic Aerosols. Industrial & Engineering Chemistry Research 40, 4162-4171.
Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T. (1991). Quantitative characterization of urban sources of organic aerosol by high-resolution gas chromatography. Environ. Sci. Technol., 25, 1311-1325.
Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T. (1994). Seasonal trends in Los Angeles ambient organic aerosol observed by high-resolution gas chromatography. Aerosol Sci. Technol., 4, 303-317.
Hitzenberger, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Scence and Technology 27, 116-130.
Henry, R.C., 1997. The Application of The linear System Theory of Visual Acuity To Visibility Reduction by Aerosols. Enviromental Research and Technology, 697-701.
Ho, K.F., Lee, S.C., Chan, C.K., Yu, J.C., Chow, J.C., Yao, X., 2003. Characterization of chemical species in PM2.5 and PM10 aerosol in Hong Kong. Atmospheric Environment 37, 31-39.
Howard, P. H., Meylan, W. M., Eds., 1997. CRC Handbook of Physical Properties of Organic Chemicals, CRC Press: Boca Raton.
Hu, J.H., Abbatt, J.P.D., 1997. Reaction probilities for N2O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature, Journal of Physical Chemistry A 101, 871-878.
IPCC, 1992. Climate Change 1992. Cambridge University press.
IPCC, 2001. Climate Change 2001. Cambridge University press.
Knapp, D.R., 1979. Handbook of analytical derivatization reactions, New York: John Wiley&Sons.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles Ambient Air. Environmental Science and Technology 21,105–110.
Kawamura, K., Gagosian, R.B., 1987. Implication of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 325, 330-332.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235.
Kawamura, K., Usukura, K., 1993. Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol sample. J. Oceanography 49, 271-283.
Kawamura, K., Kasukabe, H., 1996. Source and relation pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atomspheric Environment 30, 1709-1722.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
Kerminen, V., Teinilä, K., Hillamo, R., Mäkelä, T., 1999. Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere. Atomspheric Environment 33, 2089-2100.
Khvorostyanov, V.I., Curry, J.A., 1999. A simple analytical model of aerosol properties with account for hygroscopic growth 2. Scattering and absorption coefficients. Journal of Geophysical Research 104, 2163-2174.
Khwaja, H.A., 1994. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atomspheric Environment 29, 127-139.
Khwaja, H. A., Brudnoy, S., Husain, L., 1995. Chemical characterization of three summer cloud episodes at whiteface mountain. Chemosphere, 3357-3381.
Kleefeld, S., Hoffer, A., Krivácsy, Z., Jennings, S.G., 2002. Importance of organic and black carbon in atmospheric aerosols at Mace Head, on the West Coast of Ireland (53°19´N, 9°54´W). Atmospheric Environment 36, 4479-4490.
Lee, C.T., Chang, S.Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atomspheric Environment 36, 1883-1894.
Lee, C.T., Hsu, W.C., 1998. A Novel Method to Measure Aerosol Water Mass. Journal of Aerosol Science 29, 827-837.
Lee, W.M.G., Chen, C.Y., Huang, S.L., Lee, C.T., 1996. The deliquescent growth of inorganic-salt aerosols observed by a combined system of TDMA and intergrated nephelometer. Journal of Aerosol Science 27, S313-S314.
Lee, W.M.G., Shih, P.M., Wang, C.S., 1997. The influence of relative humidity on the size of atmospheric aerosol. Journal of Environmental Science and Health A32, No.4, 1085-1097.
Lee, W.M.G., Huang, W.M., Chen, Y.Y., 2001, Effect of relative humidity on mixed aerosols in atmosphere. Journal of Environmental Science and Health A36, No.4, 533-544.
Li, W., Hopke, P.K., 1994. Hygroscopic of consumer spray product aerosol particles. Journal of Aerosol Science 25, 1341-1351.
Li, W., Montassier, N., Hopke, P.K., 1992. A system to measure the hygroscopicity of aerosol particles. Aerosol Science and Technology 17, 25-35.
Lightstone, J.M., Onasch, T.B., Imre, D., 2000. Deliquescence, efflorescence, and water activity in ammonium nitrate and mixed ammonium nitrate/succinic acid microparticles. Journal of Physical Chemistry 104A, 9337-9346.
Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847-1852.
Limbeck, A., Puxbaum, H., Otter, L., Scholes, M. C., 2001. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background sute ( Nylsvley, RSA ). Atmospheric Environment 35, 1853-1862.
Malm, William, C., Persha, 1991. Considerations in the Accuracy of a Long-Path Transmissometer . Aerosol Science and Technology 14, 459-471.
Martin, S.T., 1998. Phase transformations of the ternary system (NH4)2SO4-H2SO4-H2O and the implications for cirrus cloud formation. Geophysical Research Letter 25, 1657-1660.
Mazurek, M.A., Simoneit, B.R.T., Cass, G.R., Gray, H.A. 1987. Quantitative high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry analyses of carbonaceous fine aerosol particles. Int. J. Environ. Anal. Chem., 29, 119-139.
Mazurek, M. A., Cass, G. R., Simoneit, B.R.T., 1991. Biological input to visibility-reducing aerosol particles in the remote arid Southwestern United States. Environmental Science and Technology 25, 684–694.
Mazurek, M., Masonjones, M.C., Masonjones, H.D., Salmon,L.G., Cass, G.R., Hallock, K.A., Leaitch, M., 1997. Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: properties observed by highresolution gas chromatography. Journal of Geophysical Research 102D, 3779–3793.
McInnes, L. M., Quinn, P. K., Covert, D. S., Anderson, T. L., 1996. Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmospheric Environment 30, 869-884.
McMurry, P.H., Zhang, X.Q., 1991. Optical properties of Los Angeles Aerosols: an analysis of data acquired during SCAQS. Final report to the Coordinating Research Council, 219 Perimeter Center Parkway, Atlanta, GA 30346.
Mészáros, E., Barcza, T., Gelencsér, A., Hlavay, J., Kiss, Gy., Krivácsy, Z., Molnár, A., Polyák, K., 1997. Size distributions of inorganic and organic species in the atmospheric aerosol in Hungary. Journal of Aerosol Science 28, 1163-1175.
Mita, H., Fukunaga, N., Shimoyama, A., 1998. Characterization of dicarboxylic acids in the Cretaceous/Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan, and comparison with those of carbonaceous chondrites. Geochimica et Cosmochimica Acta 23/24, 3695-3702.
Mochida, M., Kawamura, K., Umemoto , N., Kobayashi, M., Matsunaga, S., Lim, H-J., Turpin, B.J., Bates, T. S., and Simoneit, B.R.T., 2003. Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia: Continental outflow of organic aerosols during the ACE-Asia campaign. Journal of Geophysical Research 108, D23, 8638-8649.
Na, H.S., Arnold, S., Myerson, A.S., 1995. Water activity in supersaturated aqueous solution of organic solutes. Journal of Crystal Growth 149, 229-235.
Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123–152.
Neubauer, K.R., Johnston, M.V., Wexler, A.S., 1998. Humidity effects on the mass spectra of single aerosols particles. Atmospheric Environment 32, 2521-2529.
Nolte, C.G., Schauer, J.J., Cass, G.R., Simoneit, B.R.T., Highly Polar Organic Compounds Present in Wood Smoke and in the Ambient Atmosphere. Environmental Science and Technology 35, 1912-1919.
Norton, R.B., Roberts, J.M., Huebert, B.J., 1983. Tropospheric oxalate. Geophys. Res. Lett. 10, 517-520.
Onasch, T.B., Siefert, R.L., Brooks, S.D., Prenni, A.J., Murray, B., Wilson, M.A., Tolbert, M.A., 1999. Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature. Journal of Geophysical Research 104, 21317-21326.
Ondov, J.M., Wexler, A.S., 1998. Where do particulate toxins reside? An improved paradigm for the structure and dynamics of the urban mid-Atlantic aerosol. Environmental Science and Technology 32, 2547-2555.
Peng, C., Chan, M.N., Chan, C.K., 2001. The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids: Measurements and UNIFAC Prediction. Environmental Science and Technology 35, 4495-4501.
Peng, C., Chan, C. K., 2001. The water cycles of water-soluble organic salts of atmospheric importance. Atmospheric Environment. 35, 1183-1192.
Pereira, W.E., Rostad, C.E., Taylor, H.E., Klein, J.M., 1982. Characterization of organic contaminants in environmental samples associated with Mount St. Helens 1980 volcanic eruption. Environmental Science and Technology 16, 387-396.
Pilinis, C., 1989. Numerical Simulation of Visibility Degradation Due to Particulate Matter: Model Development and Evaluation. Journal of Geophysical Research 94, 9937-9946.
Pierce Biotechnology, Incorporation. Internet: http://www.piercenet.com.
Pitt, J.N., Grosjean Jr., D., Van, C.K., Schmid, J.P., Fitz, D.R., 1978. Photooxidation of aliphatic amines under simulated atmospheric conditions: formation of nitrosamines. nitramines. amides and photochemical oxidant. Environmental Science and Technology 12, 946-953.
Prenni, A.J., DeMott, P.J., Kreidenweis, S.M., Sherman, D.E., Russell, L.M., Ming, Y., 2001. The effects of low molecular weight dicarboxylic acids on cloud formation. J. Phys. Chem. A 105, 11240-11248.
Prenni, A.J., DeMott, P.J., Kreidenweis, S.M., 2003. Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids. Atmospheric Environment 37, 4243-4251.
Polzer, J., B.achmann, K., 1991. Determination of fatty acids in atmospheric samples via GC/MS. Fresenius Journal of Analytical Chemistry 340, 555–559.
Rogers, C.F., Watson, J.G., Day, D., and Oraltay, R.G., 1998. Real-time liquid water mass measurement for airborne particulates. Aerosol Science and Technology 29, 557-562.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T., 1991. Sources of fine organic aerosol: 1. Charbroilers and meat cooking operations. Environmental Science and Technology 25, 1112-1125.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T., 1993. Sources of fine organic aerosol: 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science and Technology 27, 636-651.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T., 1993. Sources of fine organic aerosol: 3. Road dust, tire debris, and organometallic brake lining dust - roads as sources and sinks. Environmental Science and Technology 27, 1892-1904.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T., 1993. Sources of fine organic aerosol: 4. Particulate abrasion products from leaf surfaces of urban plants. Environmental Science and Technology 27, 2700-2711.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T., 1993. Sources of fine organic aerosol: 5. Natural gas home appliances. Environmental Science and Technology 27, 2736-2744.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1994. Sources of fine organic aerosol: 6. Cigarette smoke in the urban atmosphere. Environmental Science and Technology 28, 1375-1388.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1997. Sources of fine organic aerosol: 7: Hot asphalt roofing tar pot fumes. Environmental Science and Technology 32,13-22.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1997. Sources of fine organic aerosol: 8. Boilers burning No. 2 distillate fuel oil. Environmental Science and Technology 32,13-22.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., 1993b. Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation. Atomspheric Environment 27, 1309-1330.
Rood, M.J., Shaw, M.A., Larson, T.V., 1989. Ubiquitous nature of ambient metastable aerosol. Nature 337, 537-539.
Saxena, P., Hidemann, L. M., McMurry, P. H., Seinfeld, J. H., 1995. Organics alter hygroscopic behavior of atmosphere particles. Journal of Geophysical Research 100, 18755-18770.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organic atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Saxena, P., Hildemann, L.M., 1997. Water Absorption by Organics Survey of Laboratory Evidence and Evaluation of UNIFAC for Estimating Water Activity. Environmental Science and Technology 31, 3318-3324.
Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., and Simoneit, B.R.T. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 30, 3837-3855.
Seidl, W., 2000. Model for a surface .lm of fatty acids on rain water and aerosol particles. Atmospheric Environment 34,4917-4932.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. John Wiley, New York.
Sempere, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmospheric Environment 28, 449-459.
Simoneit, B.R.T., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmospheric Environment 33,173-182.
Simoneit, B.R.T., 2002. Biomass burning- a review of organic tracers for smoke from incomplete combustion , Geochemistry 17,129-162.
Solane, C.S., 1983. Optical properties of aerosol-composition of measurements with model calculations. Atmospheric Environment 17, 409-416.
Speer, R.E., Barnes, H.M., Brown, R., 1997. An instrument for measuring the liquid water content of aerosols. Aerosol Science and Technology 27, 50-61.
Tabazadeh, A., Jensen, E.J., Toon, O.B., 1997. A model descruption for cirrus cloud nucleation from homogeneous freezing of sulfate aerosols. Journal of Geophysical Research 102, 23845-23850.
Talbot, R.W., Dibb, J.E., Loomis, M.B., 1998. Influence of vertical transport on free tropospheric aerosols over the central USA in springtime. Geophysical Research Letter 25, 1367-1370.
Tang, I.N., 1976. Phase transformations and growth of aerosol particles composed of mixed salts. Journal of Aerosol Science 7, 361-371.
Tang, I.N., 1980. Deliquescence properties and particle size change of hygroscopic aerosols. In generation of aerosols and facilities for exposure experiments (edited by Willeke, K.), 153-167. Ann Arbor Science, Ann Arbor, MI.
Tang, I.N., Fung, K.H., Imre, D.G., Munkelwitz, H.R., 1995. Phase transformation and metastability of hygroscopic microparticles. Aerosol Science and Technology 23, 443-453.
Tang, I.N., 1997. Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. Journal of Geophysical Research 102, 1883-1893.
Tuch, A. M., Tamm, E.J., Heyder, H.P., Brand, C.H., Roth, H.E., Wichmann, J.P., Kreyling, W.G., 2000. Comparsion of two partical-size spectrometers for ambient aerosol measurements. Atmospheric Environment 34, 139-149.
Turpin, B. J., Saxena, P., and Andrews, E., 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmospheric Environment 34, 2983–3013.
Turpin, B. J., Lim, H-J., 2001.Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Science and Technology 35, 602–610.
U.S.EPA, 1997a. Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17.
U.S.EPA, 1998. Guideline on Speciated Particulate Monitoring, prepared by J. C. Chow, et al., Desert Research Institute, NV, for N. Frank, et al., US EPA, OAQPS RPT.
U.S.EPA, 1999. Visibility Monitoring Guidance. Research Triangle Park. EPA-454/R-99-003.
Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 erosols in Nanjing, China. Atmospheric Environment 36,1941–1950.
Weis, D.D., Ewing, G.E., 1996. Infrared spectroscopic signatures of (NH4)2SO4 aerosols. Journal of Geophysical Research 101, 18709-18720.
Wexler, A.S., Seinfeld, J.H., 1991. Second-generation inorganic aerosol model.
Winkler, P., Junge, C., 1972. The growth of atmospheric aerosol particles as a function of relative humidity, part 1L methods and measurements at different locations. J. Rech. Atmos. 6, 617-638.
Yao, X., Fang, M., Chan, C.K., 2002. Size distributions and formation of dicarboxylic acids in atmospheric particles, Atmospheric Environment 36, 2099-2107.
Yao, X., Fang, M., Chan, C.K., Hu, M., 2003. Formation and size distribution characteristics of ionic species in atmospheric particulate matter in Beijing, China: (2) dicarboxylic acids. Atmospheric Environment 37, 3001-3007.
Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong, Atmospheric Environment 38, 963-970.
Zdráhal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved Method for Quantifying Levoglucosan and Related Monosaccharide Anhydrides in Atmospheric Aerosols and Application to Samples from Urban and Tropical Locations, Environmental Science and Technology 36, 747-753.
Zheng, B., Sage, M., Cai, W.W., Thompson, D.M., Tavsanli, B.C., Cheah, Y.C., Bradley, A., 1999. Engineering a mouse balancer chromosome. Nat Grent 22(4), 375-378.
Zheng, M., Wan, T.S.M., Fang, M., Wang, F., 1997.Characterization of the non-volatile organic compounds inthe aerosols of Hong Kong Fidentication, abundance and origin. Atmospheric Environment 31, 227-237.
Zheng, M., Fang, M., Wang, F., To, K.F., 2000. Characterization of the solvent extractable organic compound in PM2.5 aerosols in Hong Kong. Atmospheric Environment 34, 2691-2702.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999a. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999b. Size distributions of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853.
許文昌,1997。微粒含水量直接量測技術之研究。國立中央大學環境工程研究所博士論文。
許惠敏,2003。低分子量二元有機酸分析方法及含水特性之研究。國立中央大學環境工程研究所碩士論文。
黃明雄,1997。台灣地區大氣氣膠特性之研究-墾丁氣膠組成及濃度對大氣能見度的影響。國立中央大學環境工程研究所碩士論文。
張士昱,2001。易潮解無機氣膠含水特性之研究。國立中央大學環境工程研究所博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top