跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張國慶
研究生(外文):kuo-Ching Chang
論文名稱:佈植矽離子與佈植氮離子於氧化鋅膜之特性分析及氧化鋅膜與金屬的歐姆接觸研究
論文名稱(外文):Analysis the characteristic of implant Si and implant N in ZnO and to investigate the ohmic contact with ZnO and metal
指導教授:李清庭許進恭
指導教授(外文):Ching-Ting LeeJinn-Kong Sheu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:111
中文關鍵詞:氧化鋅電阻率穿透率
外文關鍵詞:ZnOresistivitytransmittance
相關次數:
  • 被引用被引用:10
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
論文摘要

本文的實驗是研究氮離子和矽離子分別佈植於未摻雜之氧化鋅膜(ZnO)的特性研究,氮離子以50keV、100keV、190keV 等不同能量分別搭配2×1014 cm-2、5×1014cm-2、1×1015cm-2 等不同佈植濃度,而矽離子以60keV、100keV、190keV 等不同能量分別搭配2×1014 cm-2、6.5×1014cm-2、1.7×1015cm-2 等不同佈植濃度,藉以瞭解氮離子和矽離子佈植後的氧化鋅膜(ZnO)的特性,並同時分析未摻雜之氧化鋅膜的特性研究。首先以射頻(Radio Frequency,RF)濺鍍(sputtering)系統將氧化鋅(ZnO)材料濺鍍於藍寶石(Al2O3)基板上,形成氧化鋅透明導電薄膜,再經由適當的熱處理,並且針對不同的熱處理狀況研究其特性。在未佈植的條件方面,利用傳輸線模型元件量測其電學特性,並把氧化鋅膜預先作對蓋熱處理,然後蒸鍍鈦/金 (Ti/Au) 金屬後未做熱處理即形成特徵接觸電阻值達1.31×10-5 Ω-cm2之歐姆接觸 (ohmic contact)。在佈植矽方面,未做熱處理即形成特徵接觸電阻值為4.52×10-6 Ω-cm2之歐姆接觸,而在佈植氮方面,未做熱處理即形成特徵接觸電阻值更達到6.01×10-8 Ω-cm2之極佳的歐姆接觸。

在光特性方面,利用光激發螢光光譜(photoluminescence)的量測顯示,若使用熱處理對蓋的話,則可以提高ZnO波峰約380nm (near band edge)的強度,而且也可以抑制這些在表面缺陷,而這些缺陷也就是的氧的缺位(O vacancies)以及鋅的間隙(Zn interstitials) [4].,以光譜系統量測其穿透特性、及原子力顯微鏡(Atomic Force Microscope,AFM)觀察其表面微觀結構特性、以X光單晶繞射(X-Ray Diffractometer,XRD)系統觀察其結晶特性、以霍爾量測(Hall measurement)系統判斷其半導體基本參數,最後以AC-2量測其每個試片的功函數(work function),研究其和濺鍍的瓦數(power)、佈植的種類與其功函數的關係、並藉由薄膜材料中氧缺位導電機制來合理並成功的解釋上述所有量測及觀察到的現象。
目錄
第一章 序論.........................................................................................1
a. 背景及研究動機......................................................................1
b. 實驗目的..................................................................................3

第二章 量測系統及原理簡述.............................................................4
(A) 離子佈植簡述:.....................................................................4
a. 量測系統及原理概述..............................................................5
(B) 光激發光譜.............................................................................6
a. 光激發螢光法..........................................................................6
b. 光激發螢光量測原理..............................................................6
c. 光子在能帶間之躍遷型式:.....................................................7
d. 能隙隨溫度及摻雜濃度影響之變化......................................9
(C) 霍爾效應量測.......................................................................10
a. 霍爾效應量測法.....................................................................10
b. 霍爾效應量測原理.................................................................10
(D) 功函數的量測………………………………………………11
a. 功函數的量測法.....................................................................11
b. 功函數的量測原理.................................................................12

第三章 薄膜之電學量測之分析····························································13
(A) 霍爾量測………………………………………………………..13
(B) 電阻率量測………………………………………………………17

第四章 薄膜之光學量測及表面量測、結晶特性之分析……………19
(A) 光激發光譜量測···········································································19
(B) 表面特性量測···············································································22
(C) 穿透率量測···················································································24
(D) 折射率與消光係數的量測···························································26
(E) X光繞射量測·················································································27

第五章 薄膜之功函數量測之分析························································31
(A) 功函數量測··················································································31

第六章 傳輸線模型元件及量測分析元件製程………………………33
(A)薄膜成長製程·················································································34
(B)黃光微影製程················································································36
(C)光阻保護層及傳輸線模型矩形高台之蝕刻製程··························36
(D)電極之蒸鍍與濺鍍········································································37
(E)熱處理步驟·····················································································37
(F)試片特性量測··················································································38

第七章 結論····························································································39
參考文獻······························································································41
參考文獻:

[1].H. SHENG,1 N.W. EMANETOGLU,1 S. MUTHUKUMAR,2 B.V. YAKSHINSKIY,3 S. FENG,1 and Y. LU1, J.Electron Mater, Vol.32, p.9, April 1 2003

[2].Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl.Phys.Lett. Vol.77,p.11 , 11 SEPTEMBER 2000

[3].Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, and Tae-Yeon Seong , J.Appl.Phys.Vol.
94, p.6 ,15 SEPTEMBER 2003

[4].Y.G. Wanga, S.P. Laua,, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F. Yua, B.K. Taya , Journal of Crystal Growth Vol.259 p.335–342 , 31 July 2003

[5].Y.R. Ryu, S. Zhu,1, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W. White , Journal of Crystal Growth Vol.216 p.330-334 ,21 March 2000

[6] Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, IEEE Transactions, Vol.48 Issue:6 p.1065 -1069 , Jun 2001

[7] Takeshi Ohgaki, Naoki Ohashi, Yutaka Adachi and Hajime Haneda, Takaaki , Tsurumi , J.Appl.Phys.Vol.4 ,15 FEBRUARY 2003

[8].Ji-Myon Lee, Kyoung-Kook Kim, and Seong-Ju Park, Appl.Phys.Lett. Vol. 78, p.24 , 11 JUNE 2001

[9]Z. Q. Chen, S. Yamamoto, M. Maekawa, and A. Kawasuso , X. L. Yuan and T. Sekiguchi
J.Appl.Phys.Vol.94, p.8 ,15 OCTOBER 2003

[10]Hong Seong Kang, Jeong Seok Kang, Jae Won Kim, and Sang Yeol Lee , J.Appl.Phys.Vol.
95, p.3 ,1 FEBRUARY 2004

[11].Tsung-Hsin Chen,”Development for Advance High work Function ITO”, Department of Electronic Engineering Graduate School of Engineering Tohoku University,Sendai,Japan


[12]Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, and B. K. Tay , X. H. Zhang , H. H. Hng J.Appl.Phys.Vol.94,p.1 ,1 JULY 2003

[13].E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack,
K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann
Appl.Phys.Lett. Vol.82,p.22 ,2 JUNE 2003

[14].Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, and L. S. Wen
J.Appl.Phys.Vol.90, p.7,1 OCTOBER 2001

[15].Yasunori Morinaga,Keijiro Skuragi,Norifumi Fuijmura,Taichiro Ito , Journal of Crystal Growth Vol.174 p.691-695,1997

[16].Chin-Ching Lin and San-Yuan Chen , Appl.Phys.Lett. Vol.84,p.24 ,14 JUNE 2004

[17].S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, and T. Venkatesan , Appl.Phys.Lett. Vol. 75, p.25 , 20 DECEMBER 1999

[18].Aleksandra B. Djuris and Yu Hang Leung , Appl.Phys.Lett. Vol. 84,p.14 ,5 APRIL 2004

[19]Tae-Bong Hur, Gwang Soo Jeen, Yoon-Hwae Hwang, and Hyung-Kook Kim , J.Appl.Phys.Vol.
94, p.9 ,1 NOVEMBER 2003

[20]M. Miyakawa , K. Ueda, H. Hosono , Nuclear Instruments and Methods in Physics Research B Vol.191 p.173–177 ,2002

[21] Tetsuya Yamamotoa, Hiroshi Katayama-Yoshida , Physica B Vol.302–303 p.155–162 ,2001

[22]. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen , Appl.Phys.Lett. Vol. 84, NUMBER 4 ,26 JANUARY 2004

[23]V. V. Zalamai, V. V. Ursaki, E. V. Rusu, and P. Arabadji , I. M. Tiginyanu and L. Sirbu , Appl.Phys.Lett. Vol.84, p.25 ,21 JUNE 2004

[24] 江博仁,”矽離子佈植於p型氮化鎵之特性研究”,中央大學光電所,碩士論文 (2002)。


[25] 羅承曜,” 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究”,中央大學光電所,碩士論文 (2001)。

[26] 唐邦泰,”透明導電膜與氮化鎵接觸特性研究”,中央大學光電所,碩士論文 (2001)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊