跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許哲溢
論文名稱:鹽分逆境下多元胺對菩提藻葉狀體的紅藻澱粉降解酵素活性之影響
論文名稱(外文):Effect of polyamine on the degrading enzymes of floridean starch in the red algae Grateloupia filicina under salt stress
指導教授:林忠毅林忠毅引用關係王瑋龍王瑋龍引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:菩提藻鹽分逆境紅藻澱粉降解酵素多元胺合成抑制劑
相關次數:
  • 被引用被引用:1
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:1
本研究以菩提藻(Grateloupia filicina)葉狀體(thallus)為材料,探討其在晝夜週期、長期暗處理和鹽分逆境下,多元胺與紅藻澱粉代謝間的相關。光照期和黑暗期各為12小時的晝夜週期試驗中,菩提藻葉狀體在光照初期的紅藻澱粉含量無變化,可溶性糖和putrescine(Put)的含量與兩種紅藻澱粉降解酵素(α-glucosidase(EC 3.2.1.20)和phosphorylase(EC 2.4.1.1))的活性皆下降,蛋白質大幅上升。進入黑暗期後,紅藻澱粉與蛋白質含量下降,可溶性糖略微降低,Put含量與兩種紅藻澱粉降解酵素的活性都增加,Put含量在第20小時達高峰值。長期暗處理試驗中,紅藻澱粉和蛋白質的含量與phosphorylase的活性皆呈現下降趨勢,可溶性糖含量在第四天後才開始下降,Put含量和α-glucosidase的活性在暗處理前三天略微上升,其後迅速下降。

鹽分逆境的試驗採用15 ‰為低鹽逆境,45 ‰為高鹽逆境,控制組鹽度為30 ‰,並外加Put與其合成抑制劑(D-arginine (D-Arg)和methylornithine(MO))。經此處理24小時後,再移至無外加Put及其合成抑制劑的培養液中培育兩星期,結果顯示45 ‰的鹽度會抑制菩提藻葉狀體的生長,提升可溶性糖與Proline的含量;鹽度15 ‰的相對生長速率和各內含物的變化都與控制組相似。Put合成抑制劑D-Arg可顯著抑制Put含量並抑制相對生長速率,MO則無處理效應。在45 ‰鹽度下外加Put可使相對生長速率高於控制組。此外,45 ‰鹽度下紅藻澱粉降解酵素之活性與可溶性糖含量亦受D-Arg抑制,但Proline的含量增加。有鑑於24小時短期處理效應的顯著性可能會隨時間而降低,進一步於30 ‰和45 ‰兩鹽度下外加Put與其合成抑制劑。於24小時後立即分析其生理變化,結果除了phosphorylase的活性無處理效應外,Put、紅藻澱粉、可溶性糖、Proline的含量與α-glucosidase活性之變化均比兩週後才分析之效應明顯。

綜合上述結果,自晝夜週期和長期暗處理試驗可發現Put含量變化與紅藻澱粉降解酵素活性變化有一致性,在鹽分逆境和外加Put及其合成抑制劑的試驗中,可進一步證實Put可調節紅藻澱粉降解酵素的活性以促進紅藻澱粉的分解。
Thallus of Grateloupia filicina was used for investigating the correlation of polyamines and metabolism of floridean starch under a photoperiod, a long-term darkness and two salt stress(15 ‰, 45 ‰). In photoperiod experiment which was under intermittent illumination of 12 hr light and 12 hr darkness, floridean starch level was found unchanged at the beginning of the light period. Soluble sugar, putrescine (Put) content and activity of two floridean starch degrading enzyme (α-glucosidase (EC 3.2.1.20) and phosphorylase (EC 2.4.1.1)) evidently decreased simultaneous, and protein content obviously increased. During the following dark period, there was significantly declined in floridean starch and protein content, and slightly decreased in soluble sugar. On the contrary, Put content and activity of two floridean starch degrading enzyme remarkably increased, and Put level was accumulated to a maximum value(123.76±4.46 nmol/Fw g) at the 20th hr of photoperiod.The experiment of long-term darkness indicated floridean starch and protein content, phosphorylase activity showed a declined pattern, soluble sugar decreased at the 4th day, Put content and α-glucosidase activity slightly raised during the first 3 days of darkness, and then rapidly declined.

In the experiment of salt stress used 15 ‰ seawater as hyposaline stress, 45 ‰ seawater as hypersaline stress and 30 ‰ seawater as control. Thallus was treated with Put and it’s synthetic inhibitors (D-arginine (D-Arg) and methylornithine(MO)) for 24 hr, then removed to cultural medium without Put and it’s synthetic inhibitors. The results indicated growth rate reduced, soluble sugar and protein increased at 45 ‰ salinity. The change of specific growth rate and ingredients at 15 ‰ were similar to control. Put synthetic inhibitor, D-Arg, could significantly decrease Put content and specific growth rate. There wae no effect in MO. At 45 ‰ salinity, the specific growth rate of thallus treated with Put was highter than at 30 ‰ salinity. In addition, activity of floridean starch degrading enzyme and soluble sugar were inhibited by D-Arg, and increaseing proline level at 45 ‰. Due to 24 hr short-term significant treatment effect may decline with time,and an additional Put and it’s synthetic inhibitor were added to the medium of 30 ‰ and 45 ‰ salinity, and immediately, analysis it’s physiological change after 24 hr. The results indicated phosphorylase activity showed no significantly different, and α-glucosidase activity, Put, floridean starch, soluble sugar and protein content were more significant than 24 hr short-term treatments.

As a whole, after photoperiod and long-term darkness treatments, change in Put content was consistent with the activity of floridean starch degrading enzyme. In the experiment by adding Put and synthetic inhibitors under salt stress were proved that Put may regulate activity of floridean starch degrading enzyme, and to stimulate the floridean starch degradation.


Key words:
Grateloupia filicina、salt stress、floridean starch、floridean starch degrading enzyme、proline、polyamine、polyamine synthetic inhibitors
縮寫表……………………………………………………………………1
英文摘要…………………………………………………………………2
中文摘要…………………………………………………………………4
壹、前言…………………………………………………………………6
貳、前人研究……………………………………………………………8
一、菩提藻的生活史與培養技術…………………………………8
二、紅藻澱粉的代謝途徑之相關研究……………………………9
三、多元胺的代謝與功能…………………………………………14
(一)多元胺的代謝………………………………………….15
(二)多元胺的功能………………………………………….16
四、鹽分逆境對海生藻類生長的影響……………………………19
參、材料與方法…………………………………………………………25
一、菩提藻絲狀體(filament)的來源與培養條件………………25
二、菩提藻葉狀體(thallus)的誘導……………………………….25
三、試驗方法………………………………………………………26
1.菩提藻在晝夜週期下之生理變化的觀察……………….26
2.菩提藻在暗處理下之生理變化的觀察………………….26
3.菩提藻在鹽分逆境下外加put及其合成抑制劑後的生理變化…………………………………………………………26
(1)鹽分逆境對菩提藻葉狀體的相對生長速率之影響….26
(2)外加put與其合成抑制劑對菩提藻葉狀體的相對生長速率及Put含量之影響……………………………27
(3)鹽逆境下外加put和其合成抑制劑對菩提藻葉狀體的澱粉代謝之影響…………………………………. 28
四、分析方法………………………………………………………29
1.可溶性糖與蛋白質含量的分析…………………………. .29
2.紅藻澱粉含量的分析……………………………………. .29
3.紅藻澱粉降解酵素活性的分析…………………………. .30
4.多元胺含量的分析………………………………………. .31
5.脯胺酸含量的分析………………………………………. .32
五、統計方式………………………………………………………33
肆、結果…………………………………………………………………34
一、菩提藻在晝夜週期下之生理變化的觀察……………………34
二、菩提藻在暗處理下之生理變化的觀察………………………39
三、菩提藻在鹽分逆境下外加put及其合成抑制劑後的生理變化……………………………………………………………..43
伍、討論…………………………………………………………………63
一、菩提藻在光照週期下的生理變化……………………………63
二、菩提藻在暗處理下的生理變化………………………………65
三、菩提藻在鹽分逆境下外加put及其合成抑制劑後的生理變化……………………………………………………………. .67
陸、結語…………………………………………………………………76
柒、參考文獻……………………………………………………………77
捌、附錄…………………………………………………………………87
附錄一、菩提藻的生活史…………………………………………87
附錄二、 A.紅藻澱粉的代謝途徑………………………………88
B.NDP-sugars pool概念圖……………………………89
附錄三、 A.多元胺的合成途徑………………………………….90
B.多元胺的降解途徑………………………………….91
附錄四、菩提藻培養液之組成成份………………………………92
附錄五、紅藻(Caloglossa leprieurii)的抗鹽機制……………….. 93
江永棉、王瑋龍、黃淑芬,1990。台灣海藻簡介。台灣省立博物館出版社。臺北。157pp。
林忠毅、朱德民、林俊隆。 2004。添加多元胺putrescine多元胺對離體培養玉米子粒發育的影響。中華農學會報 5: 11-24。
高景輝。1985。植物荷爾蒙。華香園出版社。台北。483-489頁。
陳卉,2000。菩提藻Grateloupia filicina (Lamouroux) C. Agardh的再生組織和四分孢子所形成的絲狀體之培養。國立台灣海洋大學水產學系碩士學位論文。
趙文榮,1996。菩提藻(Grateloupia filicina)的成長與溫度、鹽度、光照度、水流及營養鹽之關係。國立台灣海洋大學水產學系碩士學位論文。
陳惠敏。2001。鹽分逆境下多元胺對萌芽中綠豆種子α-amylase活性的影響。國立彰化師範大學生物學研究所碩士論文。
柯瑜婷。2003。兩種小球藻在鹽分逆境與水分逆境的生理反應。國立彰化師範大學生物學研究所碩士論文。
Ana, S.C., P.A. Francisco, C. Manuel and A. Manuel. 1998. Polyamines as short-term salt tolerance traits in tomato. P.t Sci. 138: 9-16.
Basra, R.K., A.S. Basra, C.P. Malik and I.S. Grover. 1997. Are polyamine involved in the heat-shock protection of mung bean seedlings? Bot. Bull. Acad. Sin. 38:165-169.
Basu, A., U. Sethi and S.G. Mukherjee. 1988. Induction of cell division in leaf cells of coconut palm by alteration of pH and its correlation with glyoxalase-1 activity. J Exp Bot 39: 1735-1742.
Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free praline for water-stress studies. Plant Soil. 39:205-207.
Benavides, M.P., G. Aizencang and M.L. Tomaro. 1997. Polyamines in Helianthus annuus L. during germination under salt stress. J. Plant Growth Reg. 16: 205-211.
Biasi, R., N. Bagni and G. Costa. 1988. Endogenous polyamines in apple and their relationship to fruit set and fruit growth. Physiol. Plant 73: 201-205.
Bird, K.T. 1988. Agar production and quality from Gracilaria sp. Strain G-16: Effects of environmental faxtors. Bot. Mar. 31: 33-39.
Bird, K.T., M.D. Hanisak and J.H. Ryther. 1981. Chemical study and production of agars extracted from Gracilaria tikvahiae grown in different nitrogen enrichment conditions. Bot. Mar. 24: 441-444.
Bouchereau, A., A. Aziz, F. Larher and J. Martin-Tanguy. 1999. Polyamine and environmental challenges: rescent development. Pl. Sci. 140: 103-125.
Chang, W.C., M.H. Chen and T.M. Lee. 1999. 2,3,5-Triphenyltetrazolium reduction in the viability assay of Ulva fasciata(Chlorophyta) in response to salinity stress. Bot. Bull. Acad. Sin. 40: 207-212.
Chang, Y.M. 1993. Thedevelopmental sequence of the marine red alga Grateloupia filicina in culture. The Ko. J. Phycol. 8:231-237.
Christelle, S.C., M.A. Bessieres and E. Deslandes. 2002. An alternative HPLC method for the quantification of floridoside in salt-stressed cultures of the red alga Grateloupia doryphora. J. Appl. Phycol. 14(2): 123-127.
Cote, G.L. and M.D. Hanisak. 1986. Production and properties of native agars from Gracilaria tikvahiae and other red algae. Bot. Mar. 29: 359-366.
Craigie J.S. 1974. Storage products. Botanical Monographs, Vol. 10. University of California Press, USA, pp.206-235.
Crisosto, C.H. 1988. Putrescine influence ovule senescence, fertilization time, and fruit set in ”Comicepear”. J. Amer. Soc. Hort. Sci. 113: 708-712.
Deboer, J.A. 1978. Effects of nitrogen enrichment on the growth rate and phycocolloid content in Gracilaria foliifera and Neoagardiella baileyi(Floridiophyceae) Proc. Int. Seaweed Symp. 9: 263-271.
Dubinsky, O. 1985. Theinvolvement of polyamines and their biosynthetic enzymes in the cell division of the unicellular red alga Porphyridium sp., M. Sc. Thesis, Faculty of Natural Sciences, Ben-Gurion Univ. of Negev, Beer-Sheva.
Egea-Cortines, M. and Y. Mizrahi. 1991. Polyamines in cell division, fruit set and development, and seed germination. In: Slocum R.D. and Flores H.E. (eds), Biochemistry and Physiology of Polyamines in Plants. CRC Press, Boca Raton, pp. 143-158.
Ekman, P. and M. Pedersen. 1990.The influence of photon irradiance, day length, dark treatment, temperature, and growth rate on the agar composition of Gracilaria sordida Neson and Gracilaria verrucosa(Huds) Papenfuss(Gigartinales, Rhodophyta). Bot. Mar. 33: 483-495.
Ekman, P., S. Yu and M. Pedersen. 1991. Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultivated Gracilaria sordida. Br. Phycol J. 26: 123-131.
Fournet, I., M. Zinoun, E. Deslandes, M. Diouris and J.Y. Floch. 1999. Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur. J. Phycol. 34: 125-130.
Glazer, A.N., C.F. Chan, U. Karsten and J.A. West. 1994. Salinity tolerance, biliproteins, and floridoside content of Compsopogon coeruleus (Rhodophyta). J. Phycol. 30: 457-461.
Goulard, F., M. Diouris, E. Deslandes and J.Y. Floch. 1999. Nucleotides, nucleotide sugars and UDP-glucose-4-epimerase activity in the iota carrageenophytes Solieria chordalis and Calliblepharis jubata(Rhodophyceae). Eur. J. Phycol 34: 21-25.
Goulard, F., G.L. Corre, M. Diouris, E. Deslandes and J.Y. Floch. 2001a. NDP-sugars, floridoside and floridean starch levels in relation to activites of UDP-glucose pyrophosphorylase and UDP-glucose-4-epimerase in Solieria chordalis(Rhodophyceae) under experimental conditions. Phycol. Res. 49: 43-50.
Goulard, F., M. Diouris, G.L. Corre, E. Deslandes and J.Y. Floch. 2001b. Salinity effects on NDP-sugars, floridoside, starch, and carrageenan yield, and UDP-glucose-pyrophosphorylase and –epimerase activities of cultivated Solieria chordalis. J. Plant Physiol. 158: 1387-1394.
Hamana, K., S. Matsuzaki, M. Niitsu, K. Samejima and H. Nagashima. 1990. Polyamines of unicellular thermoacidophilic red alga Cyanidium Caldarium. Phytochem. 29: 377-380.
Hourmant, A., N. M. Penot, C. Cann and J. Caroff. 1994. Influence of polyamines on growth and metabolism of Dunalierlla primolecta. Acta Bot. Neerl. 43: 129-136.
John, A.W. and H.H. Max. 1981. Rhodophyta: Life histories. Botanical Monographs, Vol. 17. University of California Press, USA. pp.133-193.
Karsten, U. and J.A. West. 1993. Ecophysiological studies on six species of the man-grove red algal genus Caloglossa. Aust. J. Plant Physiol. 20: 729-739.
Karsten, U., K.D. Barrow, O. Nixdorf and R.J. King. 1996. The compability of unusual organic osmolytes from mangrove red algae with enzyme activity. Aus. J. Plant Physiol. 23: 577-582.
Karsten, U., K.D. Barrow, J.A. West and R.J. King. 1997a. Mannitol metabolism in the intertidal mangrove red alga Caloglossa leprieurii:salinity effects on enzymatic activity. Phycologia 36: 150-156.
Karsten, U., K.D. Barrow, O. Nlxdorf, J.A. West and R.J. King. 1997b. Character- ization of the mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne) J. Agardh. Planta 201: 173-178.
Kotzbasis, K. and H. Senger. 1994. Free, conjugated and bound polyamines during the cell cycle in synchronized cultures of Scenedesmus obliquus. Z. Nat. forsch., C J. biosic. 49: 181-185.
Lee, T.M. and M.H. Chen. 1998. Hyposaline effect on polyamine accumulation in Ulva fasciata(Ulvales, Chlorophyta). Bot. Bul. Acade. Sin. 39: 167-174.
Li, S.Y., Y. Shabtai and S. Arad. 2002. Floridoside as a carbon precursor for the synthesis of cell-wall polysaccharide in the red microalga Porphyridium sp. (Rhodophyta). J. Phycol. 38: 931-938.
Lin, C.C. and C.H. Kao. 1995. Levels of endogenous polyamines and NaCl-inhibited growth of rice seedlings. J. Plant Growth Reg. 17:15-20.
Lutts, S., J. M. Kinet and J. Bouharmont. 1996. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa) callus cultures. Plant Physiol. 149: 186-195.
Macler B.A. 1986. Regulation of carbon flow by nitrogen and light in red alga, Gelidium coulterii. Plant Physiol 82: 136-141.
Mccracken, D.A. and J.R. Cain. 1981. Amylose in floridean starch. New Phytol 88: 67-71.
Mesters C., F. Matencio, B. Pons, M. Yajid and G. Fliedel. 1996 A Rapid method for the determination of amylose content by using differential-scanning calorimetry. Starch/Starke 48: 2-6.
Migita, S. 1988. Cultivation of Grateloupia filicina(Rhodophyta, Cryptonemiales) by regeneration of crusts. Nippon Suisan Gakkaishi, 54:1923-1927.
Mohammed, A.A. and A.A. Shafea. 1992. Growth and some metabolic activities of Scenedesmus obliquus cultivated under different NaCl concerntrations. Biol. Plant. 34: 423-430.
Mostaert, A.S., U. Karsten and R.J. King. 1995a. Inorganic ions and mannitol in the red alga Caloglossa leprieurii(Ceramiales, Rhodophyta): Response to salinity change. Phycologia 34: 501-507.
Mostaert, A.S., U. Karsten and R.J. King. 1995b. Physiological response of Caloglossa leprieurii(Ceramiales, Rhodophyta) to salinity stress. Phycological Research 43: 215-222.
Mostaert, A.S., D.A. Orlovich and R.J. King 1996. Ion compartmentation in the red alga Caloglossa leprieurii in response to salinity changes: freeze-substitution and X-ray microanalysis. New Phytologist 132: 513-519.
Nagashima, H., S. Nakamura, K. Nisizawa and T. Hori. 1971. Enzymic synthesis of floridean starch in a red alga, Serraticardia maxima. Plant and Cell Physiol. 12: 243-253.
Nyvall, P., M. Pedersen, L. Kenne and P. Gacesa. 2000. Enzyme kinetics and chemical modification of α-1,4-glucan lyase frome Gracilariopsis sp.. Phytochemistry 54: 139-145.
Ozaki, H., M. Maeda and K. Nisizawa. 1967. Floridean starch of a calcareous red alga, Joculator maximus. Biochemistry 61: 497-503
Pilar, G.J., R. Marta and R.R. Rafael. 1998. Influence of plant growth regulators, polyamines and glycerol interaction on growth and morphogenesis of carposporelings of Grateloupia cultured in vitro. Applied Phycology 10: 95-100.
Raul, E.R., Y. Shukun and P. Marianne. 1993. Effect of dark treatment on the starch degradation and the agar quality of cultivated Gracilariopsis lemaneiformis (Rhodophyta, Gracilariales) from Venezuela. Hydrobiologia 260/261: 633-640.
Reed, R.H. 1985. Osmoacclimation in Bangia atropurpurea(Rhodophyta, Bangiales): the osmotic role of floridoside. Br. Phyco. J. 20: 211-218.
Robert, G.S., A.H. Johan and S. Takashi. 1979a. Floridean starch metabolism of Porphyridium purpureum(Rhodophyta) . Changes during ageing of batch culture. Phycologia 18: 149-163.
Robert, G.S., A.H. Johan and S. Takashi. 1979b. Floridean starch metabolism of Porphyridium purpureum(Rhodophyta) Ⅱ. Changes during the cell cycle. Phycologia 18: 185-190.
Robert, G.S., A.H. Johan and S. Takashi. 1981. Floridean starch metabolism of Porphyridium purpureum(Rhodophyta) Ⅲ. Effects of darkness and metabolic inhibitors. Phycologia 20: 22-31.
Roosens, N.H., F.A. Bitar, K. Loenders, G. Angenon and M. Jacobs. 2002. Overexpression of orthinine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Molecular Breeding. 9: 73-80.
Rotem, A., R.B. Nurit and S. Arad. 1986. Effect of controlled environmental conductions on starch and agar content of Gracilaria Sp.(Rhodophyceae). J. Phycol. 22: 117-121.
Roux, S.J. 1993. Casein kinases in plants: Possible targets of polyamine action during growth regulation. Plant Growth Regul. 12;189-193.
Roy, M. and R. Wu. 2001. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science 160: 869-875.
Roy, M. and R. Wu. 2002. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. 163: 987-992.
Sankar, D., B. Anindita and G. Bharatl. 1995. Effect of salt stress on polyamine metabolism in Brassica Campestris. Phytochemistry 39: 283-285.
Santa, C.A., F. Perez-Alfocea, M. Acosta and M.C. Bolarin. 1997. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol. Plant 101: 341-346.
Santa, C.A., M. Acosta, A. Rus and M.C. Bolarin. 1999. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol. Biochem. 37: 65-71.
Setter, T.L., H. Greenway and J. Kuo. 1982. Inhibition of cell division by hight external NaCl concertrations in synchronized cultures of Chlorella emersonii to hight NaCl. Aust. J. Plant Physiol. 9: 179-196.
Scoccianti, V., N. Bagni, O. Dubinsky and S. Arad. 1989. Interaction between polyamine and cells of the marine unicellular red alga Porphyridium sp.. Plant Physiol. Biochem. 27: 899-904.
Slocum, R.D., H.E. Flores, A.W. Galston and L.H. Weinstein. 1989. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissues. Plant Physiol. 89: 512-517.
Sung, H.I., L.F. Liu and C.H. Kao. 1994 Putrescine accumulation is associated with growth inhibition in suspension-cultured rice cells under potassium deficiency. Plant and Cell Physiol. 35: 313-316.
Tarczynski, M.C., R.G. Jensen and H.J. Bohnert. 1993. Stress protection of transgenic tobaco by production of the osmolyte mannitol. Science 259: 508-510.
Terence, A.S. 1990. Plant Polyamines—Metabolism and Function.Current Topics in Plant Physiology:An American Society of Plant Physiologists Series, Vol. 5. The Pennsylvania State University, USA. pp.11-12.
Tiburcio, A.F., C.A. Gendy and K.T. Van. 1989. Morphogenesis in tobacco subepidermal cells: Putrescine as marker of root differentiation. Plant Cell Tissue and Organ Culture 19: 43-54.
Tiburcio, A.F., J.L. Campos, X. Figueras and R. T. Besford. 1993. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul. 12: 331-340.
Valeria, S., B. Nello, D. Ofer and A. Shoshana. 1989. Interaction between polyamines and cells of the marine unicellular red alga Porphyridium sp.. Plant Physiol 27: 899-904.
Vergara, J.J., F.X. Niell and K.T. Bird. 1997 A dynamic model of transient NH4+ assimilation in red alga. Marine Ecology Progress Series 148: 295-307.
Vogit, J., B. Deinert and P. Bohley. 2000. Subcellular localization and light-dark control of ornithine decarboxylase in the unicellular green alga Chlamydomonas reinhardtii. Physiol. Plant. 108: 353-360.
Watanabe, S., K. Kojima, Y. Ide and S. Sasaki. 2000. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue and Organ Culture 63: 199-206.
Wong, S.L. and J. Chang. 2000. Salinity and light effects on growth, photosynthesis, and respiration of Grateloupia filicina (Rhodophyta). Aquaculture 182: 387-395.
Yu, S. and M. Pedersen. 1990. The effect of salinity changes on the activity of α-galactosidase of the red algae Gracillria sordida and G. tenuistipitata. Bot. Mar. 33: 385-391.
Yu, S. and M. Pedersen. 1991. Purification and properties of α-1,4-glucan phosphorylase from the red seaweed Gracilaria sordida (Gracilariales). Physiol. Plant. 81: 149-155.
Yu, S., A. Blennow, M. Bojko, F. Madsen, C.E. Olsen and S.B. Engelsen. 2002. Physico-chemical characterization of floridean starch of red algae. Starch/Starke 54: 66-74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top