(18.204.227.34) 您好!臺灣時間:2021/05/19 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉慧芬
研究生(外文):Hui-Fen Liu
論文名稱:克氏螯蝦(Procambarusclarkii)膜蛋白型鳥苷酸環化酶基因之選殖與表現
論文名稱(外文):Molecular cloning and expression of a membrane form guanylyl cyclase in the crayfish, Procambarus clarkii
指導教授:李奇英
指導教授(外文):Chi-Ying Lee
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:膜蛋白型鳥苷酸環化酶水溶蛋白型鳥苷酸環化酶細胞外結合區域穿膜區域激酶同源區域鳥苷酸環化酶催化區域甲殼類升血糖荷爾蒙蛻殼抑制荷爾蒙
外文關鍵詞:GCDguanylyl cyclase catalytic domainKHDkinase homology domainTMtransmembrane domainECDextracellular domainsGCsoluble form guanylyl cyclasemGCmembrane form guanylyl cyclaseCHHcrustacean hyperglycemic hormoneMIHmoult-inhibiting hormone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
本論文利用分子生物學的方法在克氏螯蝦肌肉中選殖到兩個膜蛋白型鳥苷酸環化酶 (mGC)-PcGC-M2 (5,158 bp) 及PcGC-M2’ (4,989 bp)。PcGC-M2是典型的mGC,內含一完整開放讀架,翻譯出1,403個胺基酸,序列分析PcGC-M2,其結構包含細胞外結合區 (ECD)、穿膜區域 (TM)、細胞內激酶同源區域 (KHD)、鳥苷酸環化酶催化區域 (GCD),與C-terminal tail。PcGC-M2’ 相對於PcGC-M2的KHD序列中,缺少169 bp (核苷酸序列第2610-2778),因此僅翻譯出766個胺基酸,其結構只具有ECD、TM及部分的KHD。除了PcGC-M2’之外,PcGC-M2與果蠅 (DrGC-1) 及瘧蚊 (AgaGC) 的mGCs最相似 (34 % identity)。而這些無脊椎動物的mGCs在ECD中也具有相似的半胱胺酸殘基分布模式。在PcGC-M2的KHD中還具有26個與蛋白質激酶 (protein kinases) 相同的保留性殘基,以及一類似與ATP結合的作用位-Gly-X-X-X-Gly。此外,利用專一性引子進行各組織的RT-PCR,觀察PcGC-M2及PcGC-M2’ 的表現分佈情況,其結果顯示,許多前人發現的甲殼類升血糖荷爾蒙 (CHH) 的目標組織中都有表現PcGC-M2及PcGC-M2’基因,包含肌肉、肝胰腺、心臟、生殖腺、鰓及觸角腺等,意味著PcGC-M2及PcGC-M2’可能參與了CHH所活化的訊息傳導過程,也意涵著這兩種mGCs具有CHH的結合區域。此外,根據前人的研究,我推測PcGC-M2及PcGC-M2’可能會藉由形成同質雙體或異質雙體來調節CHH所引發的GC反應。目前已將PcGC-M2及PcGC-M2’表現於真核細胞 (昆蟲Schneider 2細胞) 中,利用西方墨漬法分析,顯示兩者所表現的蛋白質都接近預期的分子量 (分別為153及80 kDa),只是其蛋白質的表現量皆不高。
In this study, two membrane form guanylyl cyclases (mGC) were cloned from the abdominal muscle of the crayfish Procambarus clarkii-PcGC-M2 (5,158 bp) and PcGC-M2’ (4,989 bp). PcGC-M2, a typical mGC, contains an open reading frame encoding 1,403 amino acid residues. Sequence analysis indicated that PcGC-M2 is composed of an extracellular domain (ECD), a transmembrane domain (TM), a kinase homology domain (KHD), a guanylyl cyclase catalytic domain (GCD) and a C-terminal tail. PcGC-M2’ lacks a stretch of 169 bp (corresponding to nucleotides 2610-2778) in the KHD of PcGC-M2, hence resulting in a 766-residue protein composed only of ECD, TM, and a partial KHD. Except PcGC-M2’, PcGC-M2 is most closely related (34 % identity) to Drosophila (DrGC-1) and Anopheles gambiae (AgaGC) membrane form GCs. These invertebrate mGCs also share a unique distribution pattern of conserved cystine residues in the ECD. The KHD of PcGC-M2 contains 26 residues that are conserved in protein kinases and a putative ATP binding site-Gly-X-X-X-Gly. Furthermore, RT-PCR analysis demonstrated that PcGC-M2 and PcGC-M2’ were present in various crustacean hyperglycemic hormone (CHH) target tissues, including muscle, hepatopancreas, heart, reproductive organs, gill and antennal gland, implying that PcGC-M2 and PcGC-M2’ participate in the signaling cascade activated by CHH. It is suggested that both PcGC-M2 and PcGC-M2’ encode proteins that contain CHH binding sites. Furthermore, PcGC-M2 and PcGC-M2’ may modulate CHH-activated cGMP signaling by forming homodimers and heterodimers. Finally, PcGC-M2 and PcGC-M2’ were expressed in eukaryotic cells (insect Schneider 2 cells). Immunoblotting analysis showed that proteins with expected sizes (153 and 80 kDa, respectively) were expressed at low levels.
中文摘要……………………………………………………………… I
縮寫…………………………………………………………………… II
英文摘要…………………………………………………………… III
致謝詞………………………………………………………………… V
目次…………………………………………………………………… VI
前言…………………………………………………………………… 1
材料與方法…………………………………………………………… 12
結果…………………………………………………………………… 32
討論…………………………………………………………………… 45
參考資料……………………………………………………………… 56
表……………………………………………………………………… 65
圖……………………………………………………………………… 67
附件…………………………………………………………………… 92

Aguilar, M. B., Soyez, D., Falchetto, R., Arnott, D., Shabanowitz, J., Hunt, D. F. and Huberman, A. (1995). Amino acid sequence of the minor isomorph of the crustacean hyperglycemic hormone (CHH-II) of the Mexican crayfish Procambarus bouvieri (Ortmann): presence of a D-amino acid. Peptides 16, 1375-83.
Andrew, R. D. (1983). Neurosecretory pathways supplying the neurohemal organs in crustacea. In: Neurohemal Organs of Arthropods: Their Development, Evolution, Structure, and Functions., A.P. Gupta, ed., pp. 90-117.
Arancio, O., Kandel, E. R. and Hawkins, R. D. (1995). Activity-dependent long-term enhancement of transmitter release by presynaptic 3',5'-cyclic GMP in cultured hippocampal neurons. Nature 376, 74-80.
Baghdassarian, D., de Besse, N., Saïdi, B., Somme, G. and Lachaise, F. (1996). Neuropeptide-induced inhibition of steroidogenesis in crab molting glands: involvement of cGMP-dependent protein kinase. General & Comparative Endocrinology 104, 41-51.
Baude, E. J., Arora, V. K., Yu, S., Garbers, D. L. and Wedel, B. J. (1997). The cloning of a Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-sensitive mammalian/nematode chimeric receptor. Journal of Biological Chemistry 272, 16035-9.
Birnstiel, M. L., Busslinger, M. and Strub, K. (1985). Transcription termination and 3' processing: the end is in site! Cell 41, 349-59.
Breer, H. and Shepherd, G. M. (1993). Implications of the NO/cGMP system for olfaction. Trends in Neurosciences 16, 5-9.
Charmantier-Daures, M., Charmantier, G., Janssen, K. P., Aiken, D. E. and van Herp, F. (1994). Involvement of eyestalk factors in the neuroendocrine control of osmoregulation in adult American lobster Homarus americanus. General & Comparative Endocrinology 94, 281-93.
Chen, Y.-H. (2002). Cloning, characterization, and developmental expression of a membrane form guanylyl cyclase gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). Department of Entomology National Chung Hsing University Master's thesis.
Chinkers, M. and Garbers, D. L. (1989). The protein kinase domain of the ANP receptor is required for signaling. Science 245, 1392-4.
Chinkers, M., Garbers, D. L., Chang, M. S., Lowe, D. G., Chin, H. M., Goeddel, D. V. and Schulz, S. (1989). A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78-83.
Chung, J. S. and Webster, S. G. (2003). Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. From target to transcript. European Journal of Biochemistry 270, 3280-8.
Fülle, H. J., Vassar, R., Foster, D. C., Yang, R. B., Axel, R. and Garbers, D. L. (1995). A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proceedings of the National Academy of Sciences of the United States of America 92, 3571-5.
Garbers, D. L., Hardman, J. G. and Rudolph, F. B. (1974). Kinetic analysis of sea urchin sperm guanylate cyclase. Biochemistry 13, 4166-4171.
Gigliotti, S., Cavaliere, V., Manzi, A., Tino, A., Graziani, F. and Malva, C. (1993). A membrane guanylate cyclase Drosophila homolog gene exhibits maternal and zygotic expression. Developmental Biology 159, 450-61.
Goy, M. F. (1990). Activation of membrane guanylate cyclase by an invertebrate peptide hormone. Journal of Biological Chemistry 265, 20220-7.
Goy, M. F. (1991). cGMP: the wayward child of the cyclic nucleotide family. Trends in Neurosciences 14, 293-9.
Goy, M. F., Mandelbrot, D. A. and York, C. M. (1987). Identification and characterization of a polypeptide from a lobster neurosecretory gland that induces cyclic GMP accumulation in lobster neuromuscular preparations. Journal of Neurochemistry 48, 954-66.
Griffith, T. M., Lewis, M. J., Newby, A. C. and Henderson, A. H. (1988). Endothelium-derived relaxing factor. Journal of the American College of Cardiology 12, 797-806.
Gu, Y. C. and Pandey, K. N. (1993). Genomic restriction endonuclease analysis and mapping of murine guanylate cyclase-A/atrial natriuretic factor receptor gene. Biochemical & Biophysical Research Communications 196, 758-66.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41, 95-98.
Hanks, S. K., Quinn, A. M. and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42-52.
Hasegawa, M., Hidaka, Y., Matsumoto, Y., Sanni, T. and Shimonishi, Y. (1999a). Determination of the binding site on the extracellular domain of guanylyl cyclase C to heat-stable enterotoxin. Journal of Biological Chemistry 274, 31713-8.
Hasegawa, M., Hidaka, Y., Wada, A., Hirayama, T. and Shimonishi, Y. (1999b). The relevance of N-linked glycosylation to the binding of a ligand to guanylate cyclase C. European Journal of Biochemistry 263, 338-46.
Hasegawa, M., Kawano, Y., Matsumoto, Y., Hidaka, Y., Fujii, J., Taniguchi, N., Wada, A., Hirayama, T. and Shimonishi, Y. (1999c). Expression and characterization of the extracellular domain of guanylyl cyclase C from a baculovirus and Sf21 insect cells. Protein Expression & Purification 15, 271-81.
Hirsch, J. R., Meyer, M., Magert, H. J., Forssmann, W. G., Mollerup, S., Herter, P., Weber, G., Cermak, R., Ankorina-Stark, I., Schlatter, E. and Kruhoffer, M. (1999). cGMP-dependent and -independent inhibition of a K+ conductance by natriuretic peptides: molecular and functional studies in human proximal tubule cells. Journal of the American Society of Nephrology 10, 472-80.
Hobbs, A. J. (1997). Soluble guanylate cyclase: the forgotten sibling. Trends in Pharmacological Sciences 18, 484-91.
Huo, X., Abe, T. and Misono, K. S. (1999). Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry 38, 16941-51.
Ingi, T., Cheng, J. and Ronnett, G. V. (1996). Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron 16, 835-42.
Itakura, M., Iwashina, M., Mizuno, T., Ito, T., Hagiwara, H. and Hirose, S. (1994). Mutational analysis of disulfide bridges in the type C atrial natriuretic peptide receptor. Journal of Biological Chemistry 269, 8314-8.
Ivey-Hoyle, M. (1991). Recombinant gene expression in cultured Drosophila melanogaster cells. Current Opinion in Biotechnology 2, 704-7.
Kamisaki, Y., Saheki, S., Nakane, M., Palmieri, J. A., Kuno, T., Chang, B. Y., Waldman, S. A. and Murad, F. (1986). Soluble guanylate cyclase from rat lung exists as a heterodimer. Journal of Biological Chemistry 261, 7236-41.
Kang, W. K. and Naya, Y. (1993). Sequence of the cDNA encoding an actin homolog in the crayfish Procambarus clarkii. Gene. 133, 303-4.
Keller, R. (1992). Crustacean neuropeptides: structures, functions and comparative aspects. Experientia 48, 439-48.
Keller, R. and Andrew, E. M. (1973). The site of action of the crustacean hyperglycemic hormone. General & Comparative Endocrinology 20, 572-8.
Khayat, M., Yang, W., Aida, K., Nagasawa, H., Tietz, A., Funkenstein, B. and Lubzens, E. (1998). Hyperglycaemic hormones inhibit protein and mRNA synthesis in in vitro-incubated ovarian fragments of the marine shrimp Penaeus semisulcatus. General & Comparative Endocrinology 110, 307-18.
Koller, K. J., de Sauvage, F. J., Lowe, D. G. and Goeddel, D. V. (1992). Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Molecular & Cellular Biology 12, 2581-90.
Kozak, M. (1987). An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15, 8125-48.
Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W. J., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R. and Gilman, A. G. (1989). Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244, 1558-64.
Kummer, G. and Keller, R. (1993). High-affinity binding of crustacean hyperglycemic hormone (CHH) to hepatopancreatic plasma membranes of the crab Carcinus maenas and the crayfish Orconectes limosus. Peptides 14, 103-8.
Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-32.
Lachaise, F., Le Roux, A., Hubert, M. and Lafont, R. (1993). The molting gland of crustaceans: localization, activity and endocrine control. Journal of Crustacean Biology 13, 198-234.
Lee, K. J., Watson, R. D. and Roer, R. D. (1998). Molt-inhibiting hormone mRNA levels and ecdysteroid titer during a molt cycle of the blue crab, Callinectes sapidus. Biochemical & Biophysical Research Communications 249, 624-7.
Leitman, D. C. and Murad, F. (1987). Atrial natriuretic factor receptor heterogeneity and stimulation of particulate guanylate cyclase and cyclic GMP accumulation. Endocrinology & Metabolism Clinics of North America 16, 79-105.
Liu, H.-F., Lai, C.-Y., Zheng, J., Watson, R. D. and Lee, C.-Y. (2004). Molecular cloning of guanylyl cyclase from muscle of the crayfish (Procambarus clarkii) and Y-organs of the crab (Callinectes sapidus). Annual Meeting of the Society of Integrative and Comparative Biology, New Orelans, USA.
Liu, W., Yoon, J., Burg, M., Chen, L. and Pak, W. L. (1995). Molecular characterization of two Drosophila guanylate cyclases expressed in the nervous system. Journal of Biological Chemistry 270, 12418-27.
Lowe, D. G. and Fendly, B. M. (1992). Human natriuretic peptide receptor-A guanylyl cyclase. Hormone cross-linking and antibody reactivity distinguish receptor glycoforms. Journal of Biological Chemistry 267, 21691-7.
Lucas, K. A., Pitari, G. M., Kazerounian, S., Ruiz-Stewart, I., Park, J., Schulz, S., Chepenik, K. P. and Waldman, S. A. (2000). Guanylyl cyclases and signaling by cyclic GMP. Pharmacological Reviews 52, 375-414.
Lupas, A., Van Dyke, M. and Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162-4.
McNeil, L., Chinkers, M. and Forte, M. (1995). Identification, characterization, and developmental regulation of a receptor guanylyl cyclase expressed during early stages of Drosophila development. Journal of Biological Chemistry 270, 7189-96.
Miyagi, M. and Misono, K. S. (2000). Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochimica et Biophysica Acta 1, 30-8.
Moncada, S., Higgs, A. and Furchgott, R. (1997). International union of pharmacology nomenclature in nitric oxide research. Pharmacological Reviews 49, 137-42.
Moran, M. F., Koch, C. A., Sadowski, I. and Pawson, T. (1988). Mutational analysis of a phosphotransfer motif essential for v-fps tyrosine kinase activity. Oncogene 3, 665-72.
Morton, D. B. and Nighorn, A. (2003). MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium. Journal of Neurochemistry 84, 363-72.
Nakatsuji, T., Keino, H., Tamura, K., Yoshimura, S., Kawakami, T., Aimoto, S. and Sonobe, H. (2000). Changes in the amounts of molt-inhibiting hormone in sinus glands during the molt cycle of the American crayfish, Procambarus clarkii. Zoological Society of Japan 17, 1129-1136.
Nighorn, A., Byrnes, K. A. and Morton, D. B. (1999). Identification and characterization of a novel beta subunit of soluble guanylyl cyclase that is active in the absence of a second subunit and is relatively insensitive to nitric oxide. Journal of Biological Chemistry 274, 2525-31.
Okamoto, H. (2004). Molecular cloning of novel variant of the rat soluble guanylate cyclase β subunit. The International Journal of Biochemistry and Cell Biology 36, 472-480.
Saïdi, B., de Besse, N., Webster, S. G., Sedlmeier, D. and Lachaise, F. (1994). Involvement of cAMP and cGMP in the mode of action of molt-inhibiting hormone (MIH) a neuropeptide which inhibits steroidogenesis in a crab. Molecular & Cellular Endocrinology 102, 53-61.
Santos, E. A. and Keller, R. (1993). Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: current perspective. Comparative Biochemistry and Physiology 106A, 405-411.
Santos, E. A., Nery, L. E., Keller, R. and Goncalves, A. A. (1997). Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiological Zoology 70, 415-20.
Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. Journal of Embryology & Experimental Morphology 27, 353-65.
Schulz, S., Green, C. K., Yuen, P. S. and Garbers, D. L. (1990). Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63, 941-8.
Schulz, S., Singh, S., Bellet, R. A., Singh, G., Tubb, D. J., Chin, H. and Garbers, D. L. (1989). The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58, 1155-62.
Schulz, S., Wedel, B. J., Matthews, A. and Garbers, D. L. (1998). The cloning and expression of a new guanylyl cyclase orphan receptor. Journal of Biological Chemistry 273, 1032-7.
Sedlmeier, D. and Fenrich, R. (1993). Regulation of ecdysteroid biosynthesis in crayfish Y-organs: role of cyclic nucleotides. The Journal of Experimental Zoology 265, 448-453.
Sedlmeier, D. and Keller, R. (1981). The mode of action of the crustacean neurosecretory hyperglycemic hormone. I. Involvement of cyclic nucleotides. General & Comparative Endocrinology 45, 82-90.
Sefiani, M., Le Caer, J. P. and Soyez, D. (1996). Characterization of hyperglycemic and molt-inhibiting activity from sinus glands of the penaeid shrimp Penaeus vannamei. General & Comparative Endocrinology 103, 41-53.
Shin, H. S. and Cha, H. J. (2003). Statistical optimization for immobilized metal affinity purification of secreted human erythropoietin from Drosophila S2 cells. Protein Expression & Purification 28, 331-9.
Silberbach, M. and Roberts, C. T., Jr. (2001). Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cellular Signalling 13, 221-31.
Simpson, P. J., Nighorn, A. and Morton, D. B. (1999). Identification of a novel guanylyl cyclase that is related to receptor guanylyl cyclases, but lacks extracellular and transmembrane domains. Journal of Biological Chemistry 274, 4440-6.
Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W. J., Dangott, L. J., Chinkers, M., Goeddel, D. V. and Garbers, D. L. (1988). Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334, 708-12.
Skinner, D. M. (1985). Molting and regeneration. In: The Biology of Crustacea vol 9., Bliss D.E., Mantel L.H., Academic Press, New York, pp 43 -146.
Smullen, R. P., David, J. A. and Pitman, R. M. (1996). Endocrine regulation of the phosphatidylinositol pathway in the Norway lobster, Nephrops norvegicus, and the shore crab, Carcinus maenas. General & Comparative Endocrinology 104, 84-91.
Sokal, I., Haeseleer, F., Arendt, A., Adman, E. T., Hargrave, P. A. and Palczewski, K. (1999). Identification of a guanylyl cyclase-activating protein-binding site within the catalytic domain of retinal guanylyl cyclase 1. Biochemistry 38, 1387-93.
Southern, J. A., Young, D. F., Heaney, F., Baumgartner, W. K. and Randall, R. E. (1991). Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. Journal of General Virology 72, 1551-1557.
Soyez, D. (1997). Occurrence and diversity of neuropeptides from the crustacean hyperglycemic hormone family in arthropods. A short review. Annals of the New York Academy of Sciences 814, 319-23.
Soyez, D., Le Caer, J. P., Noel, P. Y. and Rossier, J. (1991). Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarus americanus. Neuropeptides 20, 25-32.
Soyez, D., Van Herp, F., Rossier, J., Le Caer, J. P., Tensen, C. P. and Lafont, R. (1994). Evidence for a conformational polymorphism of invertebrate neurohormones. D-amino acid residue in crustacean hyperglycemic peptides. Journal of Biological Chemistry 269, 18295-8.
Spanings-Pierrot, C., Soyez, D., Van Herp, F., Gompel, M., Skaret, G., Grousset, E. and Charmantier, G. (2000). Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. General & Comparative Endocrinology 119, 340-50.
Stryer, L. (1986). Cyclic GMP cascade of vision. Annual Review of Neuroscience 9, 87-119.
Takahashi, Y., Nakayama, T., Soma, M., Izumi, Y. and Kanmatsuse, K. (1998). Organization of the human natriuretic peptide receptor A gene. Biochemical & Biophysical Research Communications 246, 736-9.
Tamura, N. and Garbers, D. L. (2003). Regulation of the guanylyl cyclase-B receptor by alternative splicing. Journal of Biological Chemistry 278, 48880-48889.
Tan, J. C., Nocka, K., Ray, P., Traktman, P. and Besmer, P. (1990). The dominant W42 spotting phenotype results from a missense mutation in the c-kit receptor kinase. Science 247, 209-12.
Tanoue, S. and Nishioka, T. (2001). A receptor-type guanylyl cyclase expression is regulated under circadian clock in peripheral tissues of the silk moth. Light-induced shifting of the expression rhythm and correlation with eclosion. Journal of Biological Chemistry 276, 46765-9.
Tanoue, S., Sumida, S., Suetsugu, T., Endo, Y. and Nishioka, T. (2001). Identification of a receptor type guanylyl cyclase in the antennal lobe and antennal sensory neurons of the silkmoth, Bombyx mori. Insect Biochemistry & Molecular Biology 31, 971-9.
Tensen, C. P., Janssen, K. P., Soyez, D. and Van Herp, F. (1991). Comparative characterization of hyperglycemic neuropeptides from the lobster Homarus americanus. Peptides 12, 241-9.
Thorpe, D. S. and Garbers, D. L. (1989). The membrane form of guanylate cyclase. Homology with a subunit of the cytoplasmic form of the enzyme. Journal of Biological Chemistry 264, 6545-9.
Thorpe, D. S. and Morkin, E. (1990). The carboxyl region contains the catalytic domain of the membrane form of guanylate cyclase. Journal of Biological Chemistry 265, 14717-20.
Thorpe, D. S., Niu, S. and Morkin, E. (1991). Overexpression of dimeric guanylyl cyclase cores of an atrial natriuretic peptide receptor. Biochemical & Biophysical Research Communications 180, 538-44.
Tsai, M.-C. (2003). Expression recombinant EBV-LMP1 by Drosophila S2 expression system. Department of Biology National Changhua University of Education Master's thesis.
Von Heijne, G. (1983). Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry 133, 17-21.
Wainwright, G., Webster, S. G., Wilkinson, M. C., Chung, J. S. and Rees, H. H. (1996). Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus. Involvement in multihormonal regulation of growth and reproduction. Journal of Biological Chemistry 271, 12749-54.
Waldman, S. A. and Murad, F. (1987). Cyclic GMP synthesis and function. Pharmacological Reviews 39, 163-96.
Waldman, S. A., Rapoport, R. M., Fiscus, R. R. and Murad, F. (1985). Effects of atriopeptin on particulate guanylate cyclase from rat adrenal. Biochimica et Biophysica Acta 845, 298-303.
Webster, S. G. (1991). Amino acid sequence of putative moult-inhibiting hormone from the crab Carcinus maenas. Proceedings of the Royal Society of London - Series B: Biological Sciences 244, 247-52.
Webster, S. G. (1993). High-affinity binding of putative moult-inhibting hormone (MIH) and crustacean hyperglycemic hormone (CHH) to membrane-bound receptors on the Y-organ of the shore crab Carcinus maenas. Proceeding of the Royal Society London B 251, 53-59.
Wedel, B. and Garbers, D. (2001). The guanylyl cyclase family at Y2K. Annual Review of Physiology 63, 215-33.
Wedel, B., Harteneck, C., Foerster, J., Friebe, A., Schultz, G. and Koesling, D. (1995). Functional domains of soluble guanylyl cyclase. Journal of Biological Chemistry 270, 24871-5.
Wilson, E. M. and Chinkers, M. (1995). Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 4696-701.
Yamaguchi, M., Rutledge, L. J. and Garbers, D. L. (1990). The primary structure of the rat guanylyl cyclase A/atrial natriuretic peptide receptor gene. Journal of Biological Chemistry 265, 20414-20.
Yang, R. B., Foster, D. C., Garbers, D. L. and Fülle, H. J. (1995). Two membrane forms of guanylyl cyclase found in the eye. Proceedings of the National Academy of Sciences of the United States of America 92, 602-6.
Yasuda, A., Yasuda, Y., Fujita, T. and Naya, Y. (1994). Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions. General & Comparative Endocrinology 95, 387-98.
Yu, S., Avery, L., Baude, E. and Garbers, D. L. (1997). Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proceedings of the National Academy of Sciences of the United States of America 94, 3384-7.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top