跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 02:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賀康瑋
研究生(外文):Kang-Wei Ho
論文名稱:線上視訊於IP網路可變延遲環境下之訊務平順化研究
論文名稱(外文):On-line Video Traffic Smoothing for IP Network with Variable Delay
指導教授:張寶基
指導教授(外文):Pao-Chi Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:平順化線上即時視訊訊務預測網路延遲
外文關鍵詞:traffic predictiononline videosmoothingdelay
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
訊務平順化 (Traffic smoothing)是視訊傳輸前,充分考量網路服務能力與使用者資源,有效減少視訊串流叢集性與頻寬浪費的重要技術之一。在視訊壓縮標準規範中,如MPEG視訊標準的Video Buffering Verifier (VBV)、或H.263視訊標準的Hypothetical reference decoder (HRD),對於所提供的串流順暢傳輸機制,是基於固定的傳輸率與已知的使用者緩衝區大小的假設下予以建議,如此受侷限的假設環境,難以適用於現今廣泛、複雜的網路環境與眾多視訊傳輸應用的需求。因此,一個能提供有效平整訊務、適應網路環境變化、兼顧使用者播放能力,甚至適用於即時性視訊傳輸的應用,如線上球賽轉播、線上監視系統…等之視訊傳輸服務技術,已成為迫切研究發展的議題。
在本篇論文中,針對線上視訊服務提出一套有效訊務平順化之整合方案,其中包含視訊訊務預測以及因應可變延遲網路之智慧型線上平順調整機制。有別於其他相關文獻,本論文突破線上訊務平順化技術的瓶頸,具有更低的傳輸率變動與保有低峰值頻寬需求的優點,更重要地,具有對抗網路延遲之能力。實驗結果顯示,傳輸率變動造成的協商次數大幅降低最多可達80%,改善之傳輸率規劃可有效地因應網路的延遲,使得畫面丟棄率大幅降低約20%以上,進而有效提升使用者播放的視訊品質。
The technique of on-line video traffic smoothing is a significant method to improve the network BW utilization and reduce the burstiness characteristic of live video data. An efficient traffic smoothing scheme should not only consider the characteristics of video coding, but also consider the QoS capacity of IP network and the limitation of server and client buffer space. Regarding the methods of delivering video data used by current video coding standards, a constant transmission rate and a fixed network delay are assumed whether the Hypothetical Reference Decoder (HRD) in H.263 or the video buffering verifier in MPEG is considered. These assumptions are quite rigid and unrealistic due to the variety of current network environments, especially for live on-line video applications.
Therefore, this paper proposes an Integrated On-line traffic Smoothing (IOS) system that consists of the Long-Span Prediction (LSP) scheme, the Smart Hopping (SH) approach, the Middle Tracking (MT) method, and the Dynamic Bound Adjustment with network Delay Tracking (DBA-DT) strategy. Compared with traditional schemes, the proposed IOS can provide more efficient smoothing performances with low variance of transmission rates and low peak rate requirement. More importantly, IOS provide the robust capability against the dynamic network delay. Simulation results reveal that IOS can effectively reduce the number of negotiations with network up to 80% and low the frame loss rate up to 20%.
第一章 緒論 1
1.1研究背景與動機 1
1.2相關研究 3
1.3研究方法與貢獻 5
1.4論文架構 6
第二章IP網路上的視訊傳輸基本介紹 8
2.1 MPEG-4視訊壓縮技術 10
2.1.1 MPEG視訊編碼原理 10
2.1.1.1 畫面內編碼(Intra-frame Coding) 11
2.1.2 MPEG-4加強以及新增功能 16
2.2線上即時視訊訊務平順傳輸技術 23
2.2.2最佳化的預先儲存視訊串流傳輸排程 26
2.2.3線上即時訊務的移動視窗平順器 (OS-SLWIN) 27
2.2.4動態調整視窗移動距離的機制 (OS-DSW) 28
2.3可提供服務品質的網路技術 30
2.3.1網路資源保留協定(Resource Reservation Protocol;RSVP) 30
2.3.2 差別式服務(Differentiated Services ;Diffserv) 32
2.4重新協商固定位元率 34
第三章 整合型線上即時訊務平順器 (IOS) 35
3.1線上即時訊務平順器的時間關係分析 37
3.1.1緩衝區限制的意義與考量 38
3.1.2加入畫面預測的時機 39
3.2即時訊務遠程預測 (Long-Span Prediction;LSP) 40
3.2.1 LSP於畫面間的線性關係 41
3.2.2 LSP預測距離q與平順器預測距離w的對應關係 42
3.3即時訊務遠程預測與視窗平順器的配合 43
3.3.1 LSP的預測誤差判斷 43
3.3.2 改良式動態視窗移動距離 46
第四章 線上即時視訊傳輸於網路延遲之對策 49
4.1 整合型線上即時視訊平順器於抗網路延遲之機制 50
4.1.1確保使用者緩衝區半數存量之平順演算 50
4.1.2降低峰值頻寬需求 52
4.2 在IP網路可變延遲環境下的傳輸模型與分析 54
4.2.1傳輸與接收時序 55
4.2.2視訊串流經網路傳輸後所面臨的狀況分析 57
4.3 接收端對網路延遲之對策 57
4.3.1延遲訊息回饋 57
4.2.2接收端使用者緩衝區的監測 58
4.4 伺服器對網路延遲之對策 60
4.4.1網路延遲估算 61
4.4.2 追蹤網路延遲之動態邊限調整於IOS 61
4.4.3 主動式畫面刪減機制 64
第五章 實驗結果與討論 65
5.1模擬環境說明 65
5.2模擬用視訊序列及相關參數設定 69
5.3固定網路延遲之線上視訊訊務平順化效能 70
5.3.1 OS-DSW平順器 70
5.3.2 OS-DSW+LSP平順器 71
5.3.3 OS-DSW+LSP+SH平順器 73
5.4 平順器於IP網路可變延遲環境下之效能 75
5.4.1 IOS without DBA-DT平順器 76
5.4.2 IOS平順器 80
第六章 結論 83
參考文獻 84
附錄A 其它數據資料 87
[1]ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Model version 18.0,” N3908, Jan. 2001.
[2]ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC 14496-2: 2001/COR2,” N5158, Oct. 2002.
[3]ISO/IEC JTC1/SC29/WG11, “MPEG-4 Visual: List of Problems Reported,” N5161, Oct. 2002.
[4]S. Sen, L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley, “On-line Smoothing of Variable-Bit-Rate Streaming Video,” IEEE Trans. Multimedia, vol. 2, no. 1, Mar. 2000.
[5]M. Grossglauser, S. Keshav, and D. Tse, “RCBR:A Simple and Efficient Service for Multiple Time-scale Traffic,” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 741-755, Dec. 1997.
[6]D. Loguinov and H. Radha, “Effects of Channel Delays on Underflow Events of Compressed Video Over the Internet,” IEEE ICIP, Sep. 2002.
[7]A. M. Adas, “Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model,” IEEE/ACM Trans. Networking, vol. 6, no. 5, pp. 635-644, Oct. 1998.
[8]S. J. Yoo, “Efficient Traffic Prediction Scheme for Real-Time VBR MPEG Video Transmission Over High-Speed Networks,” IEEE Trans. Broadcasting, vol. 48, no. 1, pp. 10-18, Mar. 2002.
[9]Z. He, and S. K. Mitra, “Optimum Bit Allocation and Accurate Rate Control for Video Coding via ρ-Domain Source Modeling,” IEEE Trans. Circuits and Syst. Video Technol., vol. 12, no. 10, pp. 840-849, Oct. 2002.
[10]楊儒堯, “即時性視訊訊務預測與平寬協商機制於具服務品質保證之網路,” 國立中央大學電機工程研究所碩士論文, 中華民國九十二年六月。
[11]J. Feng, and K. T. Lo, “A Simple Hierarchical Traffic Model for VBR MPEG Video,” Performance, Computing and Communications, IPCCC '98., IEEE International, no. 16-18, pp.147 – 153, Feb. 1998.
[12]K. Chandra, and A. R. Reibman, “Modeling One- and Two-Layer Variable Bit Rate Video,” IEEE/ACM Trans. Networking, vol. 7, no. 3, June 1999.
[13]J. Zhang and J. Y. Hui, “Static and Dynamic Resource Allocation Algorithms for Real-Time VBR Video Transmissions in Multimedia Networks,” Information, Communications and Signal Processing, vol. 3, no. 9-12, pp. 1657 –1662, Sept. 1997.
[14]M. Wu, R. A. Joyce, H. S. Wong, L. Guan, and S. Y. Kung, “Dynamic Resource Allocation via Video Content and Short-Term Traffic Statistics,” IEEE Trans. Multimedia, vol. 3, no. 2, pp. 186-199, Jun. 2001.
[15]J. D. Salehi, Z. L. Zhang, J. Kurose, and D. Towsley “Supporting Stored Video: Reducing Rate Variability and End-to-end Resource Requirements Through Optimal Smoothing,” IEEE/ACM Trans. Networking, vol. 6, no. 4, pp. 397-410, Aug. 1998.
[16]J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsley, “Online Smoothing of Live, Variable-Bit-Rate Video,” Proceedings of the IEEE 7th International Workshop on, pp. 235 - 243, 19-21 May 1997.
[17]S. Sen, J. L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley, “Online Smoothing of Variable-Bit-Rate Streaming Video,” IEEE Trans. Multimedia, vol. 2, no. 1, March 2000.

[18]R. I. Chang, “Dynamic Window-Based Traffic-Smoothing for Optimal Delivery of Online VBR Media Streams,” ICPADS Electronic Edition (IEEE Computer Society DL) pp. 127-134, 2000.
[19]J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard, Chapman & Hall, 1997.
[20]R. Talluri, “Error-Resilient Video Coding in the ISO MPEG-4 Standard,” IEEE Commun. Mag., vol. 36, no. 6, pp. 112-119, Jul. 1998.
[21]“Annex C, video buffering verifier,” in Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Video (MPEG-2/H.262), 2000, ISO/IEC 138 180-2.
[22]R. Braden, L.Zhang, Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.
[23]S.Shenker, C.Partidge, and R. Guerin, “Specification of Guaranteed Quality of Service,” RFC 2212, Sep. 1997.
[24]Y. Bernet, J. Binder, S. Blake, M. Carlson, S. Keshav, E. Davies, B. Ohlman, D. Verma, Z. Wang, and W. Weiss, “A Framework for Differentiated Services,” Internet Draft, draft-ietf-diffserv- framework 01.txt, Oct. 1998.
[25]S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for Differentiated Services,” RFC2475, Internet Engineering Task Force (IETF), Dec.1998.
[26]S. Wenger. (2001) Common Conditions for Wire-Line, Low Delay IP/UDP/RTP Packet Loss Resilient Testing. [Online]. Available: ftp://ftp.imtc-files.org/jvt-experts/0109_San/VCEG-N79r1.doc
[27]D. Gross and C. M. Harris “Fundamentals of Queueing Theory, ” second edition, 1985.
[28]R. T. Sheu and J. L. C. Wu, “Performance Analysis of Rate Control with Scaling QoS Parameters for Multimedia Transmissions,” IEE Proc.-Commun., vol. 150, no. 5, Oct. 2003.
[29]Q. Zhang, W. Zhu, and Ya-Qin Zhang “Resource Allocation for Multimedia Streaming Overthe Internet,” IEEE Trans. Multimedia, vol. 3, no. 3, Sep. 2001.
[30]R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin “Resource ReSerVation Protocol (RSVP) --Version 1 Functional Specification” RFC2205 , Network Working Group, Sept. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top