(3.238.130.97) 您好!臺灣時間:2021/05/10 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇家弘
研究生(外文):C. H. Su
論文名稱:高溫電阻暨熱電力同時即時量測系統的建立與熱壓處理之碲化鉍熱電性質之探討
論文名稱(外文):Set-Up of Simultaneous Real-Time Measurements of High-Temperature Resistivity and Thermopower
指導教授:劉嘉吉
指導教授(外文):C. J. Liu
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電工程技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:123
中文關鍵詞:熱壓碲化鉍電阻熱電力鈷氧化物
外文關鍵詞:hot pressBi2Te3resistivitythermopowerNaCoO2thermoelectric
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本論文詳述高溫電阻暨熱電力即時同時量測系統的建立,並且利用此系統研究Bi2Te3及Na0.65Co1-xNixO2的高溫熱電性質。高溫電阻暨熱電力量測系統的測量設備使用Keithley 2400及Keithley 2000等測量儀器、真空高溫爐與溫控器。測量儀器利用IEEE488與電腦連接,溫控器利用RS232與電腦連接,並且利用程式語言控制系統進行測量。
Bi2Te3粉末以有機金屬錯合法製備並且熱壓處理,藉由不同熱壓溫度及壓力的控制,探討Bi2Te3的高溫及低溫熱電性質。由XRD圖看出經過熱壓後的Bi2Te3在(0,0,15)出現了優選取向;電阻及熱電力的測量結果顯示,在相同的熱壓壓力下,電阻值隨著熱壓溫度的上升而下降,而熱電力則會有理想值。代表材料內的載子遷移率隨著熱壓溫度的上升而增加,載子濃度則會出現理想值,可能是晶格的扭曲變化及Te的揮發等因素所導致。熱壓溫度350℃,熱壓壓力220MPa處理的Bi2Te3在272K有最大的功率因子8.8μW/cmK2。
利用迅速加熱法製備Na0.65Co1-xNixO2,並進行高溫熱電測量工作。測量中發現Na0.65Co1-xNixO2在真空的相穩定性不佳,極易有Co3O4的生成而造成測量上的不確定性。隨著溫度升高,Na0.65Co1-xNixO2的電阻率下降而熱電力上升,顯示Na0.65Co1-xNixO2在高溫區有更好的熱電性質。

Abract
This thesis describes the set up of simultaneous real-time measurements of high-temperature resistivity and thermopower. This system is used to study the thermoelectric properties of hot-pressed Bi2Te3 and Na0.65Co1-xNixO2. We use current sourcemeter Keithley 2400, digit multimeter Keithley 2000 and high-temperature vacuum furnace, which were interface by the IEEE488 to measure the high-temperature resistivity and thermopower simultaneously. Data acquisition is automatically controlled by a user-writer program usingVB6.0 language.
Bi2Te3 was prepared via metal-organo complex method and hot pressing process at various combination of temperature and pressure. The resistivity and thermopower of Bi2Te3 were measured from 77K to 573K. From XRD patterns, on the preferential orientation (0,0,15) reflection plane is observed for all the hot-pressed Bi2Te3 samples. These results show that the electrical resistivity decreases and thermopower exhibits a optimum values with increasing temperature. Based on the combination of resistivity and thermopower data, we can conclude that the mobility increases with increasing temperature. The carrier concentration shows minimum value probably due to the lattice deformation and the composition deviation of tellurium from stoichiometric Bi2Te3. The power factor of the hot-pressed sample prepared at the pressure of 220 MPa and at 350℃ is 8.8μW/cmK2.
Polycrystalline samples of Na0.65Co1-xNixO2 were prepared by rapid heat-up method and high-temperature resistivity and thermopower were measured up to 573K. We find that the phase stability of Na0.65Co1-xNixO2 is poor in vacuum and the measurement is not reliable because of phase formation of Co3O4. With temperature increasing, the resistivity of Na0.65Co1-xNixO2 decreases and the thermopower increases. Therefore, Na0.65Co1-xNixO2 has better thermoelectric properties at high temperature as compared to low temperatures and shows promising application at high temperatures.

目錄
摘要……………………………………………………………………… i
目錄………………………………………………………………………ii
表目錄……………………………………………………...……………iii
圖目錄…………………………………………………………………...iv

第一章 簡介…………………………………………….……1
1.1 前言…………………………………………………………...…1
1.2 研究目的………………………………………………………...5
1.3 Bi2Te3材料的特徵……………………………………………….7
1.4 NaxCoO2材料的特徵…………………………………………..10
第一章參考資料………………………………………………………..14

第二章 實驗基本原理…..……………………...…………..16
2.1 X光繞射………………………………………………………..16
2.2 熱電現象……………………………………………………….25
2.2.1 電阻率……………………………………………………..26
2.2.2 熱電力……………………………………………………..27
2.3 熱壓法………………………………………………………….31
第二章參考資料………………………………………………………..32

第三章 電阻暨熱電力高溫測量系統………….…………..34
3.1 電阻暨熱電力測量元件之製作……………………………….34
3.1.1 黏土模型製作……………………………………………..34
3.1.2 高溫測量樣品基座之製作………………………………..37
3.2 高溫電阻暨熱電力測量系統之建立………………………….40
3.2.1 高溫測量樣品基座之線路配置…………………………..40
3.2.2 高溫測量系統的建立……..………………………………43
3.3 電阻與熱電力測量方法……………………………………….45
3.3.1 電阻測量…………………………………………………..45
3.3.2 熱電力測量………………………………………………..46
3.4 高溫測量實驗步驟…………………………………………….47
第三章參考資料………………………………………………………..52

第四章 熱壓後Bi2Te3之結果與討論…………..…………..53
4.1 實驗方法……………………………………………………….53
4.1.1 有機金屬錯合法…………………………………………..53
4.1.2 熱壓法……………………………………………………..55
4.2 Bi2Te3的結構分析……………………………………………..56
4.3 熱壓法與直接燒結的比較…………………………………….62
4.3.1 電性分析…………………………………………………..62
4.3.2 熱電力分析………………………………………………..62
4.4 熱壓處理的Bi2Te3……………………………………………..66
4.4.1 Bi2Te3於熱壓壓力170MPa時,在不同熱壓溫度處理時的低溫熱電特性…..…………………………………………66
4.4.2 Bi2Te3於熱壓壓力170MPa時,在不同熱壓溫度處理時的高溫熱電特性…..…………………………………………73
4.4.3 Bi2Te3於熱壓壓力200MPa時,在不同熱壓溫度處理時的低溫熱電特性…..…………………………………………77
4.4.4 Bi2Te3於熱壓壓力200MPa時,在不同熱壓溫度處理時的高溫熱電特性…..…………………………………………83
4.4.5 Bi2Te3於熱壓壓力220MPa時,在不同熱壓溫度處理時的低溫熱電特性…..…………………………………………86
4.4.6 Bi2Te3於熱壓壓力220MPa時,在不同熱壓溫度處理時的高溫熱電特性…..…………………………………………92
4.4.7 Bi2Te3於熱壓壓力260MPa時,在不同熱壓溫度處理時的低溫熱電特性…..…………………………………………95
4.4.8 Bi2Te3於熱壓壓力260MPa時,在不同熱壓溫度處理時的高溫熱電特性…..…………………………………………66
第四章參考資料………………………………………………………101

第五章 Na0.65Co1-xNixO2系列…………...…………….….105
5.1 製備方法……………………………………………………...105
5.2 結構分析……………………………………………………...108
5.3 Na0.65Co0.95Ni0.05O2的高溫熱電性質…………………………110
5.4 Na0.65Co1-xNixO2的高溫相穩定度……………………………113
5.4.1 氮氣下的高溫測量………………………………………116
第五章參考資料………………………………………………………120

第六章 結論……………………………………………………….121

第一章 參考資料
【1.1】D. M. Rowe, Ph. D., and D. Sc., “ CRC Handbook of THERMOELCTRICS ”, FL : CRC Press, 1995.
【1.2】周德九,”簡介熱電”,能源季刊 第二十卷 第二期,1990,第85-97頁。
【1.3】G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial and T. Caillat, International Materials Reviews 48 No. 11 (2003)
【1.4】H. Scherrer, M. Chitroub, C. Roche, S. Scherrer, in: International Conference on Thermoelectrics, ICT Proceedings, IEEE, Piscata-way, NJ, USA, pp. 115–120 (1998)
【1.5】B. Lenoir, A. Dauscher, M. Cassart, Y. Ravich, and H. Scherrer, J. Phys. Chem . Solids 59 (1) pp.129–134 (1998)
【1.6】F.D. Rosi, B. Abeles, and R.V. Jensen, J. Phys. Chem. Solids 10,
pp.191–200 (1959).
【1.7】W.M. Yim, E.V. Fitzke, and F.D. Rosi, J. Mater. Sci. 1, pp.52–65 (1966)
【1.8】T. Ohta, T. Uesugi, and T. Tokiai et al., in: Proceedings of the 8th
International Conference on Thermoelectric Energy Conversion,
Institute National Polytechnique Lorraine, Nancy, pp. 7–11 (1989)
【1.9】J.S. Benjamin., Phys. Status. Solidi. A 27, pp.329, (1975)
【1.10】J. Seo, K. Park, D. Lee, and C. Lee, Materials Letters 35, pp.4–9 (1998)
【1.11】Joseph J. Ritter ,and Pichai Marthamuthu, Inorg. Chem. 34,
pp.4278-4280 (1995)
【1.12】V. A. Greanya, W. C. Tonjes, and Rong Liu, Physical Review B 62, 16425 (2000)
【1.13】K. Fukuda, H. Imaizumi, T.Ishii, F.Toyoda, M. Yamanashi and Y.
Kibayashi, Proc 15th International Conference on Thermoelectrics, pp.37-41 (1996)
【1.14】Masasi Inoue, Naoki Miyajima, Minoru Sasaki, Hiroshi Negishi,
Saiko Negishi, Hideoki Kadomatsu, and Vladimir A. Kulbachinskii, Physica B 284, pp.1718-1719 (2000)
【1.15】T. Kajihara, K. Fukud, Sato, and M. Kikuchi, Proc 17th International Conference on Thermoelectrics, pp.129-133 (1998)
【1.16】Terasaki I, Sasago Y and Uchinokura K, Phys. Rev. B 56, 12685 (1997)
【1.17】Woosuck Shin, and Norimitsu Murayama, Material Latters 49, pp.262-266 (2001)
【1.18】K. Takahata, Y. Iguchi, D. Tanaka, and T. Itoh, Phys. Rev. B 61, 12551 (2000)
【1.19】Yoichi Ando, N. Miyamoto, Kouji Segawa, T. Kawata and I. Terasaki, Phys. Rev. B 60, 10580 (1999)
【1.20】W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000)

第二章 參考資料
【2.1】C. N. R. Rao, and J. Gopalakrishnan, “New Directions in Solid State Chemistry”, 2nd ed., Cambridge University Press, 1997.
【2.2】何文祥,“X光光譜分析之原理與應用”,初版,民72年。
【2.3】余樹禎,”晶體之結構與性質”,初版,民76年。
【2.4】許樹恩、吳泰伯,“X光繞射原理與材料結構分析”,修定版,民85年。
【2.5】B. D. Cullity, and S. R. Stock, “Elements of X-Ray Diffraction ” , 3rd ed.,Upper Saddle River, NJ 07485:Prentice Hall, 2001.
【2.6】D. M. Rowe, Ph. D., and D. Sc., “ CRC Handbook of THERMOELCTRICS ”, FL : CRC Press, 1995.
【2.7】Charles Kittel, “ Introduction to Solid State Physics ” ,4th ed., New York:Wiley, 1971.
【2.8】G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics:Basic Principles and New Materials Development”, New York : Springer, 2001.
【2.9】D. K. C. MacDonald, “Thermoelectricity:an introduction to the principles”, New York:Wiley, 1962.
【2.10】A. B. Kaiser, and C. Uher, “Thermoelectricity of High Temperature Superconductors”, edited by A. V. Narlikar, 1990.
【2.11】于若軍,“現代陶瓷工程學”,第二版,民77年。
【2.12】葉柱熙,“粉末冶金學入門”,初版,民68年。
【2.13】 Susumu Miura, Yasunori Sato, Katsushi Fukuda, Keio Nishimura, and Keisuke Ikeda, Material Science and Engineering A 227, pp.244-249 (2000)
【2.14】宋光梁,“陶瓷技術概論”,第五版,民75年。


























第三章 參考資料
【3.1】http://www.americanberyllia.com/pages/BeOtable.html.
【3.2】http://www.brushwellman.com.
【3.3】G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics:Basic Principles and New Materials Development”, New York :Springer, 2001.
【3.4】D. K. C. MacDonald, “Thermoelectricity:an introduction to the principles”, New York:Wiley, 1962.

























第四章 參考資料
【4.1】Joseph J. Ritter , and Pichai Marthamuthu, Inorg. Chem. 34, pp. 4278-4280 (1995)
【4.2】Susumu Miura, Yasunori Sato, Katsushi Fukuda, Keio Nishimura, Keisuke Ikeda, Material Science and Engineering A 277, pp. 244-249 (2000)
【4.3】J. Seo, K. Park, D. Lee, and C. Lee, Material Letters 35, pp.4-9 (1998)
【4.4】H. J. Goldsimd, “The Electrical and Thermoelectric Power of Bismuth Telluride” (1958)
【4.5】Htyn Soo Shin, Heon Phil Ha, Dow Bin Htyn, Jae Dong Shim and Hi Lee, J. Phys. Chem. Solids 58, pp.671-678 (1997)
【4.6】Taek-Soo Kim, Ik-Soo Kim, Taek-Kyung Kim, Soon-JiK. Hong, Byong-Sun Chun, Material Science and Engineering B 90, pp.42-46 (2002)
【4.7】D. M. Rowe, Ph. D., and D. Sc., “ CRC Handbook of THERMOELCTRICS ”, FL : CRC Press, 1995.
【4.8】G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics:Basic Principles and New Materials Development”, New York :Springer, 2001.




第五章 參考資料
【5.1】T. Motohashi, E. Naujalis, R. Ueda, K. Isawa, M. Karppinen, and H. Yamauchi, Applied Physics Letters 79 ,pp. 1480-1482 (2001)
【5.2】C. Fouassier et al., J. Solid State Chem. 6, 532 (1973)
【5.3】C. Delmas, J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 3&4, 165 (1981)
【5.4】R Kitawaki and Terasaki, J. Phys.:Condens. Matter. 14, pp.12495
-12501 (2002)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔