跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周國龍
研究生(外文):Kui-Lung Chou
論文名稱:質子交換聲波波導之聲光可調波長轉換器的製作
論文名稱(外文):no
指導教授:許進恭李清庭
指導教授(外文):Jinn-Kong SheuChing-Ting Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:聲波波導擴散聲光調變質子交換
外文關鍵詞:no
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的在於利用半導體製程技術積體化質子交換聲波波導之聲光可調光波長轉換器,利用聲光作用,於鈮酸鋰晶片上,製作TE/TM模分離器,以作為與極化無關的波長轉換器的功能。
首先在Z切Y傳播的鈮酸鋰基本上製作TE/TM模分離器,其次將利用質子交換法製作聲波波導,得到與設計相符合的中心頻率,最後完成整個質子交換聲波波導之聲光可調光波長轉換器,量測其模態轉換,並配合外差式量測方法,來驗證波長轉換器的功能。
論文摘要……………………………………………………...………….I
目錄………………………………………………………….………….Ⅱ
圖目………………………………..…………………………….….…..Ⅳ
第一章 緒論……………………………………………...………1
1-1 波長轉換器之簡介…...…………………………………..1
1-2 鈮酸鋰晶體之簡介……………………………..…..….3
1-3 內容概述……..………………………………………….4
第二章 理論背景……………………………………………..….5
2-1 聲光可調光濾波器之原理………………………………5
2-2 光波導之相關理論……………………………………….6
2-2.1通道式薄膜擴散…………………………………...6
2-2.2 擴散雜質的濃度與折射率變化量………………...8
2-3 順向耦合器理論…………………………………………8
2-4 退火質子交換法………………………………………...10
2-5 表面聲波之原理…………………………………...……12
2-5.1 表面聲波元件…………………………….………13
2-5.2 壓電效應………………………………………….13
2-5.3 表面聲波元件之結構…………………………….14
2-5.4 指叉狀電極轉換器之設計……………………….15
2-6 聲光效應之理論分析…………………………………...16
第三章 元件製程……………………………………………….20
3-1 波長轉換器元件之製作………………………………...20
3-2質子交換聲波波導之製作..……………………………...23
3-3 晶片研磨………………………………………………...24
3-4 指叉狀電極轉換器之製作………………………...……25
第四章 實驗量測結果………………………………………….27
4-1 表面聲波量測及結果…………………………………...27
4-1.1表面聲波元件之量測方法………………………..27
4-1.2表面聲波元件之量測及結果……………………28
4-2質子交換聲波波導之波長轉換器量測及結果………….28
4-2.1波長轉換器元件之量測法………………………..28
4-2.2波長轉換器之量測及結果………………………..31
第五章 結論與討論..……………………….…………………..34
5-1 結論……………………...………………………………34
5-2 討論……………………………………………………...34
參考文獻………………………………………………………………..36
[1] C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications”, IEEE J. Select. Areas Commun., 8, 948, 1990
[2] C. A. Brackett, A. S. Acampora, J. Schweitzer, G. Tangonan, M. T. Smith, W. Lennon, K. C. Wang and R. H. Hobbs, “A scalable multiwavelength multihop optical network: A proposal for research on all-optical networks”, J. Lightwave Technol., 11, 736, 1993
[3] M. J. O’Mahony, “The potential of multiwavelength transmission”, in proc. of ECOC’94, Firenze, Italy, 2, 907, 1994
[4] K. Sato, S. Okamoto and H. Hadama, “Network performance and integrity enhancement with optical path layer technologies”, IEEE J. Select. Areas Commun., 12, 159, 1994
[5] D. Chiaroni, “Rack mounted 2.5Gbit/s ATM photonic switch demonstrator” in proc. ECOC’93, Montreux, Switzerland, ThP 12.7, 1993
[6] T. Durhuus, B. Fernier, P. Garabedian, F. Leblond, J. L. Lafragette, B. Mikkelsen, C. G. Joergensen and K. E. Stubkjaer, “High speed all-optical grating using two-section semiconductor optical amplifier structure”, in Proc. CLEO’ 92, Anaheim CA. U.S.A. CTRS4.
[7] D. M. Patrick and R. J. Manning, “20 Gbits/s wavelength conversion using semiconductor nonlinearity”, Electron. Lett., 30, 252, 1994
[8] T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen and K. E. Stubkjaer, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration”, IEEE Photon. Technol. Lett., 6, 53, 1994
[9] M. C. Tatham, “20nm optical wavelength conversion using nondegenerate four-wave mixing”, IEEE Photon. Technol. Lett., 5, 1303, 1993
[10] R. M. Jopson and R. E. Tench, “Polarization independent Phase conjunction of lightwave signals” Electron. Lett. 29, 2216, 1993
[11] R. Ludwig and G. Raybon, “BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5 and 10 Gbit/s”, Electron. Lett., 30, 338, 1994
[12] R. Schnabel, U. Hilbk, Th. Hermes and H. G. Weber, “Polarization insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier “, IEEE Photon. Technol. Lett., 6, 56, 1994
[13] C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices”, Appl. Phys., B35, 113, 1984
[14] F. S. Chu and P. L. Liu, ”Low-loss coherent-coupling Y-branches”, Opt.Lett., 3, 309, 1991
[15] C. T. Lee, ”Crosstalk characteristics of lens-like Ti-LiNbO3 intersecting channel waveguides”, Electron.Lett., 19, 805, 1983
[16] D. S. Smithand and H. D. Riccius, ”Refractive indices of Lithium Niobate”, Opt. Commun., 17, 332, 1976
[17] Dietrich Marcuse, “Directional couplers mode of nonidentical asymmetric slabs. part Ⅰ:synchronous couplers”, J. Lightwave Technol., LT-5, 113, 1987
[18] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi and L. Riviere “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of dissusion parameters”, J. Lightwave technol., LT-5, 700, 1987
[19] D. S. Smith and H. D. Riccius, “Refractive indices oflithium niobate”, Opt. Commun., 17, 332, 1976
[20] T. Fujiwara, X. Cao, R. Srivastava and R. V. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides”, Appl. Phys., 8, 743, 1992
[21] 邱元宏, “質子交換波導特性及元件之研究”, 中原大學碩士論文, 78年9月.
[22] P. G. Suchoski, T. K. Findakly and R. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguides devices with no electro-optic degradation”, Opt. Lett., 13, 1050, 1988
[23] A. Loni, G. Hay and J. M. Winfield, “Proton-exchanged LiNbO3 waveguides: the effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotropic exchange reactions”, J. Lightwave Technol., 7, 911, 1989.
[24] A. Y. Yan, “Index instabilities inproton-exchanged LiNbO3 waveguide”, Appl. Phys., 42, 633, 1983.
[25] A. Loni, “Proton-exchanged LiNbO3 waveguides come of age”, Laser Focus World, 183, 1991.
[26] M. Minakata, K. Kumagai and S. Kawakami “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides”, Appl. Phys., 49, 992, 1986.
[27] L. Rayleigh, ”On waves propagation along the plane surface of an elastic solid”, Proc. London Math. Soc., 17, 4, 1885
[28] D. P. Moran, “ Surface-wave devices for signal processing”, Elsevier, 29, 1985
[29] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys., 7, 314, 1965
[30] Amnon Yariv and Pochi Yeh, “Optical waves in crystals”, Mei Ya, 318, 1984
[31] Chen S. Tsai and Anna M. Matteo, “Integrated acousto-optic tunable filters in LiNbO3 for blue-green spectral region”, IEEE Ultrasonics Symposium, 739, 1997
[32] G. D.Boyd and F. Heismann, “Tunable acoustooptic reflection filters in LiNbO3 without a Doppler shift”, J. Lightwave Ttechnol., 7, 625, 1989
[33] 汪曉元, “以雙重擴散式設計圓形單模導光管之研究”, 中央大學碩士論文, 83年6月
[34] 李豪強, “兩級光電調制器在非線性失真消除、與光學雙穩態應用之研究”, 中央大學博士論文, 85年6月
[35] C. T. Lee, Ph. D. Thesis (University of Carnegie-mellon), 66, 1982
[36] H. Nishihara, M. Haruna and T. Suhara, “ Optical integrated circuits”, McGraw-Hill, 289, 1985
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top