跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱宏勳
研究生(外文):hung-shun chu
論文名稱:長程傳輸對北台灣大氣氣膠特性的影響
論文名稱(外文):Influence of Long-range Transport on Atmospheric Aerosol in the Northern Taiwan
指導教授:李崇德李崇德引用關係
指導教授(外文):Chung-Te Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:253
中文關鍵詞:有機碳沙塵暴氣流逆軌跡法氯離子損失法氣膠質量重建
外文關鍵詞:Organic carbonDust stormBackward trajectory analysisChlorine lossReconstructed aerosol mass
相關次數:
  • 被引用被引用:13
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中國大陸沿海廣大的工業區以及西北方沙漠區在春季經常發生沙塵暴,使得中國大陸成為東亞氣膠的主要產生地。台灣位於來自大陸氣流下風,每當發生冷高壓和沙塵暴,大陸工業污染物和黃沙會伴隨著適當的天氣系統南下,往往影響到台灣的空氣品質。
本研究選定台北縣石門鄉進行氣膠觀測,石門鄉地處台灣最北端,當台灣受大陸冷高壓影響時,石門成為台灣本島最先接觸大陸氣流的地方。從2003年5月開始至2004年4月,本研究每月在固定時段進行大氣氣膠監測,監測項目包含PM10、PM2.5氣膠及氣膠質量濃度粒徑分布,共完成了201個PM10及PM2.5有效樣本,並將所採集的樣本進行氣膠質量濃度、氣膠元素成分、氣膠水溶性離子成分及氣膠碳成分分析。
為探討大氣氣流傳輸的影響,本研究先將觀測時段分成受冷高壓與不受冷高壓影響時期,然後利用HYSPLIT後推氣流軌跡線將氣流細分成七種類別,以探討各種氣流來源氣膠化學組成變化及增益,最後再以今年抵台的三波沙塵作一解析。
研究結果顯示,不受大陸冷高壓影響的PM10平均氣膠質量濃度值大約為30 μg m-3,當受到大陸冷高壓影響時上升到60 μg m-3。PM10氣膠水溶性離子Na+和Cl-受冷高壓影響的濃度增加比例是不受冷高壓影響的4~10倍。PM10中NH4+與SO42-在受冷高壓影響時增加70 %與74 %,PM2.5中NH4+與SO42-在受冷高壓影響時增加66 %與70 %,在冷高壓影響期間NO3-於PM10和PM2.5中多出2倍左右。在氣膠碳成分方面,受到冷高壓影響的PM2.5 OC濃度增加12 %,但是EC受影響程度不大。PM10氣膠元素Al、Fe和Ca於冷高壓影響時增加60 %~80 %之間。
從後推氣流軌跡線的歸類,發現北台灣在不受長程傳輸氣膠影響時,以本地來源氣膠的質量濃度最低,其主要組成是以硫酸鹽為主,海鹽氣膠成分並沒有很大份量。當受到黃沙海洋傳輸氣流影響時,海鹽氣膠濃度會比非黃沙時期海洋傳輸高出33 %,非黃沙海洋傳輸則又比本地來源多出2.8~8倍海鹽氣膠,因此,黃沙時期海洋傳輸的海鹽氣膠濃度會比本地來源高出4~11倍。當氣流為黃沙大陸沿岸傳輸時,長程傳輸的氣膠比本地來源氣膠在質量濃度上會高出1.5~2倍,硫酸鹽為2倍,塵土元素中Al、Fe和Ca高出3倍而燃燒排放則會高達6倍並夾帶一些海鹽氣膠。非黃沙高壓迴流氣膠組成以硫酸鹽類、硝酸鹽類、和碳成分為主,其濃度均比本地來源氣膠高出15~135 %,但在黃沙高壓迴流傳輸類型中硝酸鹽類會比本地來源高出2~3倍,碳成分則約多出25~40 %。
以2004年沙塵與非沙塵事件比較,顯示沙塵影響期間粗粒徑(PM2.5-10)質量濃度比非沙塵期間高出0.9~1.5倍,並以第三波沙塵影響最嚴重。沙塵影響期間PM2.5水溶性離子濃度增加不顯著,PM2.5-10氣膠中的Cl-、Na+、Mg2+及Ca2+在沙塵期間濃度明顯增加0.9~7.5倍之間,NH4+反而是在PM2.5及PM2.5-10氣膠中濃度均減少的物種。碳成分在沙塵期間OC濃度有增加的趨勢,但EC在沙塵期間增加不明顯。氣膠元素顯示沙塵影響期間PM2.5-10中的Al、Ca和Fe等塵土元素比非沙塵期間多出9~15倍。
The contributions of industrial aerosols from vast coastal areas in the East China and the outbreaks of dust storms frequently occurred in northwestern desert areas in springtime make China a major source region of aerosols in the East Asia. Taiwan is situated in the lee side of air masses transported from China through cold high-pressure system (cold-high). The aerosols transported from industrial emissions and yellow dusts through a right weather system will affect the air quality in Taiwan.
This study chose Shi-Men in Taipei County as the site for aerosol observation. Shi-Men is the first place in the whole island to encounter air masses from China due to its location in northern tip of Taiwan. This study collected atmospheric aerosols in the fixed time interval of each month from May 2003 to April 2004. In total, 201 samples of PM10 and PM2.5 were collected to resolve mass concentration, elemental contents, water-soluble ions, and carbonaceous contents.
To investigate the effects of transported air masses, this study divided the study periods into periods under the influence of cold-high and non-cold-high. The air masses were further classified into 7 types of air masses using HYSPLIT back trajectory model from NOAA. This classification of air masses was adopted to differentiate variations and the enhancements of aerosol compositions of the individual air mass. The effects of yellow dusts on aerosol properties in this year will also be discussed.
The results show that the average PM10 for the periods of non-cold-high and cold-high were 30 μgm-3 and 60 μgm-3, respectively. Water-soluble Na+ and Cl- of PM10 under the influence of cold-high were 4-10 folds more than that of non-cold-high. PM10 NH4+ and SO42- in cold-high periods were increased 70 and 74 %, respectively. Similarly, PM2.5 NH4+ and SO42- under the influence of cold-high increased 66 and 70 %, respectively. Meanwhile, NO3- both in PM10 and PM2.5 enhanced 2 times for the periods of cold-high. In contrast, aerosol organic carbon only increased 12 % under the influence of cold-high and even without a significant effect for aerosol elemental carbon. The Al, Fe, and Ca were enhanced 60-80 % under the influence of cold-high.
Among the seven types of aerosol masses, aerosol mass concentrations were the lowest for local source contributions. Sulfate ion was predominant and with only a small contribution from sea-salts in local source type. The sea-salt aerosols increased 33 % for oceanic transport in yellow-dust periods as compared with that of non-yellow-dust periods. In addition, the sea-salt aerosols were 2.8-8 times higher for oceanic transport in non-yellow-dust periods and 4-11 folds higher in yellow-dust periods than that in local source contributions. Notably, the enhancement of aerosol mass was 1.5-2 folds for the air masses from coastal areas during yellow-dust periods to that of local source contributions. Moreover, sulfate ion was 2 times higher, elemental Al, Fe, and Ca were more than 3 times, and potassium ions was 6 times higher for the comparison between the air masses from coastal areas during yellow-dust periods and that of local source contributions. For the aerosols in non-yellow-dust high-pressure recapitulation periods, sulfate ion, nitrate ion, and carbonaceous materials were major components with concentrations 15-135 % higher than that from local source contributions. Nitrate ion was 2-3 times higher and aerosol carbon was 25-40 % higher in yellow-dust high-pressure recapitulation periods than that from local source contributions.
The coarse particles (PM2.5-10) in yellow-dust events were 0.9-1.5 times higher than that in non-yellow-dust periods in 2004. The third yellow-dust event was noted the most severe one in 2004. The water-soluble ions of PM2.5 aerosols in yellow-dust events were only slightly enhanced. However, Cl-, Na+, Mg2+ and Ca2+ in PM2.5-10 were significantly increased 0.9-7.5 times during yellow-dust events. It is noted that NH4+ was the species decreased both in PM2.5 and PM10 aerosols in yellow-dust events. Aerosol organic carbon tended to increase but the increase of elemental carbon was insignificant in yellow-dust events. For the crustal materials in PM2.5-10 like Al, Ca, and Fe, they were 9-15 times greater in yellow-dust events.
摘要 I
ABSTRACT III
目錄 VII
圖目錄 XI
表目錄 XV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 氣膠來源及特性 5
2.1.1 氣膠的分類及來源 5
2.1.2 氣膠的特性及粒徑分佈 5
2.1.3 氣膠與生成環境關係 10
2.2 氣膠水溶性離子化學特性 12
2.2.1 氣膠水溶性離子來源與物種特性分佈 12
2.2.2 氣膠酸鹼性與結合型態 18
2.2.3 硫酸鹽及硝酸鹽轉化現象 20
2.3 氣膠碳成分化學特性 22
2.3.1 碳成分來源與形成機制 22
2.3.2 碳成分比值代表意義 24
2.3.3 碳成分與環境關係 26
2.3.4 二次有機污染物探討 26
2.4 氣膠重金屬元素特性 28
2.4.1 重金屬元素來源及組成機制 28
2.4.2 重金屬元素與環境關係 29
2.5 海鹽氣膠組成 30
2.5.1 非海鹽硫酸鹽氣膠來源與機制 30
2.5.2 硝酸鹽氣膠來源與形成機制 31
2.5.3 海鹽氣膠 32
2.5.4 海岸地區氣膠化學特性 33
2.6 黃沙時期氣膠特性 34
2.6.1 大陸沙塵暴發生源區與形成特性 34
2.6.2 黃沙時期氣膠質量濃度及化學組成 36
2.6.3 黃沙氣膠經長程傳輸演變 38
2.6.4 黃沙對環境造成衝擊 40
2.6.5 國內對於大陸沙塵暴的研究成果 41
2.7 氣膠對環境與人體健康影響特性 42
2.7.1 氣膠對於環境的影響 42
2.7.2 氣膠與氣象因子的關係 43
2.7.3 氣膠對於人體健康的影響 44
第三章 研究方法 47
3.1 採樣規劃與儀器設備 49
3.1.1 採樣時間及規劃 49
3.1.2 採樣觀測點的環境描述 50
3.1.3 採樣設備 58
3.2 樣本成分分析方法 81
3.2.1 氣膠質量秤重分析 81
3.2.2 氣膠水溶性離子分析 81
3.2.3氣膠元素分析 82
3.2.4 氣膠碳成分分析 84
3.3 品保與品管流程 86
3.4 氣膠污染來源與貢獻量推估 89
3.4.1 相關係數矩陣法 89
3.4.2 加強因子法 89
3.4.3 氯離子損失法 91
3.4.4 Hysplit(Hybrid Single-Particle Lagrangian Integrated Trajectory)模式 96
第四章 結果與討論 97
4.1 人工觀測值與環保署空品測站測監值比較 98
4.1.1 人工監測結果與連續監測儀器比較 99
4.1.2 人工監測與環保署空品站比較 104
4.1.3 人工監測結果 106
4.2 氣膠質量濃度變化趨勢 111
4.2.1 監測時期即時氣膠質量濃度與氣象因子關係 111
4.2.2 氣膠濃度變化與粒徑分布關係 119
4.3 氣膠水溶性離子成分特性探討 127
4.3.1 氣膠水溶性離子濃度及比例 127
4.3.2 氣膠水溶性離子酸鹼性及結合型態分析 142
4.4 氣膠碳成分分析 158
4.4.1 大氣氣膠碳成分濃度 158
4.4.2 二次有機碳探討 164
4.5長程傳輸的影響 170
4.5.1 氣膠質量濃度 170
4.5.2 氣膠水溶性離子 173
4.5.3 氣膠碳成分 173
4.5.4 氣膠元素成分 175
4.6 氣膠於不同氣流軌跡下污染來源推估 177
4.6.1 後推氣流軌跡線分類 177
4.6.2 後推氣流軌跡線下氣膠各成分比較 181
4.6.3 氯離子損失法(Chlorine loss method) 192
4.7 高污染事件探討 201
4.7.1 案例一 201
4.7.2 案例二(第一、二波黃沙影響事件) 217
4.7.3 案例三(第三波沙塵影響事件) 234
4.8 不同後推氣流軌跡線之氣膠質量重建 247
第五章 結論與建議 251
5.1 結論 251
5.2 建議 254
參考文獻 255
附錄一 口試委員意見及答覆 267
附錄二 後推氣流軌跡線 271
Ackermann-Librich, U., Leuenberger, Ph., Schwartz, J., Schindler, Ch., SAPALDIA-term, 1997. Lung function and long term exposure to air pollutants in Switzerland. Journal of Respiratory and Critical Care Medicine 155, 122-129.
Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Van Grieken, R., Maenhaut,W., 1986. Internal mixtures of sea salt, silicates and excess sulfate in marine aerosols, Science. 232, 1620-1623.
Ball, J., Willie, C., Young, C. 1992. Evidence of a new class of mutagens in diesel particulate extracts. Environmental Science and Technology 26, 2181-2186.
Bennett, R. L., Stockburger., 1994. Sampling carbonaceous aerosol: Review of methods and previous measurements. U.S. Environmental Protection Agency. Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC, November 1994, EPA/600/SR-94/192.
Brook, J. R., Dann, T. F. and Rurnett, R. T., 1997. The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Lacations. Journal of the Air and Waste Management Association 47, 2-19.
Cadle, S.H., Dash, J.M., 1988. Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in Northern Michigan. Atmospheric Environment 22, 1373-1381.
Carmichael, G. R., 1996. Seasonal variation of aerosol composition at Cheju, Korea. Atmospheric Environment 30, 2407-2416.
Carmichael, G.R., Zhang, Y., Chen, L.L., Hong, M.S., Ueda, H., 1995. Seasonal variation of aerosol composition at Cheju Island, Korea. Atmospheric Environment 30, 2407-2416.
Chan, Y. C., Simpson, R. W., Mctainsh, G. H., Cohen, D. D. and Bailey, G. M., 1999. Source Apportionment of PM2.5 and PM10 Aerosols in Brisbane (Australia) by Receptor Model. Atmospheric Environment 33, 3251-3268.
Chang, S. G., Brodzinsky, R., Gundel, L. A., Novakov, T., 1982. Chemical and catalytic properties of elemental carbon. In: Wolff, G.T., Klimisch, R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum Press, New York, pp. 158-181.
Chang, Y., Kurita, H. and Ueda, H. 1990. Transport and Formation of Sulfates and Nitrates. Atmospheric Environment 29, 1749-1773.
Charlson, R. J. and Wigley, T. M. L,. 1994. Sulfate Aerosol and Climatic Change. Scientific American 2, 48-57.
Charlson,. R. J. and Wigley, T. M. L., 1994. Sulfate Aerosol and Climatic Change. Scientific American 2, 48-57.
Cheng, Z. L., Lam, K. S., Chan, L. Y., Cheng, K. K., 2000. Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variaton of major ions, halogens and mineral dusts between 1995 and 1996. Atmospheric Environment 34, 2771–2783.
Chow, J. C., 1995. Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. J. Air & Waste Manage. Assoc 45, 320-382.
Chow, J. C., Watson, J. G., Fujuta, E. M., Lu, Z. and Lawson, D. R., 1994. Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study. Atmospheric Environment 28, 2061-2080.
Chow, J.C., 1992. A neighborhood-scale Study of PM10 source contribution in rubidoux California. Atmospheric Environment 26A,.693-706.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chu, Shao-Hang., 1997. Meteorological Conditions Conducive to Regional High Particulate Matter Episodes. AWMA 90th Annual Meeting and Exhibition, Vol.112,.06.
Chung, Y. S. and Yoon, M. B., 1996. On the occurrence of yellow sand and atmospheric loadings. Atmospheric Environment 30, 2387-2397.
Chung, Y. S., 1992. On the observations of yellow sand (dust storms) in Korea. Atmospheric Environment26A, 2743-2749.
Colbeck, I. and Harrison, R. M., 1984. Ozone-econdary aerosol- visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Daisey, J.M., Cheney, J.L., Lioy, P.J., 1986. Profiles of organic particulate emissions from air pollution sources: status and needs for receptor source apportionment modeling. Journal of the Air Pollution Control Association 36, 17-33.
Danalatos, D. and Glavas, S., 1995. Atmospheric Nitric Acid Concentrations in a Mediterranean site, Patras, Greece. Atmospheric Environments 29, 1849-1852.
Dockery, D.W., Pope, C.A., Xu, X., Sprengler, I.D., 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329, 1573-1579.
Fan, X, B., Okada, K., Niimura, N., Kai, K., Arao, K., Shi, G, Y., Qin, Y., Mitsuta, Y., 1995. Mineral particle collected in China and Japan during the same Asian Dust-Storm event. Atmospheric Environment 30, 347–351.
Fitzgerald, J.W., 1991. Review article, Marine aerosol: A review. Atmospheric Environment 25A, 533-545.
Fujita, S. and Kawaratani, K., 1988 Wet deposition of sulfate in the Inland Sea region of Japan. Journal of Atmospheric Chemistry 7, 59-72.
Gorsjean, D., 1984. Particulate Carbon in Los Angeles Air. Science of the Total Environment 32, 133-145.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Grosjean, D., 1984. Particulate carbon in the Los Angeles air. Science of the Total Environment 32, 133-145.
Gülsoy, G., Tayanc, M. and Ertürk, F., 1999. Chemical analyses of the major ions in the precipitation of İstanbul, Turkey. Environmental Pollut. 105, 273-280.
Guo, J., Rahn, K. A., Zhuang, Guoshun., 2004. A mechanism for the increase of pollution elements in dust storms in Beijing. Atmospheric Environment 38, 855-862.
Harrison, R. M., Pio, C. A., 1983. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmospheric Environment 17,1733-1783.
He, Z., Kim, Y. J., Ogunjobi, K. O., Kim, J. E., Ryu, S. Y., 2004. Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002. Atmospheric Environment 38, 1795-1800.
Heinrich, U., Dungworth, L. 1991. The carcinogenic effects of carbon black particles and tar/pitch condensation aerosols after inhalation exposure of rates. Seventh International Symposium on Inhaled Particles, Edinburgh.
Henry, R. C., Hidy, G. M., 1979. Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I.Annual Dust from Los Angeles and NewYork. Atmospheric Environment 13, 1581-1596.
Hildemann, L. M., Markowski, R. G. and Cass, G. R., 1991. Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol. Environmental Science and Technology 25, 744-759.
Ho, K. F., Lee, S. C., Chan, Chak K., Yu, Jimmy. C., Chow, Judith. C. and Yao, X.H., 2003. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment 37, 31-39.
Holler, R., Tohno, S., Kasahara, M., Hitzenberger, R., 2002. Long-term characterization of carbonaceous aerosol in Uji,Japan. Atmospheric Environment 36, 1267-1275.
Hopke, P. K., 1982. Trace Element Concentrations in Summer Aerosols at Rural Sites in New York State and Their Possible Sources, and Seasonal Variations in the Composition of Ambient Sulfate-Containing Aerosols in the New York Area. Atmospheric Environment 16A, 1379-1386.
Japar, S.M., Brachaczek, W.W., Gorse, R.A., Norbeck, J.M., Pierson, W.R., 1986. The contribution of elemental carbon to the optical properties of rural atmospheric aerosols. Atmospheric Environment 20, 1281-1289.
John, W., Wall, S. M., Ondo, J. L. and Winklmayr, W., 1990. Modes in the Size Distribution of Atmospheric Inorganic Aerosol. Atmospheric Environment 24A, 2349-2359.
Kadowaki, S., 1990. Characterization of Carbonaceous Aerosol in the Nagoya Urban Area. 1. Elemental and Organic Carbon Concentrations and the Origin of Organic Aerosols. Environmental Science and Technology 24, 741-744.
Katsumi Satioh, Koichiro Sera, Koichiro Hirano, Tadashi Shirai,. 2002. Chemical characterization of particles in winter-night smog in Tokyo. Atmospheric Environment 36, 435-440.
Kerminen, V.M., Pakkanen, T.A., Hillamo, R.E., 1997. Interactions between inorganic trace gases and supermicrometer particles at a coastal site. Atmospheric Environment 31, 2753-2765.
Kim, B, G., Park, S, U., 2001. Transport and evolution of a winter - time Yellow sand observed in Korea. Atmospheric Environment 35, 3191-3201.
Kim, H.K., Shin, E.S., 1991. Influence of yellow sand on TSP in Seoul. In Emerging Issues in Asia, Proc. 2nd IUAPAA Regional Conference on Air Pollution, Seoul, Korea, Vol. Ⅱ, 1-7.
Kim, K, W., Kim Y, J., Oh, S, J., 2001. Visibility impairment during Yellow Sand periods in the urban atmosphere. Atmospheric Environment 35, 5157–5167.
Kim, Y. P., Moon, K. C., Lee, J. H. and Baik N. J. 1999. Concentrations of Carbonaceous Species in Particles at Seoul and Cheju in Korea. Atmospheric Environment 33, 2751-2758.
Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M., Mulik, J. D., 1993. Development and Evaluation of a Glass Honeycomb Denuder/ Filter Pack System to Collect Atmospheric Gases and Particles. Environmental Science & Technology 27, 2497- 2501.
Koutrakis, P., Wolfson, J. M.,Spengler, J. D., 1988b. An improved method for measuring aerosol strong acidity:results form a nine-month study in St. Louis. Atmospheric Environment 22, 157-162.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T. and Korhonen, P. 1995. The Effect of HCl on Cloud Droplet Formation. J. Aerosol Sci. 26, 413-414.
Kyotani, T., Iwatsuki, M., 2002. Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan. Aerosol Science and Technology 36, 639-649.
Larson, S. M., Cass, G. R., Hussey, K. J. and Luce, F., 1988. Verification of Image Processing Based Visibility Models. Science of the Total Environment 22, 629-637.
Lee, H. S., Kang, C. M., Kang, B. W. and Kim, H. K., 1999. Seasonal Variations of Acidic Pollutants in Seoul, South Korea. Atmospheric Environment 33 ,3143-3152.
Lee, S, B., Bae, G, N., Moon, K, C., Kim, Y, P., 2002. Characteristics of TSP and PM2.5 measure at Tokchok Island in the Yellow Sea. Atmospheric Environment 36, 5427–5435.
Lepple, F.K., Bressan, D.S., Hoover, J.B., Larson, R.E., 1983. sea salt aerosol, atmospheric radon and meteorological observations in the western South Atlantic Ocean (February 1981). NRL Memorandum Report, 5153.
Li, F. and Okada, K., 1999. Diffusion and modification of marine aerosol particles over the coastal areas in china: A case study using a single particle analysis. Journal of Atmospheric. Science 56, 241-248.
Lim, H. J., Turpin, B. J., Russell, L. M., Bates, T. S., 2003. Organic and Elemental Carbon Measurements during ACE-Asia suggest a Longer Atmospheric Lifetime for Elemental Carbon. Environment Science & Technology 37, 3055-3061.
Liu rt al., 1996. Comparison of Aerosol Acidity in Urban and Semi-rural Environments. Atmospheric Environment 30 , 1237-1245.
Liu, S. C. and Shiu, C. J. 2001. Asian dust storms and their impact on the air quality of Taiwan. Aerosol and Air Quality Research 1, 1-8.
Ma, C, J., Kasahara, M., Höller, R., Kamiya, T., 2001. Characteristics of single particles sampled in Japan during the Asian dust-storm period. Atmospheric Environment 35, 2707-2714.
Ma, C, J., Kasahara, M., Tohno, S., Hwang, K, C., 2000. Characterization of the atmospheric aerosols in Kyoto and Seoul using PIXE, EAS and IC. Atmospheric Environment 35, 747– 752.
Mamane, Y., 1986. Estimate of Municipal Refise Incinerator Contribution to Philadelphia Aerosol Using Single Particle Analysis. Atmospheric Environment 24B, 127-135.
Mangelson, N. F., Lewis, L., Joseph,J. M., Cui, W., Machir, J., Williams, N. W., Eatough, D. J., Rees, L. B., Wilkerson, T. and Jensen, D. T., 1997.The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. AWMA 47, 167-175.
Mangelson, N. Lewis F., L., Joseph J. M., Cui W., Machir J., Williams N. W., Eatough D. J., Rees L. B., Wilkerson T. and Jensen D. T., 1997. The Contribution of Sulfate and Nitrate to Atmospheric Fine Particles During Winter Inversion Fogs in Cache Valley, Uath. Journal of the AWMA 47, 167-175.
McInnes, L.M., Covert, D.S., Quinn, P.K., Germani, M.S., 1994. Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research 99, 8257-8268.
Mehlmann, A. and Warneck, P., 1995. Atmospheric Gaseous HNO3, Particulate Nitrate, and Aerosol Size Distributions of Major Ionic Species at a Rural Site in Western Germany. Atmospheric Environment 29, 2359-2373.
Monahan, E. C., Spiel, D. E. and Davidson, K. L., 1986. A model of marine aerosol generation via whitecaps and wave distruption. In Oceanic Whitecaps (edited by Monahan E.C., Spiel D.E. and MacNiocaill G.). Reidel, Hingham, MA.
Monn, C. H., Braendli, O., Schaeppi, G., Schindler, C. H., Ackermann-Liebrich, U., Leuenbrger, P. H. and Team, S., 1995. Particulate Matter <10µm (PM10) and Total Suspended Particulates (TSP) in Urban, Rural and Alpine Air in Switzerland. Atmospheric Environment 29, 2565-2573.
Mori, I., Nishikawa, M., Tanimura, T., Quan, H., 2003. Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmospheric Environment 37, 4253– 4263.
Moya, M., Castro, T., Zepeda, M., Baez, Armando., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
Na, K., Sawant, A. A., Song, C., Cocker, D. R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment 38, 1345-1355.
Nishikawa, M., Hao, Q., Morita, M., 2000. Preparation and Evaluation of Certified Reference Materials for Asian Mineral Dust. Global Environment 4, 103 –113.
Nishikawa, M., Hao, Q., Morita, M., 2000. Preparation and Evaluation of Certified Reference Materials for Asian Mineral Dust. Global Environment. Res.4, 103–113.
Novakov, T. 1982. Soot in the atmosphere. In: Wolff, G.T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, pp. 19-41.
Ohta, S. and Okita, T., 1990. A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Pakkanen, T. A., 1996. Study of Formation of Coarse Particle Nitrate Aerosol. Atmospheric Environment 30, 2475-2482.
Pakkanen, T.A., Kerminen, V.M., Hillamo, R.E., Makinen, M., Makela, T., Virkkula, A., 1996. Distribution of nitrate over sea-salt and soil derived particles-implication from a field study. Journal of Atmospheric Chemistry 24, 189-205.
Pinto, J. P., Stevens, R. K., Willis, R. D., Kellogg, R., Mamane, Y., Novak, J., Santroch, J., Benes, I., Lenicek, J. and Bures, B., 1998. Czech Air Quality Monitoring and Receptor Modeling Study. Environmental Science and Technology 32, 843-854.
Pio, C.A., Castro, L. M., Cerqueira, M. A., Santos, I. M., Belchior, F. and Salgueiro, M. L., 1996. Source Assessment of Particle Air Pollutants Measured at the Southwest European Coast. Atmospheric Environment 30, 3309-3320.
Robert, A. M., Michael T. K., 2000. Incidence and apparent health significance of brief airborne particle excursions. Aerosol science and technology. 32,93-105.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Salam,A., Bauer, H., Kassin, K., Ullah, S. M., Puxbaum, H., 2003. Aerosol chemical characteristics of a mega-city in southeast Asia (Dhaka-Bangladesh). Atmospheric Environment. 37, 2517-2528.
Schroeder, W. H., Dobson, M., Kane, D. M., and Johnson, N. D, 1987. Toxic Tracer Element Associated with Air bone Particulate Matter: A Review. Journal of Air and Waste Management.37,1267-1285.
Schwartz, J., 1994. Particulate air pollution and chronnic respiratory disease. Environmental Research 62, 7-13.
Seaton, A., MacNee, W., Donaldson, K., Godden, D., 1995. Particulate air pollution and acute health effects. Lancet 345, 176-178.
Seinfeld, J. H. and Panis, S. N., 1998. Mathematical model of atmospheric fine particle associated primary organic compound concentrations. Journal of Geophysical Research 101, 19379-19394.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. Wiley, New York.
Serne, J. C. and Mauch, S. C., 1988. Ambient Air Toxics Monitoring for Greater Detroit Resource Recovery Facility: Inter-Site Comparisions. AWMA 84th Annual Meeting and Exhibition, Vol.91-80,.16.
Shah, J.J., Johnson, R.L., Heyerdahl, E.K., Huntzicker, J.J., 1986. Carbonaceous aerosol at urban and rural sites in the United States. Journal of the Air Pollution Control Association 36, 254-257.
Shinn, E. A., Smith, G. W., Prospero, J. M., Betzer, P., Hayes, M. L., Garrison, V. and Barber, R.T., 2000. African Dust and the Demise of Caribbean Coral Reefs. Geophys. Res. Lett. 27(19), 3029-3032.
Shrestha, A. B., Wake, C. P. and Dibb, J. E., 1997. Chemical Composition of Aerosol and Snow in the High Himalaya During the Summer Monsoon Season. Atmospheric Environment 31, 2815-2826.
Sioutas, C., Wang, P. Y., Ferguson, S. T., Koutrakis, P.; Mulik, J. D., 1996. Laboratory and Field Evaluation of an improved Glass Honeycomb Denuder/Filter Pack Sampler. Atmospheric Environment 30, 885-895.
Solomon, P. A. and Moyers J. L., 1984. Use of a High Volume Dichotomous Virtual Impactor to Estimate Light Extinction due to Carbon and Related Species in the Phoenix Haze. Science of the Total Environment 36, 169-175.
Stelson, A. W. and Seinfeld, J. H., 1982. Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant. Atmospheric Environment 16, 983-992.
Stevens, R. K., Dzubay, T. G., Russworm, G. and Rickel, D., 1978. Sampling and analysis of atmospheric sulfates and related species. Atmospheric Environment 12, 55-60.
Swietlicki, E., Puri, S., Hansson, H. C., 1996. Urban air pollution source apportionment using a combination of aerosol and gas monitoring techniques. Atmospheric Environment 30, 2795–2809.
Terada, H., Ueda H., Wang, Z., 2002. Trend of acid rain and neutralization by yellow sand in east Asia-a numerical study. Atmospheric Environment 36, 503–509.
Tuch, A. M., Tamm E. J., Heyder, H. P., Brand, C. H., Roth, H. E., Wichmann, J. P., Kreyling W.G., 2000. Comparison of two partical-size spectrometers for ambient aerosol measurements. Atmospheric Environment 34,139-149.
Turpin, B. J., and Huntzicker, J. J., 1991. Secondary Formation of Organic Aerosol in the Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentrations. Atmospheric Environment 25A, 207-215.
Turpin, B. J., Huntizicker, J. and Adams, K. M., 1990. Intercomparison of Photoacoustic and Thermal-Optical Methods of the Measurement of Atmospheric Elemental Carbon. Atmospheric Environment 24, 1831-1835.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Valaoras, G., Huntzicker, J.J., White, W.H., 1988. On the contribution of motor vehicles to the Athenian “Nephos”; an application of factor signitres. Atmpspheric Environment 22, 965-971.
Vanloon, J.C., 1985. Selected Methods of Trace Metal Analysis:Biological and Environmental Samples. John Wiely and Sons, Inc.
Waggoner, A. P., Weiss, R. E., Ahlquist, N.C., Covert, D.S., Will, S. and Charlson, R. J., 1981. Optical Characteristics of Atmospheric Aerosols. Atmospheric Environment 15,.1891-1909.
Wai, K. M. and Tanner, P. A., 2004. Wind-dependent sea salt aerosol in a Western Pacific coastal area. Atmospheric Environment 38, 1167-1171.
Walker, J. T., Whitall, D. R., Robarge, W., Paerl, H. W.,2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment 38, 1235-1246.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Wang, Gehui., Huang, L., Gao, Shixiang., Gao, Songting., Wang, Liansheng., 2002. Characterization of water-soluble species of PM10 and PM2.5 aerosol in urban area in Nanjing, China. Atmospheric Environment 36, 1299-1307.
Watson, J. G., 1998. The Science of Fine Particlate Matter. Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5. 1-14.
Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H. and Lawson, D. R., 1994. Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study. Aerosol Sci. Technol 21, 1-36.
Watson, J.G., 1998. The science of fine particlate matter, workshop on sampling, regulation, and light scattering effects of PM2.5. Atmospheric Environment 25A, 1-14.
Wedepohl, K. H., 1987. The Composition of the Upper Earth’s Crust and the Natural Cycles of Selected Metals. Metals and their Compounds in the Environment.
Wolff, D.K., Monahan, E.C. and Spiel, D.E., 1988. Quantification of the marine aerosol produced by Whitecaps, Preprint, Seventh Conference on ocean-atmosphere interaction. American Meteorology Society, 182-185.
Wolff, G. T. and Klimisc, R. L., 1982. Soot in the Atmosphere. In Particulate Carbon: Atmoshperic Life Cycle, 89-109.
Wolff, G.T., 1984. On the nature of nitrate in coarse continential aerosols. Atmospheric Environment 18, 977-981.
Woodcock A.H., 1972, Smaller salt particle in oceanic air and bubble behavior in the sea. Journal of Geophysical Research. 77, 5316-5321.
Woolf D.K.,Bowyer P.A. and Monahan E.C. 1987, Discriminating between the Film-Drops and Jet-Drops Produced by a Simulated Whitecap. Journal of Geophysical Research. 92, 5142-5150.
Wu, P.M., Okada,K., 1994. Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmospheric Environment 28, 2053-2060.
Xavier Querol, Andrés Alastuey, Sergio Rodriguez, Felicià Plana, Carmen R. Ruiz, Nuria Cots, Guillem Massagué and Oriol Puig., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35, 6407-6419.
Zhang, D. and Iwasaka, Y., 1999. Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996. Atmospheric Environment 33, 3213-3223.
Zhang, J., Wu,Y., Liu, C.L., Shen, Z.B., Yu, Z.G., Zhang, Y., 2001. Aerosol characters from the desert region of Northwest China and the Yellow Sea in spring and summer: observations at Minqin, Qingdao, and Qianliyan in 1995-1996. Atmospheric Environment 35, 5007-5018.
Zhung, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
王宏恩 (1999) 懸浮微粒物化特徵成份分析及相關性探討,國立中山大學環境工程研究所碩士論文。
王證權 (2001) 亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性,國立中央大學環境工程研究所碩士論文。
吳政鴻 (1997) 彭佳嶼海域大氣懸浮微粒之化學研究,國立台灣大學海洋研究所碩士論文。
林軍維 (2003) 郊區大氣懸浮微粒特徵探討,國立屏東科技大學環境工程與科學系碩士論文。
林能暉、彭啟明、吳承翰 (2002) 大陸沙塵暴之長程傳輸:模式模擬與個案探討。大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文集,35-66。
周崇光、許世傑 (2002) 2002年亞洲沙塵暴對台北市空氣品質影響期間之科學判斷。中央研究院環境變遷研究計畫。
張順欽、李崇德 (2001) 大陸沙塵暴影響空氣中懸浮微粒濃度之評估,第九屆氣膠科技研討會論文集,第2-7頁。
梁永志 (2003) 北台灣長程傳輸氣膠化學特性,國立中央大學環境工程研究所碩士論文。
許惠娟 (1999) 大陸沙暴對台灣地區空氣品質的影響,國立台灣大學大氣科學研究所碩士論文。
陳佩娟 (2003) 沿海地區大氣中懸浮微粒化學特性分析研究,朝陽科技大學環境工程與管理系碩士論文。
葉峻榕 (2002) 大陸沙塵暴對中部地區酸性空氣污染物之影響,國立中興大學環境工程學系碩士論文。
詹長權等 (2000) 中國大陸沙塵暴對台灣居民健康之影響,沙塵暴學術研討會,台北市。
詹俊南 (1996) 臺灣地區PM10污染特性分析,國立台灣大學環境工程研究所碩士論文。
廖偉翔 (2003) 北台灣長程傳輸氣膠光學特性,國立中央大學環境工程研究所碩士論文。
行政院環境保護署 (2002) 台灣地區臭氧與懸浮微粒預報模式建立及生成與傳輸機制分析 期末報告,EPA-91-FA11-03-A062。
行政院環境保護署 (2003) 高污染區域大氣邊界層密集觀測及對污染物擴散之研究 期末報告,EPA-92-U1L1-02-103。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top