(3.235.139.152) 您好!臺灣時間:2021/05/08 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡孟倫
研究生(外文):Meng-Lun Tsai
論文名稱:DVD用650nm磷化鋁鎵銦雷射二極體的設計與分析
論文名稱(外文):Design and Analysis of 650 nm AlGaInP Laser Diodes for DVD Application
指導教授:郭艷光
指導教授(外文):Yen-Kuang Kuo
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電工程技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:144
中文關鍵詞:磷化鋁鎵銦雷射二極體漏電流脊狀結構
外文關鍵詞:AlGaInPGRIN-SCHSCHDVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本論文主要在探討DVD用650 nm磷化鋁鎵銦雷射二極體漏電流現象對雷射輸出性能的影響。在文章的一開始,首先介紹磷化鋁鎵銦的材料特性及其發展歷程,並對此一材料的發展過程中所遭遇過的問題做一些簡介。在文章的主體部分,根據黃滿芳博士所提供的實驗參數及實驗結果,我使用購自加拿大Crosslight公司的LASTIP模擬軟體來探討用在DVD光資訊儲存的光源,發光波長在650 nm左右的磷化鋁鎵銦雷射二極體之各項光學特性與雷射效應,並將重點放在漏電流現象對於雷射輸出性能的影響,和嘗試一些改善的方法以減少漏電流的影響,進而提升雷射特性溫度。
磷化鋁鎵銦雷射二極體已被發展超過二十年以上,其操作溫度已從過去的60 °C提升到現在的80 °C,但由於磷化鋁鎵銦的最大導電帶能隙差較小以及熱電阻較大,使得在高溫操作之下漏電流對雷射輸出性能影響甚大,使雷射的輸出性能快速的變差。因此如何減少漏電流對於磷化鋁鎵銦雷射二極體在高溫操作之下的影響,進而提升其特性溫度將是本論文的重點。
為了減少漏電流的影響我們嘗試在活性層採用長波長材料砷磷化銦鎵、砷化鋁鎵常用的結構:漸變侷限異質結構(Graded-Index Separate Confinement Hetero-structure,簡稱GRIN-SCH),並且設計出具有不同漸變曲線的情形而加以比較,我們從模擬的方式發現,使用任何一種曲線的漸變侷限異質結構的漏電流都沒有比一般的分開侷限異質結構(Separate Confinement Hetero-structure,簡稱SCH)的漏電流來得少,因此雷射輸出性能並沒有被提升。此一部分的實驗結果也已經由黃滿芳博士著手進行,以待進一步的證實模擬的結果。
我們更進一步的分析量子井個數對於漏電流的影響。我們發現量子井的個數愈多,漏電流的現象愈不明顯,因而特性溫度會被提高,但同時也會增加雷射的臨界電流。當量子井的個數為5個時,已經能有效的抑制住大部分的漏電流,使得特性溫度大為提高,但同時臨界電流又不會上升太多。此一部分的模擬結果也已經被黃滿芳博士進一步證實了。

ABSTRACT

In this thesis, I mainly study the laser performance of the AlGaInP laser diodes due to leakage current from the active region to p-cladding layer. First of all, I introduce the material characteristics and laser diode development history of the AlGaInP. For the main portion of this thesis, I use the LASTIP simulation software to analyze the optical characteristics and laser performance of the AlGaInP laser diodes with an emission wavelength of 650 nm for DVD application. Special attention is paid to the relation between the laser performance of the AlGaInP laser diodes and the leakage current. Possible means for reducing the leakage current have been investigated in this thesis.
The AlGaInP visible laser diodes have been developed for more than two decades. It is important that the AlGaInP laser diodes have high characteristic temperatures for the practical application in DVD-ROM or DVD players. The requirement for the operation temperature of the AlGaInP laser diodes has been increased from 60 ºC in the past to the more recent 80 ºC. However, the AlGaInP laser diodes operating near 650 nm have several inherent drawbacks such as the relatively small conduction band offset and larger thermal resistivity when compared to the traditional laser diodes. These inherent drawbacks result in poor electron confinement and high device temperature, which thus enhance the electron carrier leakage from the active layer to p-type cladding layer at elevated operation temperature and deteriorate the performance of the devices in an accelerating manner. Therefore, it is important to reduce the leakage current so that the optical performance of the 650-nm AlGaInP laser diodes can be improved at high operation temperature.
In the main portion of this thesis, according to the experimental results provided by Professor Man-Fang Huang, I first investigated the laser performance of compressively strained SCH (Separate Confinement Hetero-structure) MQW (Multiple Quantum Well) AlGaInP laser diode due to leakage current at different operation temperatures. In order to reduce the leakage current, I then try to use GRIN-SCH (Graded-Index Separate Confinement Hetero-structure) active region, which has been widely applied to the AlGaAs and InGaAsP laser diodes. I analyzed a series of GRIN-SCH with different graded composition profiles, but I found that the leakage current of all GRIN-SCH structures could not be reduced efficiently. Therefore, the laser performance could not be improved with the use of GRIN-SCH in AlGaInP laser diodes. It is expected that experiments will be carried out by Professor Man-Fang Huang in the near future to verify these simulation results.
In the meantime, I tried to analyze the leakage current of the SCH with different numbers of quantum wells. It was found that the leakage current was reduced, but the threshold current was increased, with an increase in quantum well number. When the quantum well number was five, the leakage current could be efficiently reduced and the characteristic temperature was improved apparently without significant increase in threshold current. The simulated results obtained in this thesis are in good agreement with the experimental results obtained by Professor Man-Fang Huang.

目 錄

目錄 …………………………………………..……………………….…...v
中文摘要 ………………………………..……………………………….viii
英文摘要 …………………………………………………………………..x
圖表索引 ……………………………………………..………………….xiii
第一章 磷化鋁鎵銦材料之光學特性與發展歷史 ………………...1
1.1 磷化鋁鎵銦之材料與光學特性................…..………...2
1.1.1晶格匹配基板砷化鎵.……..……………..………2
1.1.2折射率 …………………………………………...5
1.1.3能隙構造………………………..………………...7
1.1.4載子有效質量…………………..……………….11
1.1.5磊晶成長...……………………..………………..11
參考文獻…………….…………...…..………….…................................. 14
第二章 磷化鋁鎵銦半導體雷射簡介…………………………….. 17
2.1發展歷程………………………………..……………....18
2.2活性層結構……………………………………………..21
2.2.1雙異質結構雷射……………...………………….21
2.2.2量子井雷射……………....………………………24
2.2.3具應變量子井雷射…………...………………….26
2.3漏電流………..……………….………………………30
2.4雷射二極體的幾何結構…...………………….……35
參考文獻…………………………………………………………………..40
第三章 DVD用650 nm磷化鋁鎵銦半導體雷射漏電流分析…......46
3.1前言……………………….…………………...…..........46
3.2模擬軟體LASTIP的理論背景…………………..…….48
3.3元件結構……….……………………………………….51
3.4自發輻射頻譜及增益頻譜譜…...….………...………...53
3.5光侷限層厚度設計…………………………...….…......55
3.6 SCH結構實驗與理論模擬…….……………….….......59
3.7 GRIN-SCH結構設計與理論分析……………….....….66
3.7.1 GRIN-SCH雷射的發展歷程簡介.………….….66
3.7.2理論模擬分析………………………….........…..75
3.8 SCH結構變化量子井個數實驗與理論模擬……………88
3.9結論………………………...…………………...………...95
參考文獻……………………………………………………………….…97
第四章 結論……………………………………………………….....100
附錄A 論文發表清單 ……..………………………………………….I
A.1 中文雜誌論文:1篇 …………………………....……......I
A.2 研討會論文:5篇 ………………………….....………....II
附錄B 論文中模擬程式的說明…………………………………......III
B.1 .gain檔……………………………………………….......III
B.2 .layer檔……………………….....……….........................IV
B.3 .sol檔……………………….....……….............................V
B.4 .plt檔……………………….....………...........................VII
附錄C 模擬中所使用的程式內容……………………………..........III
C.1 .gain檔……………………………………………….......IX
C.2 .layer檔……………………….....………..........................X
C.3 .sol檔……………………….....……….........................XIX
C.4 .plt檔……………………….....………...........................XX

第一章
[1] Y. Y. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties, Springer-Verlag, Berlin, Germany, 1996.
[2] B.G. Streetman, Solid State Electronic Devices, 4nd ed, Prentice-Hall, USA, 1995.
[3] S. M. Sze, Physics of Semiconductor Devices, 2nd ed, John Wiley, New York, 1981.
[4] G. B. Stringfellow and M. G. Craford, High Brightness Light Emitting Diodes: Semiconductors and Semimetals Volume 48, Academic Press, San Diego, California, USA, 1997.
[5] M. F. Huang, H. C. Lee, J. K. Ho, H. C. Lin, C. S. Cheng, C. C. Kuo and Y. K. Kuo, “Laser diode for DVD pick-up head,” SPIE, vol. 3419, p.110-118, 1998.
[6] D. P. Bour, R. S. Geels, D. W. treat, T. L. Paoli, F. Ponce, R. L. Thomton, B. S. Krusor, R. D. Bringans and D. F. Welch, “Strained GaxIn1-xP/(AlGa)0.5In0.5P heterostructure and quantum well laser diodes,” IEEE Journal of Quantum Electronics. Vol.30, p.593-607, 1994.
[7] S. H. Wemple and M. Didomenico, “Behavior of electronic dielectric constant in covalent and ionic materials,“ Physical Review B, Vol.3, p.1338-1351, 1971.
[8] D. P. Bour, “AlGaInP quantum well laser” in “Quantum well lasers,” edited by P. Zory, p.415-460, Academic Press Inc, 1993.
[9] M. A. Afromowitz, “Refractive index of Ga1-xAlxAs,” Solid State Communications, Vol.15, p.59-63, 1974.
[10] Y. Kaneko and K. Kishino, “Refractive indices measurement of (GaInP)m/(AlInP)n quasi-quaternaries and GaInP/AlInP multiple quantum wells,” Journal of Applied Physics, Vol. 76, p.1809-1818, 1994.
[11] 國立彰化師範大學物理研究所黃雅蓮碩士論文,黃綠光磷化鋁鎵銦發光二極體與面射型半導體雷射光學特性之研究,2001。
[12] A. Onton and R. J. Chicotka, “Conduction bands in In1-xAlxP,” Journal of Applied Physics, Vol.41, p.4205-4207, 1970.
[13] R. J. Nelson and N. Holonyak, “Effect of crystal composition on the optimization of radiative recombination in N-free and N-doped In1-xGaxP light-emitting diodes,” Journal of Applied Physics, Vol.47, p.1704-1707, 1976.
[14] P. S. Zory, Quantum Well Lasers, Academic Press, Boston, USA, 1993.
[15] A. A. Mbaye and C. Verie, “Electronic structure of trimetallic III-V alloys:The Al1-x-zGaxInzP system,” Physical Review B, Vol.29, p. 3756-3758, 1984.
[16] J. Rennie, M. Okajima, M. Watanabe and G. I. Hatakoshi, “High temperature (74 0C) cw operation of 634 nm InGaAlP laser diodes utilizing a multiple quantum barrier,” IEEE Journal of Quantum Electronics, Vol.29, p.1857-1862, 1993.
[17] M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique,” Applied Physics Letters, Vol.50, p.906-908, 1987.
[18] M. Honda, M. Ikeda, Y. Mori, K. Kaneko and N. Watanabe, “The energy levels of Zn and Se in (AlxGa1-x)0.52In0.48P,” Japanese Journal of Applied Physics, Vol.24, p.L187- L189, 1985.
[19] P. Lawaetz, “Valence-band parameters in cubic semiconductors,” Physical Review B, Vol. 4, p.3460-3467, 1971.
[20] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski and Bradley, “Properties of high-purity AlxGa1-xAs grown by the metal-organic vapor-phase-epitaxy technique using methyl precursors,” Journal of Applied Physics, Vol.62, p.632-643, 1987.
[21] Kenichi Iga, and Susumu Kinoshita, Process Technology for Semiconductor Lasers: Crystal Growth and Microprocesses, Springer Verlag, Berlin, Germany, 1996.

第二章
[1] S. Yamamoto, H. Hayashi, T. Hayakawa, N. Miyauchi, S. Yano and T. Hijikata, “Room-temperature cw operation in the visible spectral range of 680-700 nm by AlGaAs double heterojunction lasers,” Applied Physics Letters, Vol.41, p.796-798, 1982.
[2] T. Suzuki, I. Hino, A. Gomyo and K. Nishida, “MOCVD-grown Al0.5In0.5P-Ga0.5In0.5P double heterostructure lasers optically pumped at 90 K,” Japanese Journal of Applied Physics, Vol.21, p.L731-L733, 1982.
[3] I. Hino, A. Gomyo, K. Kobayashi, T. Suzuki and K. Nishida, “Room-temperature pulsed operation of AlGaInP/GaInP/AlGaInP double heterostructure visible light laser diodes grown by metalorganic chemical vapor deposition,” Applied Physics Letters, Vol.43, p.987-989, 1983.
[4] H. Asahi, Y. Kawamura, and H. Nagai, “Molecular beam epitaxial growth of InGaAlP visible laser diodes operating at 0.66-0.68 μm at room temperature,” Journal of Applied Physics, Vol. 54, p.6958-6964, 1983.
[5] D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk and G. H. S. Jun, “0.66 mm room-temperature operation of InGaAlP DH laser diodes grown by MBE,” Electronics Letters, Vol.19, p.163-164, 1983.
[6] M. Ikeda, Y. Mori, M. Takiguchi, K. Kaneko and N. Watanabe, “Cw operation of an AlGaInP double heterostructure laser diode at 77K grown by atmospheric metalorganic chemical vapor deposition,” Applied Physics Letters, Vol.45, p.661-663, 1984.
[7] M. Ikeda, Y. Mori, H. Sato, K. Kaneko and N. Watanabe, “Room-temperature continuous-wave operation of an AlGaInP double heterostructure laser grown by atmospheric pressure metalorganic chemical vapor deposition,” Applied Physics Letters, Vol.47, p.1027-1028, 1985.
[8] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterostructure visible lasers,” Electronics Letters, Vol.21, p.931-932, 1985.
[9] M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto and T. Nakanisi, “Room-temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition,” Applied Physics Letters, Vol.48, p.207-208, 1986.
[10] M. Ikeda, M. Honda, Y. Mori, K. Kaneko and N. Watanabe, “Yellow-emitting AlGaInP double heterostructure laser diode at 77 K grown by atmospheric metalorganic chemical vapor deposition,” Applied Physics Letters, Vol.45, p.964-966, 1984.
[11] I. Hino, S. Kawata, A. Gomyo, K. Kobayashi and T. Suzuki, “Continuous wave operation (77K) of yellow (583.6 nm) emitting AlGaInP double heterostructure laser diodes,” Applied Physics Letters, Vol.48, p.557-558, 1986.
[12] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino and T. Suzuki, “661.7 nm room-temperature cw operation of AlGaInP double-heterostructure lasers with aluminium-containing quaternary active layer,” Electronics Letters, Vol.21, p.1162-1163, 1985.
[13] S. Kawata, K. Kobayashi, A. Gomyo, I. Hino and T. Suzuki, “621 nm cw operation of AlGaInP visible semiconductor lasers,” Electronics Letters, Vol.22, p.1265-1266, 1986.
[14] S. Kawata, H. Fujii, K. Kobayashi, A. Gomyo, I. Hino and T. Suzuki “Room-temperature continuous-wave operation of a 640 nm AlGaInP visible-light semiconductor laser,” Electronics Letters, Vol.23, p.1327-1328, 1987.
[15] M. Ishikawa, H. Shiozawa, Y. Tsuburai and Y. Uematsu, “Short-Wavelength (638 nm) room-temperature cw operation of InGaAlP laser diodes with quaternary active layer,” Electronics Letters, Vol.26, p.211-213, 1990.
[16] K. Itaya, M. Ishikawa and Y. Uematsu, “636 nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes,” Electronics Letters, Vol.26, p.839-840, 1990.
[17] M. Ikeda, A. Toda, K. Nakano, Y. Mori and N. Watanabe, “Room-temperature continuous-wave operation of a GaInP/AlGaInP multiquantum well laser grown by metalorganic chemical vapor deposition,” Applied Physics Letters, Vol.50, p.1033-1034, 1987.
[18] J. M. Dallesasse, D. W. Nam, D. G. Deppe and N. Holonyak, “Short-wavelength (< 6400 Å) room-temperature continuous operation of p-n In0.5(AlxGa1-x)0.5P quantum well lasers,” Applied Physics Letters, Vol.53, p.1826-1828, 1988.
[19] S. Kawata, K. Kobayashi, H. Fujii, I. Hino, A. Gomyo, H. Hotta and T. Suzuki, “Room-temperature continuous-wave operation formode-stabilised AlGaInP visible-light semiconductor laser with a multiquantum-well active layer,” Electronics Letters, Vol.24, p. 1489-1490, 1988.
[20] M. Ikeda, E. Morita, A. Toda, T. Yamamoto and K. Kaneko, “GaInP/AlGaInP double-heterostructure laser grown on a (111)B-orienten GaAs substrate by metalorganic chemical vapour deposition,” Electronics Letters, Vol.24, p.1094-1095, 1988.
[21] T. Tanaka, S. Minagawa, T. Kawano and T. Kajimura, “Lasing wavelengths of index-guided AlGaInP semiconductor lasers as functions of off-angle from (100) plane of GaAs substrate,” Electronics Letters, Vol.25, p.905-907, 1989.
[22] S. Minagawa, T. tanaka and M. Kondow, “Room-temperature continuous-wave operation of short-wavelength GaInP/AlGaInP laser grown on (511)A GaAs substrate by metalorganic vapour phase exitaxy,” Electronics Letters, Vol.25, p.925-926, 1989.
[23] H. Hamada, K. Tominaga, M. Shono, S. Honda, K. Yodoshi and T. Yamaguchi, “Room-temperature cw operation of 610 nm band AlGaInP strained multiquantum well laser diodes with multiquantum barrier,” Electronics Letters, Vol.28, p.1834-1836, 1992.
[24] Y. Ueno, K. Endo, H. Fujii, K. Kobayashi, K. Hara and T. Yuasa, “Continuous-wave high-power (75 mW) operation of a transverse-mode stabilized window-structure 680 nm AlGaInP visible laser diode,” Electronics Letters, Vol.26, p.1726-1728, 1990.
[25] H. Fujii, K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, H. Hotta and T. Suzuki, “High-power operation of a transverse-mode stabilized AlGaInP visible light (lL = 683 nm) semiconductor laser,” Electronics Letters, Vol.23, p.938-939, 1987.
[26] A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata and I. Hino, “Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy,” Applied Physics Letters, Vol.50, p.673-675, 1987.
[27] K. Itaya, Y. Watanabe, M. Ishikawa, G. Hatakoshi and Y. Uematsu, “High-power operation of heterobarrier blocking structure InGaAlP visible light laser diodes,” Applied Physics Letters, Vol.56, p.1718-1719, 1990.
[28] K. Itaya, G. Hatakoshi, Y. Watanabe, M. Ishikawa and Y. Uematsu, “High-power cw operation of broad area InGaAlP visible light laser diodes,” Electronics Letters, Vol.26, p.214-215, 1990.
[29] K. Nakano, M. Ikeda, A. Toda and C. Kojima, “Very low threshold current density of a GaInP/AlGaInP double-hererostructure laser grown by MOCVD,” Electronics Letters, Vol.23, p.894-895, 1987.
[30] I. Nomura, K. Kishino, A. Kikuchi and Y. Kaneko, “600-nm-range GaInP/AlInP strained quantum well lasers grown by gas source molecular beam epitaxy,” Japanese Journal of Applied Physics, Vol.33, p.804-810, 1994.
[31] H. D. Summers and P. Blood, “Strain effects in (AlyGa1-y)xIn1-xP lasers operating at fixed threshold gain,” Electronics Letters, Vol.30, p. 236-238, 1994.
[32] H. Shiozawa, H. Okuda, M. Ishikawa, G.-I. Hatakoshi and Y. Uematsu, “High-temperature cw operation of visible light-emitting GaInP/AlGaInP inner stripe laser diodes,” Electronics Letters, Vol.24, p.877-879, 1988.
[33] H. Hamada, R. Hiroyama, S. Honda, M. Shono, K. Yodoshi and T. Yamaguchi, “AlGaInP strained multiple-quantum-well visible laser diodes (lL < 630 nm band) with a multiquantum barrier grown on misoriented substrates,” IEEE Journal of Quantum Electronics, Vol.29, p.1834-1850, 1993.
[34] K. Itaya, M. Ishikawa, H. Okuda, Y. Watanabe, K. Nitta, H. Shiozawa and Y. Uematsu, “Effect of facet coating on the InGaAlP visible light laser diodes,” Applied Physics Letters, Vol.53, p.1363-1365, 1988.
[35] M. Ishikawa, H. Okuda, K. Itaya, H. Shiozawa and Y. Uematsu, “Long-term reliability tests for InGaAlP visible laser diodes,” Japanese Journal of Applied Physics, Vol.28, p.1615-1621, 1989.
[36] H. Okuda, M. Ishikawa, H. Shiozawa, Y. Watanabe, K. Itaya, K. Nitta, G.-I. Hatakoshi, Y. Kokubun and Y. Uematsu, “Highly reliable InGaP/InGaAlP visible light emitting inner stripe lasers with 667 nm lasing wavelength,” IEEE Journal of Quantum Electronics, Vol.25, p. 1477-1482, 1989.
[37] A. Gomyo, K. Kobayashi, S. Kawata, I. Hino and T. Suzuki,“Aging characteristics of AlGaInP/GaInP visible-light lasers (lL = 678 nm),” Electronics Letters, Vol.23, p.85, 1988.
[38] M. Ikeda, H. Sato, T. Ohata, K. Nakano, A. Toda, O. Kumagai and C. Kojima, “680-nm band GaInP/AlGaInP tapered stripe laser,” Applied Physics Letters, Vol.51, p.1572-1573, 1987.
[39] D. P. Bour “AlGaInP quantum well laser” in “Quantum well lasers” edited by P. Zory, p.415-460, Academic Press Inc,1993.
[40] H. Hamada “AlGaInP visible laser diodes grown in misoriented substrates,” IEEE Journal of Quantum Electronics, Vol.27, p.1483-1490, 1991.
[41] H. Okuda, M. Ishikawa, K. Itaya, K. Nitta, G.-I. Hatakoshi, Y. Kokubun and Y. Uematsu, “Highly reliable InGaP/InGaAlP visible light emitting inner stripe lasers with 667 nm lasing wavelength,” IEEE Journal of Quantum Electronics, Vol.25, p. 1477-1482, 1989.
[42] D. P. Bour, R. S. Geels, D. W. treat, T. L. Paoli, F. Ponce, R. L. Thomton, B. S. Krusor, R. D. Bringans and D. F. Welch, “Strained GaxIn1-xP/(AlGa)0.5In0.5P heterostructure and quantum well laser diodes,” IEEE Journal of Quantum Electronics, Vol.30, p.593-607, 1994.
[43] A. Valster, “Effect of strain on the threshold current of GaInP/AlGaInP quantum well lasers emitting at 633 nm,” Technical Digest IEEE 13th International Semiconductor Laser Conference, 1992.
[44] G. Hatakoshi, “Short wavelength AlGaInP visible laser diodes,” IEEE Journal of Quantum Electronics, Vol.27, p.1476-1482, 1991.
[45] S. Kamayama, T. Uenoyama, M. Mannoh, Y. Ban and K. Ohnaka, “Analysis of GaInP/AlGaInP compressive strained multiple-quantum-well-laser,” IEEE Journal of Quantum Electronics, Vol.30, p.1363-1369, 1994.

第三章
[1] D. P. Bour, R. S. Geels, D. W. treat, T. L. Paoli, F. Ponce, R. L. Thomton, B. S. Krusor, R. D. Bringans and D. F. Welch, “Strained GaxIn1-xP/(AlGa)0.5In0.5P heterostructure and quantum well laser diodes,” IEEE Journal of Quantum Electronics, Vol.30, p.593-607, 1994.
[2] M. F. Huang, H. C. Lee, J. K. Ho, H. C. Lin, C. S. Cheng, C. C. Kuo and Y. K. Kuo, “Laser diode for DVD pick-up head,” SPIE, Vol.3419, p.110-118, 1998.
[3] LASTIP User’s Manual Version, 2003.12, First Edition, Crosslight Software Inc.
[4] M. F. Huang, H. C. Lee, J. K. Ho, H. C. Lin, C. S. Cheng, C. C. Kuo and Y. K. Kuo, “Laser diode for DVD pick-up head,” SPIE, vol. 3419, p.110-118, 1998.
[5] W. X. Zou, Z. M. Chuang, L-K. Law, N. Dagli, L. A. Coldren and J.L. Merz, “Analysis and optimization of graded-index separate-confinement heterostructure waveguides for quantum well lasers,” Journal of Applied Physics, Vol.69, p.2857-2861, 1991.
[6] W.T. Tsang, “A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam,” Applied Physics.Letter, Vol.39, p.134-137, 1981.
[7] M. Ohkubo, T. Ijichi, A. Iketani and T. Kituta, “980-nm Aluminum-Free InGaAs/InGaAsP/InGaP GRIN-SCH SL-QW Lasers,” IEEE Journal of Quantum Electronics, Vol.30 p.408-414, 1994.
[8] T. Namegaya, R. Katsumi, N. Iwai, S. Namiki, A. Kasukawa, Y. Hiratani and T.Kikuta, ”1.48 mm High-Power GaInAsP-InP Graded-Index Separate-Confinement-Heterostructure Multiple-Quantum-Well Laser Diodes,” IEEE Journal of Quantum Electronics, Vol.29 p.1924-1930,1993.
[9] R. Milind, J. C. Dries, P. V. Studenkov, S. R. Forrest and D. Z. Garbuzov, “High-Power High-Efficiency 0.98 mm InGaAs–(In)GaAs(P)–InGaP Broadened Waveguide Lasers Grown byGas-Source Molecular Beam Epitaxy,” IEEE Journal of Quantum Electronics, Vol.33, p.2266-2276, 1997.
[10] K. Interholzinger, D. Patel, C. S. Menoni, P. Thiagarajan, G. Y. Robinson and J. E. Fouquet, “Strain-Induced Modifications of the Band Structure of InxGa1-xP–In0.5Al0.5P Multiple Quantum Wells,” IEEE Journal of Quantum Electronics, Vol.34, p.93-100, 1998.
[11] R. F. Kazariinov and G. V. Tsarenkov, “Theory of variable-gap laser,” Soviet Physics. Semiconductor, Vol.10, p.178, 1976.
[12] S. D. Hersee, B. de Cremoux and J. P. Duchemin, “Some characteristics of the GaAs/GaAlAs graded-index separate confinement heterostructure quantum well laser structure,” Applied Physics.Letter, Vol.44, p.476-478, 1984.
[13] J. Nagle, M. Krakowski, T. Weil and C. Weisbuch, “Thresold current of single quantum well lasers:The role of the confining layers, “Applied Physics.Letter, Vol.49, p.1325-1327, 1986.
[14] H. Hirayama, Y. Miyake and M. Asada, “Analysis of Current Injection Efficiency of Separate-Confinement-Heterostructure-Quantum-Film Lasers,” IEEE Journal of Quantum Electronics, Vol.28, p.68-74, 1992.
[15] D. P. Bour and J. R. Shealy, “High-power(1.4 W)AlGaInP graded-index separate confinement heterostructure visible(l~658 nm) laser,” Applied Physics.Letter, Vol.51, p.1658-1660, 1987.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 翁福元(1998)。我國實施綜合高中之社會背景分析。北縣教育,25,53-56。
2. 吳清基(1995)。綜合高中的理念與實施。教改通訊,11,48-53。
3. 林原宏(1996)。時間序列模式分析實例(1)。測驗統計簡訊,13,15-21。
4. 吳雅玲、謝臥龍、方德隆(2001)。中等教育學程中兩性平等教育課程之德懷術研究。課程與教學季刊,4(4),39-58。
5. 張有恆、彭真悌(1999)。航空公司競爭力指標之研究。民航季刊,1(3),237-254。
6. 吳清山(2002)。提升學校競爭力的理念與策略。臺灣教育,613,2-10。
7. 張文雄、何信助、廖年淼(2000)。跨世紀臺灣技職教育之挑戰與因應。技術及職業教育雙月刊,55,65-67。
8. 康龍魁、許順發(2004)。技專校院經營效率評鑑指標建構之研究。教育政策論壇,7(1),59-82。
9. 吳天方、郭淑惠(1999)。職業學校領導者之策略管理觀。技術及職業教育,50,26-29。
10. 吳天方、林金聖(2002)。美國新高中對我國綜合高中的意涵。技術及職業教育,73,21-25。
11. 王保進(1996a)。教育指標基本概念之分析。教育研究資訊,4(3),1-18。
12. 王如哲(2002)。知識經濟時代的學校競爭力。臺灣教育,613,11-19。
13. 方世杰(1998)。國家競爭力影響因素之研究-中、美、日之實證。臺北銀行月刊,28(9),2-20。
14. 莊謙本(1999)。教育評鑑指標的建構。技術及職業教育,52,7-9。
15. 莊謙本、黃雅萍(2002)。知識經濟時代,技職教育的因應之道。技術及職業教育雙月刊,67,2-7。
 
系統版面圖檔 系統版面圖檔