跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳怡姍
研究生(外文):Yi-Shan Wu
論文名稱:2.5Gbps雷射二極體驅動電路及2.4/5.2GHz雙頻帶射頻接收器之研究
論文名稱(外文):The Study on 2.5Gbps Laser Driver and 2.4/5.2GHz Dual Band RF Receiver
指導教授:邱煥凱
指導教授(外文):Hwann-Kaeo Chiou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:混頻器低雜訊放大器雷射驅動電路
外文關鍵詞:MixerLaser DriverLNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩個部分,第一個部分為使用UMC 0.18µm CMOS製程研製2.5Gbps雷射二極體驅動電路,所設計之2.5Gbps雷射二極體驅動電路包括:2.5Gbps雷射二極體驅動電路、2.5Gb/s低電壓差動訊號雷射驅動電路;而在第二部分為使用tsmc 0.18µm CMOS製程研製2.4/5.2GHz雙頻射頻接收器,所設計之CMOS 射頻積體電路包括:2.4/5.2GHz雙頻低雜訊放大器、5.2GHz微混頻器。
在第一部分中,所設計之晶片皆採用高頻探針方式進行量測。其中2.5Gbps雷射二極體驅動電路量測結果如下:傳輸速率可達3Gbps、調變電流為34mA、增益約為10dB、輸出返射損耗小於-10dB、最大輸出波形約為0.85Vpp。而在2.5Gb/s低電壓差動訊號雷射驅動電路,其量測結果如下:傳輸速率可達5Gbps、調變電流為3mA、增益約為11.5dB、輸入返射損耗與輸出返射損耗皆小於-10dB、最大輸出波形約為0.1Vpp。
論文的第二部分中,2.4/5.2GHz雙頻低雜訊放大器晶片採用打線至玻璃纖維基板上進行量測,其結果如下:在2.4GHz增益約為5.03dB、輸入返射損耗約為5.68dB、輸出返射損耗約為10.93dB;而在5.2GHz增益約為4.27dB、輸入返射損耗約為5.32dB、輸出返射損耗約為25.41dB。而5.2GHz微混頻器其射頻頻率為5.2GHz、本地振盪頻率為5.19GHz,混頻後可得中頻頻率為10MHz,晶片量測採用高頻探針方式,其結果如下:當本地振盪端功率為-8dBm時,其轉換增益為4.95dB、輸入1dB壓縮點為-8dBm、輸出與輸入三階交互調變交錯點分別約為-5dBm及-3dBm、本地振盪端至射頻端間隔離度約為32.78dBm、本地振盪端至中頻端間隔離度約為26.27dBm、射頻端至中頻端間隔離度約為22.56dBm。
This thesis distribute into two parts. The first part of the thesis is the development of 2.5Gbps laser driver in a UMC 0.18µm CMOS process. The design of 2.5Gbps laser driver circuit includes a 2.5Gbps laser driver and a 2.5Gbps low voltage differential signals laser driver. The second part of the thesis is the development of 2.4/5.2GHz dual-band RF receiver in a tsmc 0.18µm CMOS process. The design of CMOS RF receiver circuit includes a 2.4/5.2GHz dual-band low noise amplifier and 5.2GHz micromixer.
The chip is on-chip measurement in first part. The 2.5Gbps laser driver exhibits a data rate of 3Gbps, modulation current of 34mA, gain of 10dB, output return loss smaller than -10dB and maximum output voltage swing of 0.85 Vpp. The 2.5Gbps low voltage differential signals laser driver exhibits a maximum data rate of 5Gbps, modulation current of 3mA, gain of 11.5dB, input and output return loss smaller than -10dB and maximum output voltage swing of 0.1 Vpp.
The 2.4/5.2GHz dual-band low noise amplifier is using the method of bonding die to printed circuit board. The 2.4/5.2GHz dual-band low noise amplifier exhibits a linear gain of 5.03dB, input return loss of 5.68dB and output return loss of 10.95dB at 2.4GHz, and a linear gain of 4.27dB, input return loss of 5.32dB and output return loss of 25.41dB at 5.2GHz. The 5.2GHz micromixer is using the method of on-chip. The 5.2GHz micromixer exhibits a conversion gain of 4.95dB, input 1dB compression point of -8dBm, output third-order inter-modulation intercept point of -5dBm, input third-order inter-modulation intercept point of -3dBm, local oscillator to radio frequency isolation of 32.78dB, local oscillator to intermediate frequency isolation of 26.27dB, radio frequency to intermediate frequency isolation of 22.56dB.
第一章 導論 1
§1­1 研究動機 1
§1­2 論文綱要 2
第二章 2.5Gbps雷射二極體驅動電路 3
§2­1 光纖通訊之簡介 3
§2­2 光纖通訊系統 4
§2­3 雷射二極體之特性 6
§2­4 雷射二極體驅動電路之特性 11
§2-5 2.5Gbps雷射二極體驅動電路 13
§2-5-1 2.5Gbps雷射二極體驅動電路之電路架構 13
§2-5-2 2.5Gbps雷射二極體驅動電路之模擬與量測結果 14
§2-5-3 2.5Gbps雷射二極體驅動電路之討論 20
§2-6 2.5Gbps低電壓差動訊號雷射驅動電路 21
§2-6-1 2.5Gbps低電壓差動訊號雷射驅動電路之電路架構 22
§2-6-2 2.5Gbps低電壓差動訊號雷射驅動電路之模擬與量測結果 25
§2-6-3 2.5Gbps低電壓差動訊號雷射驅動電路之討論 33
第三章 CMOS RFIC射頻接收機 34
§3-1 簡介 34
§3-2 射頻前端CMOS RFIC接收機之架構 35
§3-3 2.4GHz與5.2GHz之雙頻帶低雜訊放大器 39
§3-3-1 雙頻帶低雜訊放大器的簡介與設計動機 39
§3-3-2 雙頻帶低雜訊放大器之電路架構 42
§3-3-3 雙頻帶低雜訊放大器之模擬與量測結果 45
§3-3-4 雙頻帶低雜訊放大器之討論 52
§3-4 使用CMOS所設計之降頻微混頻器 55
§3-4-1 混頻器之簡介與設計動機 55
§3-4-2 5.2GHz微混頻器之電路架構 65
§3-4-3 5.2GHz微混頻器之模擬與量測結果 70
§3-4-4 5.2GHz微混頻器之討論 79
第四章 結論及其未來研究方向 82
參考論文 84
[1]J. C. Palais, Fiber Optic Communications, Prentice Hall, 1998.
[2]H. Djahanshahi, F. Hannsen, C. A. T. Salama, “Gigabit-per-Second, ECL-Compatible I/O Interface in 0.35-um CMOS,” IEEE JSSC, vol.34, no.8, pp.1074-1083, Aug. 1999.
[3]Behzad Razavi, Deaign of Integrated Circuits for Optical Communications Technology, McGRAW Hill, 2003.
[4]High Speed Characteristics of VCSELs, J. Tatum, D. Smith, J. Guenter and R. Johnson, Honeywell’s MICRO SWITCH Division.
[5]“Interfacing Maxim Laser Driver with Laser Diodes,” Application Note of MAXIM, 2000.
[6]Rodney S. Tucker, “High Speed Modulation of Semiconductor Lasers,” Journal of Lightwave Technology, vol.LT-3 no.6, pp.1180-1192, Dec. 1985.
[7]F. Delpiano, R. Paoletti, P. Audagnotto and M. Puleo, “High Frequency Modeling and Characterization of High Performance DFB Laser Modules,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B, vol.17 no.3, pp.412-417, Aug. 1994.
[8]Jesper Riishoj, “2.5Gb/s Laser Driver GaAs IC,” Journal of Lightwave Technology, vol.11 no.7, pp.1139-1146, Jul. 1993.
[9]I-Chen Yao, Chung-Chen Kuo, Wei-Zen Chen, and Shyh-jye Jou, “1.25Gb/s Laser Driver,” 12th VLSI/CAD Symposium, 2001 Aug.
[10]Hans Martin Rein, “Multi-Gigabit Per-Second Silicon Bipolar IC’s for Future Optical-Fiber Transmission Systems,”IEEE JSSC, vol.23 no.3, pp.664-675, June 1988.
[11]Z.-G. Wang, M. Berroth, U. Nowotny, W. Gotzeina, P. Hofmann, A. Hulsmann, G. Kaufel, K. Kohler, B. Raynoe, and J.Schneider, “15Gbit/s Integrated Laser Diode Driver Using 0.3um Gate Length Quantum Well Transistor,” Electronics Letters, vol. 28, no.3, pp. 222-224, Jan. 1992.
[12]L. P. Chen, M. Y. Li, C. J. Chang-Hasnain, and K. Y. Lau, “ A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photonics Technology Letter, vol. 9, no.7, pp.997-999, July 1997.
[13]Lee, K. et all, “A Jitter-tolerant 4.5Gb/s CMOS interconnect for Digital Display,” Proc. Of IEEE ISSCC 1998.
[14]Digital Display Interface specification revision 1.0 1999.
[15]Electrical Characteristics of Balanced Voltage Digital Interface Circuits (ANSI/TIA/EIA-422-B-94) (R2000) 01, May 1994.
[16]Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems (ANSI/TIA/EIA-485-A-98) 01, Mar 1998.
[17]“IEEE standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface,” IEEE Std. 1596.3-1996. 31 July 1996.
[18]Peter X., et all, “A 500Mb/s. 20-Channel CMOS Laser Diode Array Driver for a Parallel Optical Bus,” Proc. Of IEEE ISSCC 1997.
[19]Bazes, M., et all, “Two Novel Fully Complementary Self-Biased CMOS Differential Amplifiers,” IEEE J. Solid-State Circuits, vol.26, pp.165-168,Feb.,1991.
[20]Jaeseo Lee, et all, “Design and Implementation of CMOS LVDS 2.5Gb/s Transmitter and 1.3Gb/s Receiver for Optical Interconnections,” IEEE Circuits and Systems, ISCAS 2001, vol.4, pp.702-705, May, 2001.
[21]“Maintaining Average Power and Extinction Ratio, Part1,” Application Note of MAXIM, 2002.
[22]N. Haralabidis and G. Halkias, “A CMOS Laser Driver with Independently Adjustable DC and Modulation Currents for Data Rates Up to 2.5Gb/s,” IEEE Circuits and Circuits and Systems, ISCAS 2000, vol.5, pp.425-428, May, 2000.
[23]黃凡修,“10Gb/s光纖通訊系統傳送/接收電路模擬與實作,”碩士論文, 國立中央大學, 2003.
[24]姚懿珍,“雷射二極體驅動電路,”碩士論文, 國立中央大學, 2001.
[25]Rehzad Razavi, RF Microelectronics, Prentice-Hall, Inc., 1998.
[26]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[27]C. Y. Cha and S. G. Lee, “A Low Power, High Gain LNA Topology,” Int. Microwave and Millimeter Wave Technology conf., pp. 420-423, 2000.
[28]H. Samavati, H. R. Rategh and T. H. Lee, “A 5-GHz CMOS Wireless Lan Receiver Front End,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[29]H. Hashemi and A. Hajimiri, “Concurrent Multiband Low-Noise Amplifiers-Theory, Design, and Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 288-301, Jan 2002.
[30]Tommy K. K. Tsang and Mourad N. El-Gamal, “Dual-Band Sub-1V COMS LNA for 802.11A/B WLAN Applications,” ISCAS Circuits and System, vol. 1, pp. 217-220, May 2003.
[31]S. M. Yim and Kenneth K. O, “Demonstration of a Switched Resonator Concept in a Dual-Band Monolithic CMOS LC-Tuned VCO,” IEEE Custom Integrated Circuits Conference , pp. 205-208, May 2001.
[32]J. L. Tham et al., “A 2.7-V 900-MHz/1.9-GHz Dual-Band Transceiver IC for Digital Wireless Communication,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 286-291, March 1999.
[33]K. L. Fong, “Dual-Band High-Linearity Variable-Gain Low-Noise Amplifiers for Wireless Communication,” ISSCC Digest of Technical Papers, pp. 224-225, 1999.
[34]S. Wu. and B. Razavi, “A 900-MHz/1.8-GHz CMOS Receiver for Dual-Band Applications,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 2178-2185, December 1998.
[35]J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” IEEE Journal of Solid-State Circuits, vol. 36, Issue: 8, pp. 1198-1204, Aug. 2001.
[36]Tadao Nakagawa, Munenari Kawashima, Hitoshi Hayashi and Katsuhiko Araki, “A 0.9-2.5 GHz wideband direct conversion receiver for multi-band applications,” IEEE GAS Digest, pp. 37-40, 2001.
[37]A. A. Abidi, “Direct-conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-State Circuits, vol. 30, No. 12, pp. 1399-1410,December 1995.
[38]B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage.” IEEE J. Solid-State Circuits, Vol. 32, pp. 1412-1423, Sept. 1997.
[39]J. Durec and E. Main, “A linear class AB single-ended to differential transconverter suitable for RF circuit.” IEEE MTT-S Dig., pp. 1071-1074, 1996.
[40]C. C. Meng, S. S. Lu, M. H. Chiang and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology.” Electronics Letters, Vol. 39 Issue: 8, April 2003.
[41]C. C. Meng, S. K. Xu,; T. H. Wu,; M. H. Chao and G. W. Huang, “A high isolation CMFB Downconversion Micromixer using 0.18-um deep n-well CMOS technology.” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Vol.8-10, pp. 619-622, June 2003.
[42]C. Y. Wang, S. S. Lu and C. C. Meng, “Wideband impedance matched GaInP/GaAs HBT Gilbert micromixer with 12 dB gain.” ASIC, Proceedings, IEEE Asia-Pacific Conference on, Vol. 6-8, pp. 323-326, Aug. 2002.
[43]黃秋皇,“應用於IEEE 802.11b/g無線區域網路之2.4GHz CMOS射頻接收機,”碩士論文, 國立成功大學, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top