跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 19:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周虹宇
研究生(外文):Hung-Yu Chou
論文名稱:生物晶片螢光檢測之光源模型探討
論文名稱(外文):Study of Light Source Model for Fluorescence Detection in Biochip
指導教授:楊宗勳楊宗勳引用關係
指導教授(外文):Tsung-Hsun Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:79
中文關鍵詞:螢光檢測生物晶片
外文關鍵詞:Lab-on-a-chipfluorescence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於生物技術突飛猛進的發展、再加上微機電系統技術與封裝技術不斷地持續的發展並漸趨成熟,因此跨領域整合式實驗室型生物晶片(Lab on a chip)的研究也隨之興起,並且已成為新世紀以來最為熱門的研究課題之一。
目前應用在生物晶片上的訊號偵測方法有許多種,例如:螢光檢測法、反射率量測法、電流檢測法和電位量測法等等,我們主要探討的是螢光檢測法,利用漸逝波(evanescent wave)的激發方式激發螢光,進而利用微光學元件調制螢光光源,而促成整個生物晶片檢測系統。
本文中,我們從系統基本的架構,包括經由不同的入射光所造成的漸逝波模擬和螢光初始光源模型的建立,一直到建立考慮散射效應的螢光光源模型以及初步的微小化收光元件之設計,而完整地建立出整個生物晶片檢測系統的雛型。未來,我們將可進一步更有效率地改進在微光學件上的設計,以完整建立整個生物晶片檢測系統。
Recently, according to the great progress in biotechnology and the miniaturization techniques in engineering, the development on the technology of lab on a chip becomes one of the most important subjects for the multi-discipline integration.
There are many signal detection methods applied on the biochip, such as the fluorescence detection method、the reflectance detection method、the conductimetric detection method and the potentiometric detection method etc. Here, we focus on the fluorescence detection method and utilize the evanescent wave to excite the fluorescence, then use micro-optic elements to modulate the fluorescent light source and promote the detective system of the biochip.
In this thesis, it has been established the fundamental construction of the miniature detection system including evanescent wave arising from different types of incident light and the initial fluorescence emission model to the fluorescence emission considered scattering effect and the preliminary work of lens design. In the future, it will be further improved on the work of micro-optical elements, including micro-grating that combines with the miniature detection system. Finally, we hope to build up the complete miniature detection system.
Chapter 1 Introduction to Lab-on-a-chip..............1
1-1 Introduction.....................................1
1-2 Laser Induced Fluorescence(LIF)..................6
1-3 Detection System Miniaturization.................8

Chapter 2 Properties of Fluorescence.................13
2-1 Introduction.....................................13
2-2 The Processes of Fluorescence Emission...........19
2-3 Absorption and Emission spectra..................19
2-4 Intensity of Fluorescence Emission...............21
2-5 Summary..........................................24

Chapter 3 Design of Miniature Detection System.......25
3-1 Total Internal Reflection(TIR) Configuration.....25
3-2 Evanescent Wave Excitation.......................27
3-3 Laser Induced Fluorescence Emission..............33
3-4 Light Scattering.................................35
3-5 Summary..........................................38

Chapter 4 Simulation Results.........................40
4-1 Evanescent Wave Excitation.......................40
4-2 Laser Induced Fluorescent Light..................42
4-3 Light Scattering.................................47
4-4 Micro-optic System...............................54
4-5 Summary..........................................70

Chapter 5 Future Work and Conclusion.................72
Reference............................................74
[1] S.C. Terry, G.H Jerman, J.B. Angell,”A gas chromatographic air analyzer fabricated on a silicon wafer”, IEEE Trans. Electron Devices. ED-26, 12, 1880-1886, 1979.

[2] M. Schena, “DNA Microarrays: A Practical Approach”, Oxford University Press, 2000.

[3] D.J. Harrison, A. Manz, Z. Fan, H. Lüdi and H.M. Widmer, Anal. Chem 64, 1926 (1992).

[4] D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser and A. Manz, Science 261, 895 (1993).

[5] K. Seiler, D.J. Harrison and A. Manz, Anal. Chem. 65, 1481 (1993).

[6] C.S. Effenhauser, A. Manz and H.M. Widmer, Anal. Chem. 65, 2637 (1993).

[7] S.C. Jacobson, A.W. Moore and J.M. Ramsey, Anal. Chem. 67, 2059, 1995.

[8] M.U. Kopp, A.J. de Mello, and A. Manz, Science, 280, 1046 (1998).

[9] R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline and J. P. Landers, Anal.Chem., 70, 4361–4368 (1998).

[10] E. T. Lagally, P. C. Simpson and R. A. Mathies, Sens. Actuators B, 63, 138–146 (2000).

[11] J. Khandurina, . E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote and J. M. Ramsey, Anal. Chem., 72, 2995–3000 (2000).

[12] Biospice: DNA microarray(http://biospice.lbl.gov/people/JKeasling/text.html)

[13] Science beat of BERKELEY LAB: microfluidic-chip (http://www.lbl.gov/Science-Articles/Archive/MSD-microfluidic-chip.html)

[14] Manz, A., Graber, N. Widmer, H.M., Miniaturized total chemical analyses systems. A novel concept for chemical sensing.”, Sens.Actuators, B Chem., B1(1-6), 244, 1990.

[15] M.A. Schwarz and P.C. Hauser, “Recent developments in detection methods for microfabricated analytical devices”, Lab on a Chip, 1, 1-6 (2001)

[16] Micronit: CE chip(http://www.micronit.nl/index.php? url=http://www.micronit.com/products/capillaryelectrophoresis.html)

[17] Astbury center: SPR (http://www.astbury.leeds.ac.uk/ Facil/spr.htm)

[18] AlgaewatchTM: Fluorometer
(http://www.gatgmbh.com/deutsch/produkte/fluorometrie/algaewatch/algaewatch_deu.htm)

[19] Jesús Cervantes-Martínez, Ricardo Flores-Hernández, Benjamín Rodríguez-Garay, and Fernando Santacruz-Ruvalcaba, “Detection of bacterial infection of agave plants by laser-induced fluorescence”, APPLIED OPTICS, Vol. 41, No.13, p.2541-2545, 1 MAY 2002.

[20] Yasunori Saito, Mitsuyoshi Kanoh, Ken-ichiro Hatake, Takuya D. Kawahara, and Akio Nomura,” Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring”, APPLIED OPTICS, Vol.37, No.3, p.431-437, 20 January 1998.

[21] Rand M. Wadkins, Joel P. Golden, Leo M. Pritsiolas, and Frances S. Ligler,“Detection of multiple toxic agents using a planar array immunosensor”, Biosensors & Bioelectronics, 13, No.3-4, 407-415 (1998).

[22] Chris A. Rowe-Taitt, Joel P. Golden, Mark J. Feldstein, John J. Cras, Karen E. Hoffman, Frances S. Ligler, “Array biosensor for detection of biohazards”, Biosensors & Bioelectronics, 14, 785–794 (2000).

[23] Mark J. Feldstein, Joel P. Golden, Chris A. Rowe, Brian D. MacCraith, and Frances S. Ligler, “Array Biosensor: Optical and Fluidics Systems”, Journal of Biomedical Microdevices 1:2, 139-153 (1999).

[24] Chris A.Rowe, Stephanie B. Scruggs, Mark J. Feldstein, Joel P. Golden, and Frances S. Ligler, “An Array lmmunosensor for Simultaneous Detection of Clinical Analytes”, Anal. Chem., 71, 433–439 (1999).

[25] H.P. Herzig, Micro-optics: Elements, systems and applications, Taylor & Francis, London 1997.

[26] S. Sinzinger and J. Jahns, Microoptics, Wiley-VCH, Singapore, 1999.

[27] Hong-Yuh Chou, Tsung-Hsung Yang, “Micro-optical System for Lab-on-a-Chip”, 科儀新知第二十五卷第六期, 22-29.

[28] J. Wilson and J. Hawkes, Optoelectronics: an introduction, p131-133, Prentice Hall, Third edition, 1998.

[29] Fluorescence imaging: principles and methods, Technical manual, Amersham pharmacia biotech.

[30] Haitinger, M., Fluoreszenz-Mikroskopie, Akademische Varlagsgesellschaft, Geest und Portig K.-G., Leipzig (1959). (http://www.olympusmicro.com/primer/lightandcolor/fluorointroduction.html)

[31] Olympus: fluorescence (http://www.olympusmicro.com/primer/lightandcolor/fluorointroduction.html)

[32] F.W.D ROST, ”Fluorescence microscopy”, Vol.1, p.1, CAMBRIDGE UNIVERSITY PRESS, 1992

[33] CHROM BIOS Molecular Cytogenetics: epi-fluorescence microscope (http://www.chrombios.com/WebFinals/AboutFISH/Microscope.html)

[34] University of lllinois at Chicago: confocal fluorescence microscope (http://icarus.cc.uic.edu/~swu5/Week%2015.htm)

[35] Olympus: fluorescence
(http://www.olympusmicro.com/primer/techniques/fluorescence/fluorescenceintro.html)

[36] Amersham Biosciences: Fluorescence (http://www4.amershambiosciences.com)

[37] The physics classroom: Total Internal Reflection (http://www.glenbrook.k12.il.us/gbssci/phys/Class/refrn/u14l3b.html)

[38] Olympus: fluorescence
(http://www.olympusmicro.com/primer/techniques/fluorescence/tirf/tirfintro.html)

[39] Hung-Yu Chou, Tsung-Hsun Yang, Jenq-Yang Chang, “Evanescent Gaussian and Bessel Beams for Biochips”, Proceedings of OPT 2003, Vol.Ⅱ, FH2-2, 555-557, 2003.

[40] 邱宗凱,錢正浩,連偉男,林奇宏, “全反射螢光顯微術於生物物理的應用”, p436-442, 物理雙月刊(廿四卷三期)2001年6月.

[41] Fadi I. Baida, Daniel Van Labeke and Jean-Marie Vigoureux, “Numerical study of the displacement of a three dimensional Gaussian beam transmitted at total internal reflection. Near-field applications”, J. Opt. Soc. Am. A, Vol. 17, No. 5, 858-866 (2000).

[42] Jean-Christophe Roulet,“Microoptical System for Fluorescence Detection in Chemical Microsystem”, Chapter 1, institut de microtechnique, Université de Neuchâtel, 2001.

[43] George G.Guilbault, PRACTICAL FLUORESCENCE, 2nd edition, Marcel Dekker, 1990.

[44] Ashutosh Sharma and Stephen G. Schulman, “Introduction to Fluorescence Spectroscopy”, New York, J. Wiley, 1999.

[45] Paras N. Prasad, INTRODUCTION TO BIOPHOTONICS, Chapter 6, A JOHN WILEY & SONS, INC., PUBLICATION, 2003.

[46] Niemz, M. H., Laser–Tissue Interactions, Springer-Verlag, Berlin, 1996.

[47] Van de Hulst, H. C., Light Scattering by Small Particles, Dover, New York, 1957.

[48] Bohern, P. W. and S. C. Hill, Light Scattering by Particles:Computational Methods, World Scientific Publishing, Singapore, 1983.

[49] Eugene Hecht, OPTICS, p.92, Addison Wesley, four edition, 2002.

[50] Fluorescence imaging: principles and methods, Technical manual, Amersham pharmacia biotech.

[51] Almazoptics: KV optical grade fused quartz
(http://www.almazoptics.com/KV.htm)

[52] Mathews, Van Holde, Ahern, Biochemistry third edition, p94.

[53] Badri P. Maliwal, Jozef Kusba and Joseph R. Lakowicz “Fluorescence Energy Transfer in One Dimension: Frequency-Domain Fluorescence Study of DNA-Fluorophore Complexes”, Biopolymers, Vol. 35, 245-255 (1995).

[54] Olympus: beamsplitter
(http://www.olympusmicro.com/primer/lightandcolor/prismsandbeamsplitters.html)

[55] WataruWatanabe, Daisuke Kuroda, and Kazuyoshi Itoh, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses”, OPTICS EXPRESS, p.978-983, Vol.10, No.19, 23 September 2002.

[56] Masamitsu Haruna, Masanobu Takahashi, Kohji Wakahayashi, and Hiroshi Nishihara, “Laser beam lithographed micro-Fresnel lenses”, APPLIED OPTICS, p.5120-5126, Vol.29, No.34, 1 December 1990.

[57] Teruhiro Shiono, Kentaro Setsune, Osamu Yamazaki, and Kiyotaka Wasa,“Rectangurlar-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography”, APPLIED OPTICS, p.587-591, Vol.26, No.3, 1 February 1987.

[58] Hyperphysics: fresnel lens (http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/fresnellens.html)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top