跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳明昌
研究生(外文):Ming-Chang Wu
論文名稱:光子晶體波導與藕合共振波導之研究
論文名稱(外文):Study of photonic crystals' waveguide and coupled-resonator optical waveguide
指導教授:欒丕綱
指導教授(外文):Pi-Gang Luan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:53
中文關鍵詞:波導光子晶體
外文關鍵詞:photonic crystalscoupled-resonator optcial wavegiudeCROW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究光子晶體波導的導波特性,及其作為光源整流元件的特性。對於傳統光子晶體波導,我們找到了一個特殊工作頻率,在此頻率下波導的穿透率與波導路徑無關,而對於曲線形波導我們找出了影響穿透率的原因。在具有表面波 (Surface modes) 傳播模態的光子晶體波導中,我們設計了一種與文獻中不同的二次曲線形表面波次級光源調變方法,可以將由光子晶體波導輻射出的光聚束於小角度的範圍內。最後,我們成功的設計出了一種只用兩排介電質圓柱所構成的
另類光子晶體波導:藕合共振器光學波導 (Coupled-Resonator Optical Waveguide ,簡稱為CROW),並以實例展示了此種波導的四種可能之應用方式。
摘要 I
目錄 II
圖索引 IV
第一章 緒論 1
1.1 光子晶體相關研究簡介 1
1.2 動機、研究方法及章節內容 5
第二章 數值模擬的理論基礎 7
2.1 簡介 7
2.2 數值模擬方法 7
2.3 電磁波的的純量 (Scalar) 表示法與通用波動方程式 (Universal Wave Equations) 8
2.3.1 波動方程式 (Wave equations) 8
2.3.2 能流的時間平均表示 9
2.4 平面波展開法 (Plane Wave Expansion Method) 10
2.5 多重散射法 ( Multiple Scattering Method) 13
2-6 多重散射法中能流之時間平均值 的推導 17
第三章 數值模擬結果 20
3.1 光子晶體波導的基本討論與研究 20
3.1.1 頻帶圖與有限光子晶體結構穿透率之比較 20
3.1.2 光子晶體之直線波導特殊現象之觀察與討論 23
3.1.3 光子晶體中曲形波導穿透率的研究與討論 28
3.2 光子晶體表面波效應之基本觀察與探討 31
3.2.1 參考文獻中有關表面波的研究討論 31
3.2.2 另一種調變模式 34
3.2.3 介面的能流分析 35
3.3 光子晶體另類波導:藕合共振器光學波導 (CROW) 的觀察 與研究 36
第四章 結論 41
參考文獻 43











圖索引
Fig.1.1.1 典型的一維、二維與三維光子晶體 1
Fig.1.1.2 典型的光子晶體能帶圖 2
Fig.1.1.3 光子晶體波導 3
Fig.3.1.1.1 (a) 光子晶體的頻帶圖 (b) 頻率對有限大小的光子晶體的穿透率掃描圖 20
Fig.3.1.1.2 光子晶體板厚度對穿透率的關係圖 22
Fig.3.1.2.1 (a) 頻率 k1 = 2.35之電磁波在一長直波導中傳播的振幅場圖 24
(b) k1 =2.35 及任意選定一頻率k2 =2.55 兩個頻率的波之振幅對一條長直波導中心線做圖
Fig.3.1.2.2 (a) 為 k1=2.35, loopg = 6 的場圖及掃描路徑示意圖 25
(b) 與 (c) 分別描述頻率為k1=2.35及k2 =2.175的波沿A--B--C—N路徑所得到的振幅
Fig.3.1.2.3 (a) 顯示出通道在轉彎處的振幅場圖. (b) 能流放大圖 27
Fig.3.1.2.4 (a)、(b) 較為特殊的情形,原本已收斂的兩條線會重和為一條線 28
Fig.3.1.3.1 (a)~(f) 兩種樣品之場圖與穿透率對頻率關係圖 30
Fig.3.2.1.1 參考文獻中的散射體幾何關係示意圖 32
Fig.3.2.1.2 (a)~(h) 各種調變方式的正常光子晶體波導場圖即能流分析圖 33
Fig.3.2.2.1 末排散射體排列為二次曲線形的調變方式 34
Fig.3.2.3.1 (a) 散射體未經調變的光子晶體介面沿X方向能流圖 35
(b) 散射體調變模式為 “N=0” 的光子晶體介面沿X方向能流圖
Fig.3.3.1 (a) 此藕合共振器光學波導(CROW)的振幅場圖 38
(b) 利用FDTD 方法在相同結構,參數下得到的實部場圖
(c) 為(b)下排最接近波源前3個散射體附近能流分佈圖
Fig.3.3.2 (a) 藕合共振器光學波導(CROW)的振幅場圖 39
(b) 由並列的CROW組成的光子晶體其負折射現象振幅場圖
(c) 單排結構CROW的振幅場圖構成的分波器振幅場圖
Fig.3.3.3 (a) 高效率藕合傳輸線之傳輸場圖,右端為一光子晶體波導 40
(b) 光子晶體光源多端輸出器
[1] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, September 1995).
[2] K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
[3] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059 (1987).
[4] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[5] C. Kittle, Introduction to Solid State Physics (John Wiley & Sons, New York, 1996).
[6] E. Yablonovitch and T. J. Gmitter, “Photonic band structures: The face-centered cubic case”, Phys. Rev. Lett. 63, 1950 (1989).
[7] B. G. Levi, “Visible progress made in three-dimensional photonic crystals”, Physics Today, Vol. 52, No.1, p.17 (1999).
[8] Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, Edwin L. Thomas, “A Dielectric Omnidirectional Reflector”, Science 282, 1679 (1998).
[9] M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos1, “An All-Dielectric Coaxial Waveguide”, SCIENCE 289, 415 (2000).
[10] Philip Russell, “Photonic Crystal Fibers”, Science 299, 358 (2003).
[11] A.R. McGurn and A.A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays”, Phys. Rev. B 48, 17576 (1993).
[12] I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths”, Phys. Rev. B 62, 15299 (2000).
[13] D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D Wire Mesh Photonic Crystals”, Phys. Rev. Lett. 76, 2480 (1996).
[14] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures”, Phys. Rev. Lett. 76, 4773 (1996).
[15] T. W. Ebbesen, T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A., “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature (London) 391, 667 (1998).
[16] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen1, “Beaming Light from a Subwavelength Aperture”, Science 297, 820 (2002).
[17] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424, 824 (2003).
[18] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett. 84, 4184 (2000).
[19] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction”, Science 292, 77 (2001).
[20] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).
[21] J. Pacheco, Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media”Phys. Rev. Lett. 89, 257401 (2002).
[22] Andrew A. Houck, Jeffrey B. Brock, and Isaac L. Chuang, “Experimental Observations of a Left-Handed Material That Obeys Snell’s Law”, Phys. Rev. Lett. 90, 137401 (2003).
[23] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals”, Phys. Rev. Lett. 92, 127401 (2004).
[24] R. Ruppin, “Surface polaritons of a left-handed medium”, Phys. Lett. A 277, 61 (2000).
[25] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap”, Phys. Rev. B 62, 10696 (2000).
[26] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive index”,Phys. Rev. Lett. 90, 107402 (2003).
[27] S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals”, Phys. Rev. B 67, 235107 (2003).
[28] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index”Phys. Rev. B 65, 201104 (2002)
[29] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry “Subwavelength imaging in photonic crystals”, Phys. Rev. B 68, 045115 (2003).
[30] Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction”, Phys. Rev. B 68, 245110 (2003).
[31] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens”, Phys. Rev. Lett. 91, 207401 (2003).
[32] Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou,
Costas M. Soukoulis, “Negative refraction by photonic crystals”, Nature 423, 604 (2003).
[33] Patanjali V. Parimi,Wentao T. Lu, Plarenta Vodo, and Srinivas Sridhar, “Imaging by flat lens using negative refraction”, Nature 426, 404 (2003).
[34] Esteban Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes”, Phys. Rev. B 69, 121402 (2004).
[35] P. Kramper, M. Agio, C.M. Soukoulis, A. Birner, F. Mu¨ller, R. B.Wehrspohn, U. Go¨sele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of SubwavelengthWidth”, Phys. Rev. Lett. 92, 113903 (2004).
[36] Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi, Toshiaki Tamamura, Takashi Sato, and Shojiro Kawakami, “Superprism phenomena in photonic crystals”, Phys. Rev. B 58, R10096 (1998).
[37] Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi, Toshiaki Tamamura, Takashi Sato, and Shojiro Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering”, Appl. Phys. Lett. 74, 1370 (1999).
[38] J. Bravo-Abad, T. Ochiai, and J. Sánchez-Dehesa, “Anomalous refractive properties of a two-dimensional photonic band-gap prism” Phys. Rev. B 67, 115116 (2003).
[39] R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal”, Phys. Rev. B 44, 10961 (1991).
[39] E. Yablonovitch, “Photonic crystals: Semiconductors of Light,” Scientific American 285, 35 (2001).
[40] M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular”, Phys. Rev. B 44, 8565 (1991).
[41] M. S. Kushwaha and P. Halevi, “Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders”, Appl. Phys. Lett. 69, 31 (1996).
[42] Yu-Yu Chen and Zhen Ye, Phys. Rev. E 65, 056612 (2002).
[43] J.-P. Berenger. “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comp. Phys. 114, 185 (1994).
[44] Min Qiu and Sailing He, “Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions”, Phys. Rev. B 61, 12871 (2000)
[46] Amnon Yariv, Yong Xu, Reginal K. Lee, and Axel Scherer, “Coupled-resonator optical waveguide: a proposal and analysis”, Opt. Lett. 24, 711 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊