跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃希爾
研究生(外文):Hsi-Erh Huang
論文名稱:東亞生質燃燒對台灣高山氣膠特性的影響
論文名稱(外文):The influence of biomass burning in East-Asia to the characteristic of alpine aerosol in Taiwan
指導教授:李崇德李崇德引用關係
指導教授(外文):Chung-Te Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:170
中文關鍵詞:大氣氣膠生質燃燒氣膠碳成分生質燃燒指標物氣膠鉀離子
外文關鍵詞:Atmospheric aerosolbiomass burningaerosol carbonbiomass burning markeraerosol potassium
相關次數:
  • 被引用被引用:18
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
每年春季3-4月為東南亞生質燃燒活動頻繁的時間,此時當地為春耕時期會大規模燃燒農廢物與森林,進而產生大量的氣體與氣膠污染物。此時假使受到天氣系統的抬升,如鋒面前緣抬升與深對流作用,會將地面污染物抬升至2-5公里的高度。本研究選擇台灣中部海拔2862公尺的鹿林山上進行氣膠採樣,以瞭解東南亞生質燃燒在低自由對流層(2-5公里)的傳輸特性。採樣時間為2003年4月與2004年3月進行兩次生質燃燒事件採樣,以及2003年12月的背景大氣氣膠採樣。利用人工採樣器與連續監測儀器,探討在生質燃燒與背景期間鹿林山高山氣膠特性的變化,並利用後推氣流軌跡線與天氣資料對氣膠的來源進行研判。除此之外,為了瞭解近生質燃燒源的氣膠特性,以開放式燃燒的方法燃燒稻草、木屑等生質,以人工採樣器收集氣膠。將實驗結果與在鹿林山採樣的結果相互比較,瞭解生質燃燒剛產生的氣膠與經過長程傳輸後的氣膠之間有何不同。
結果顯示:在非生質燃燒季節,鹿林山背景氣膠中PM2.5與PM10平均濃度為2μgm-3與4μgm-3。在氣膠體積濃度粒徑分佈在0.1-0.3μm, PM2.5中其化學成分主要以硫酸鹽、銨鹽、硝酸鹽與碳成分為主。在生質燃燒影響下,氣膠質量濃度較高,PM2.5中的硫酸鹽、銨鹽、硝酸鹽與氣膠碳濃度明顯上升,且發現有較高濃度的鉀離子在細氣膠中,而在PM2.5-10中有較高濃度的塵土與海鹽成分。另外,發現在生質燃燒期間PM2.5中的左旋葡萄糖(levoglucosan)成分有明顯濃度較高的趨勢,平均濃度為48ngm-3,比背景大氣時高出幾十倍。另外從氣膠不同溫度揮發有機碳成分的解析中,發現在非生質燃燒期間以低溫揮發的OC1佔百分比為最高,在生質燃燒影響期間則變為高溫揮發的OC3佔百分比最高。
藉由後推氣流軌跡分類的結果,發現只要是經過生質燃燒源區的軌跡線,且有生質燃燒事件產生,此時所收集的濾紙樣本中,有明顯生質燃燒的特徵,像是在PM2.5中有較高濃度的微粒碳、鉀離子與左旋葡萄糖成分。並以氯離子損失與海水加強因子推論鹿林山氣膠水溶性離子來源,發現受到海水氣膠的影響較低。在細氣膠中主要以二次硫酸鹽、二次硝酸鹽與燃燒貢獻為主。粗氣膠中則是有部分海鹽與塵土貢獻。另外從生質燃燒產生源的實驗中發現,生質燃燒剛產生的氣膠主要是以PM2.5為主,其中氣膠碳成分佔絕大部分,將近佔總質量的70~80%,且有較高比例的鉀離子、氯離子。但在經過長程傳輸後的生質燃燒PM2.5中,則是以硫酸鹽、銨鹽、硝酸鹽與鉀離子的比例較高。推斷生質燃燒氣膠在經由長程傳輸之後,仍保有部分生質燃燒氣膠的特性,但會在傳輸過程中加入硫酸根離子、銨根離子。
Every spring from March to April, it is the time period for active biomass burning in East Asia. The aerosols produced from biomass burning were lifted 2 to 5 Km above the ground by the rise of a frontal system and a strong convective air mass. They were then transported to the other areas by the air mass in the high altitude. This study chose Lu-Lin Mountain, as the study site for aerosol collection, which situated in the middle Taiwan 2,862 m above sea level. The goal of this study is to observe the aerosol characteristics from biomass burning in East Asia via long range transport in lower free troposphere. The observations included two biomass burning events in April 2003 and March 2004 and a background observation in December 2003.
This study used manual sampler and continuous measuring instrument to obtain the information of aerosol from the two biomass burning events and bacdground. Besides, in order to infer the characteristic of the fresh aerosol near biomass source, we burned wood and hay and used manual sampler to correct fresh aerosol. Comparing the aerosol of fresh-burning biomass and Lu-Lin Mountain, we can tell the differences of long-range transport. The results showed that PM2.5 and PM10 concentrations are 2 and 4 μgm-3 for background observations, respectively. The peak diameter is in the range between 0.1-0.3 μm and major chemical species are sulfate, ammonium ions, nitrate, and carbonaceous materials. For biomass burning events, aerosol mass was increased and specises like sulfate, ammonium ions, nitrate, and carbonaceous materials were all enhanced. In addition, potassium ion was found significantly increased in aerosol fine fraction. Moreover levoglucosan in aerosol was detected high during biomass burning period with an average of 48 ngm-3.

In TOR analysis, OC1 is in majority in background observation and OC3 is predominant in biomass burning events. By using Hysplit backward air trajectory model, we find that aerosol are high in potassium ion, carbonaceous materials, and levoglucosan as the air mass passed biomass-burning sources. Besides, using Marine Enrichment Factor(MEF) and Chlorine Loss Method(CLM), we find that the water-solube ions in fine fraction are contributed from secondary sulfate, secondary nitrate and biomass burning. In contrast, the coarse particles included soil materials and seat-salts. Finally, aerosols from long range transport contain high fraction of sulfate, nitrate, and ammonium ions as compared to high carbonaceous material, potassium, and chloride ions.
目錄
1. 前言 1
1.1 研究動機 1
1.2研究目的 3
2. 文獻回顧 4
2.1 氣膠的特性與來源 4
2.1.1 氣膠分類、來源與粒徑分佈 4
2.1.2 氣膠化學特性 6
2.1.4 氣膠碳成分 10
2.2 高山氣膠特性 11
2.3 生質燃燒 12
2.3.1 生質燃燒來源與目前研究 13
2.3.2 生質燃燒過程 15
2.3.3 生質燃燒氣體特性 16
2.3.4 生質燃燒氣膠物理特性 17
2.3.5 生質燃燒氣膠化學特性 18
2.3.6 生質燃燒氣膠有機物 25
2.3.7 亞洲污染物與生質燃燒傳輸機制 29
3. 研究方法 30
3.1 採樣地點描述 32
3.2 人工採樣儀器 36
3.2.1 R&P Partisol Model 2300 Speciation Sampler 36
3.2.2 R&P 2000 FRM Sampler 39
3.2.3 δ-IAS 採樣器 39
3.2.4 Dichotomous 採樣器 40
3.3 自動監測儀器 40
3.3.1 R&P TEOM 1400 監測儀 40
3.3.2 CPC 42
3.3.3 LPC 43
3.4 生質燃燒源採樣實驗 46
3.5 樣本分析方法 47
3.5.1 氣膠質量秤重分析 47
3.5.2 氣膠水溶性離子分析 47
3.5.3 氣膠碳成分分析 48
3.5.4 氣膠有機成分分析-左旋葡萄糖 50
3.5.5 氣膠元素分析方法 50
3.6 氣膠污染來源與貢獻量評估 55
3.6.1 加強因子法 55
3.6.2 氯離子損失法 56
3.7 判別生質燃燒發生與其影響台灣程度的方法 61
4. 結果與討論 63
4.1 鹿林山高山氣膠特性(背景氣膠特性) 65
4.1.1 採樣期間測站環境與軌跡線描述 65
4.1.2 氣膠質量濃度特性 67
4.1.3 氣膠水溶性離子 67
4.1.4氣膠碳成分分析 71
4.1.5 氣膠體積粒徑分佈 73
4.1.6 氣膠酸鹼性特性 73
4.1.7 左旋葡萄糖分析 76
4.2 生質燃燒低濃度事件(2003年4月17日至24日) 77
4.2.1 採樣天氣概況描述與軌跡線描述 79
4.2.2 氣膠質量濃度特性 80
4.2.3 氣膠水溶性離子特性 83
4.2.4 氣膠元素成分特性 88
4.2.5 氣膠碳成分分析 89
4.2.6 左旋葡萄糖分析 93
4.3 生質燃燒高濃度事件(2004年3月10日至21日) 94
4.3.1 採樣期間天氣狀況與軌跡線描述 95
4.3.2 氣膠質量濃度與數目濃度特性 99
4.3.3 氣膠水溶性離子特性 108
4.3.4 氣膠元素成分特性 113
4.3.5 氣膠碳成份特性 118
4.3.6 左旋葡萄糖分析 123
4.3.7 雲霧中的採樣 125
4.4 生質燃燒事件日採樣與背景大氣氣膠採樣比較 131
4.4.1 氣膠質量濃度特性 131
4.4.2 氣膠水溶性離子特性 133
4.4.3 氣膠碳成分特性 136
4.4.4 左旋葡萄糖 140
4.4.5 氣膠氣膠組成百分比 142
4.5 不同軌跡類別與採樣時間下的氣膠特性 144
4.5.1 軌跡線與氣膠質量濃度特性 146
4.5.2 軌跡線與氣膠水溶性離子特性 146
4.5.3 軌跡線與氣膠碳成分特性 153
4.5.4 軌跡線與有機指標物特性 156
4.5.5 軌跡線與氣膠特性組成 157
4.6 鹿林山氣膠污染來源與燃燒氣膠特性評估 161
4.6.1 氯離子損失法與加強因子分析 161
4.6.2 燃燒生質所產生的氣膠特性 163
5.結論與建議 169
5.1 結論 169
5.2 建議 171
6.參考文獻 172
[1]. 王景良,1999. 中部空品區污染源逸散粉塵的組成分析.國立中興環境工程所碩士論文.
[2]. 姜善鑫, 1991. 燃燒對氣候的影響. 科學月刊,第253期.
[3]. 秦若鈺, 2004. 大氣常見有機物分析及有機/無機混合氣膠含水特性之研究.國立中央環境工程所碩士論文.
[4]. 張維嘉,2000. 台灣中部大氣氣膠特性與粒徑分佈-阿里山測站案例分析.國立中興環境工程研究所碩士論文.
[5]. Abelson, P., 1994. Sources of Dioxin. Science, 350-352.

[6]. Allen, A.G., Miguel, A.H., 1995. Biomass burning in the Amazon:Characterization of the Ionic Component of Aerosols Generated from Flaming and Smouldering Rainforest and Savannah. Environ. Sci. Technol 29, 486-493.
[7]. Andera, M.O., Atlas, E.., Cachier, H., Cofer Ⅲ, W.R., Harris, G.W., Helas, G., Koppmann, R., Lacaus, J.P, Ward, D.E., 1996a. Trace gas and aerosol emissions from savanna fires. Biomass burning and Global Change, Vol 1.
[8]. Andreae, M., Browell, E., Garstang, M., Gregory, G., Harriss, R., Hill, G., Jacob, D., Pereira, M., Sachse, G., Setzer, A., Silva Dias, P., Talbot, R., Torres, A., Wofsy, S., 1988. Biomass burning emissions and associated haze layers over Amazonia. Journal of geophysical research 93, 1509-1527
[9]. Andreae, M.,1983. Soot Carbon and Excess Fine Potassium:Long-Range Transport Combustion-Derived Aerosol. Science. Vol 220, 1148-1150
[10].Ball, J., Willie, C., Young, C., 1992. Evidence of a new class of mutagenes in diesel particulate extracts. Environmental Science and Technology 26, 2181-2186.
[11].Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001b. Asian chemical outflow to the Pacific in spring:Origins pathways, and budgets. Journal of geophysical research, 106, 23,097-23,114

[12].Bockhorn, H., 1994. Soot formation in Combustion. Chemical Physics, Vol 59.

[13].Cachier, H., Jacob, J., Bremond, M.P., Lacaux, J.P., Gaudichet, A., Baudet, J., 1991. Bimoass burning in a savanna region of the Ivory Coast. Atmospheric Climatic and Biospheric Implication, 174-180.

[14].Cadle, S.H., Dash, J.M., 1988. Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in Northern Michigan. Atmospheric Environment 22, 1373-1381.

[15].Chang, S.G., Brodzinsky, R., Gundel, L.A., Novakov, T., 1982.Chemical and catalytic properties of elemental carbon. In: Wolff, G.T.,Klimisch, R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle.Plenum Press, New York, pp. 158-181.

[16].Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino,K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions inCalifornia's San Joaquin Valley. Aerosol Science and Technology 18,105-128.

[17].Chung, S.H., Seinfeld, J.H., 2002. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res, 107,4407.

[18].Countess, R.J., Wolff, G.T., Cadle, S.H., 1980. The Denver winteraerosol: a comprehensive chemical characterization, Journal of the Air Pollution Control Association 30, 1194-1200.
[19].Crutzen, P., Heidt, L., Krasnec, J., Pollock, W., Seiler, W., 1979.Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3CL, and COS. Nature 282: 253-256
[20].Dockery, D.W., Pope, C.A., Xu, X., Sprengler, I.D., 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329, 1573-1579.

[21].Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282

[22].Echalar, F., Gaudichet, A., Cachier, H., Artaxo, P., 1995. Aerosol emission by tropical forest and savanna biomass burning:characteristic trace elements and fluxes. Geophysical Research Letters 22, 3034-3042

[23].Gaudichet, A.,Echalar, F., Chatenet, B., Quisefit, J.P., Malingre, G., Cachier, H., Buat-Menard, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric chemistry, 19-39.

[24].Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A.,1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.

[25].Heinrich, U., Dungworth, L., 1991. The carcinogenic effects of carbon black particles and tar/pitch condensation aerosols after inhalation exposure of rates. Seventh International Symposium on Inhaled Particles, Edinburgh.

[26].Kim, E., Hopke, P.K., Edgerton, E.S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.

[27].Krivacsy, Z., Hoffer, A., Sarvari, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6231-6244.

[28].Kuhlbusch, T.A.J., Crutzen, P.J., 1996. Black carbon, the global cycle, and atmosphere carbon dioxide. Biomass burning and Global Change, 161-169.

[29].Laenderausschuss, I., 1992. Cancer risk caused by air pollution. Ministerium fuer Umwelt und Landwirtschaft des Landes Nordrhein-Westfalen, Duesseldorf.

[30].Lammel, G., Novakov, T., 1995. Water nucleation properties of carbon black and diesel soot particles. Atmosphere Enviornment 29, 812-821.

[31].Larson, T., Koenig, J., 1993. A summary of the emissions characterization and noncancer respiratory effects of wood smoke. EPA-453/R-93-046-US EPA.

[32].Levine, J., 1990. Convener of Chapman Conference on Global Biomass Burning March 19-23.

[33].Levine, J.S., Bobbe, T., Ray, N., Witt, R.G., Singh, A., 1999. Wildland Fires and the Environment: A Global Synthesis. Environment Information and Assessment Technical Report, pp 46.

[34].Li,J., Posfai, M., Hobbs, P.V., Buseck, P.R., 2002. Individual aerosol particles from biomass burning in southern Africa:2.Compositions and aging of inorganic particles. Journal of Geophysical Research. Vol.18

[35].Lipkea, W.H., Johnson, J.H., Vuk, C.T., 1979. The Physical and Chemical Character of Diesel Particulate Emissions-Measurement Techniques and Fundamental Considerations. Technical Paper No. 791702, Society of Automotive Engineers.

[36].Liu, H., Chang, W.L., Oltmans, S.J., Chan, L.Y., Harris, J.M., 1999. On springtime high ozone events in the lower troposphere from southeast Asian biomass burning. Atmospheric Environment 33, 2403-2410.

[37].Liu, H., Jacob, D.J., Bey, I., Yantosca, R.M., Duncan, B.N., 2002. Transport pathways for Asian pollution outflow over the Pacific: Interannual and season variations. Journal of Geophysical Research, vol 108.

[38].Ma, Y., Weber, J., Lee, Y.N., Orsini, D.A., Maxwell, M.K., Thornton, D.C., Bandy, A.R., Clarke, A.D., Blake, D.R., Sachse, G.W., Fuelberg, H.E., Kiley, C.M., Woo, J-H., Streets, D.G., Carmichael, G.R., 2002. Characteristics and influence of biosmoke on the fine-particle ionic compostition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific(TRACE-P) experiment. Journal of Geophysical Research, vol 108.

[39].Ma, Y., Weber, R.J., Lee, Y.N., Orsini, D.A., Maxwell, K., Thornton, D.C., Bandy, A.R., Clarke, A.D., Blake, D.R., Sachse, G.W., Fuelberg, H.E., Kiley, C.M., Woo, J.H., Streets, D.G., Carmichael, G.R., 2002. Characteristics and influence of biosmoke on the fine-particle ionic compositon measured in Asian outflow during the Transport and Chemiclal Evolution over the Pacific(TRACE-P) experiment. Journal of Geophyiscal Research, Vol 108.

[40].Maenhaut, W., Salma, I., Cafmeyer, J., Annegarn, H.J., Andreae, M.O., 1996. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa and impact of biomass burning. Journal of Geophysical Research 101(D19), 23631-2350.

[41].Mayol-Bracero, O.L., Gabriel, R., Andreae, M.O., Kirchstetter, T.W., Novakov, T., Ogren, J., Sheridan, P., Streets, D.G., 2002. Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX):Chemical characterization, optical properties, and probable sources. Journal of Geophyiscal Research, Vol 107.

[42].Morawska, L., Zhang, J., 2002. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 49, 1045-1058.

[43].Novakov, T., 1982. Soot in the atmosphere. In: Wolff, G.T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, pp. 19-41.

[44].Nyeki, S.,Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station(3454m),Swltzerland. Journal of Aerosol Science,Vol 27, 105-106.

[45].Olanders, B., Steenari, B.M., 1995. Charcterization of Ashes Form Wood and Straw. Biomass and Bioenergy , vol 8, No 2, 105-115

[46].Osan, J., Alfoldy, B., Torok, S., Grieken, R.V., 2002. Characterisation of wood combustion particles using electron probe microanalysis.

[47].Pagels, J., Strand, M., Rissler, J., Szpila, A., Gudmundsson, A., Bohgard, M., Lillieblad, L., Sanati, M., Swietlicki, E., 2003. Characteristics of aerosol particles formed during grate combustion of moist forest residue. Journal of Aerosol Science 34, 1043-1059.

[48].Puxbaum, H., Wopenka, B., 1984. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria. Atmospheric Environment 18, 573-580.

[49].Rattray, G., Sievering, H., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment 35, 1105-1109.
[50].Ristoviski, Z., Morawska, L., Bofinger, N.D., 1998. Submicrometer and supermicronmeter particles from spark ignition vehicle emissions. Environmental Science and Technology 32, 3845-3852.

[51].Rogers, C.F., Hudson, J.G., Zielinska, B., Tanner, R.L., Hallet, J., Watson, J.G., 1991. Cloud condensation nuclei from biomass burning, in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, 431-438.

[52].Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.



[53].Silva, P.J., Liu, D.Y., Noble, C.A., Prather, K.A., 1999. Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species. Environmental Science & Technology, Vol 33,No 18, 1999.

[54].Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmosphere Environment 33, 173-182.

[55].Simoneit, R.T.B., 2002. Biomass burning – a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.

[56].Streets, D.G., Yarber, K.F., Woo, J.H., Carmichael, G.R., 2003. Biomass burning in Aia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles.

[57].Turpin, B.J., Cary, R.A., Huntzicker, J.J., 1990. An in-situ,time-resolved analyzed for aerosol organic and elemental carbon.Aereosol Science and Technology 12, 161-171.

[58].Valaoras, G., Huntzicker, J.J., White, W.H., 1988. On the contribution of motor vehicles to the Athenian “Nephos”; an application of factor signitres. Atmpspheric Environment 22, 965-971.

[59].Ward, D.E., Setzer, A.W., Kaufman, Y.J., Rasmussen, R.A., 1991. Characteristics of smoke emission from biomass fires of the Amazon region-Base-A experiment. Global Biomass burning:Atmospheric, Climatic, and Biospheric Implications.

[60].Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin:water-soluble species and trace elements.
[61].Atmospheric Environment 34, 1641-1653.

[62].Zdrahal,Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improve Method for Quantifying Levoglucosan and Related Monosaccharide Anhydrides in Atmospheric Aerosols and Application to Samples from Urban and Tropical Locations. Environ. Sci. Technol, 2002, 36, 747-753.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top