(3.238.173.209) 您好!臺灣時間:2021/05/16 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:顏勝宏
研究生(外文):Yen Sheng-Horng
論文名稱:三五族氮化物能帶結構與藍紫光氮化銦鎵雷射特性之研究
論文名稱(外文):Investigation on Band Structures of III-V Nitrides and Characteristics of Blue-Violet InGaN Lasers
指導教授:郭艷光
指導教授(外文):Yen Kuang-Kuo
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:124
中文關鍵詞:三五族氮化氮化銦鎵半導體雷射能帶間隙電子溢流
外文關鍵詞:III-V NitrideInGaNSemiconductor laserEnergy band gapcurrent overflow
相關次數:
  • 被引用被引用:2
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
三五族氮化物半導體材料是目前發光元件的主流材料,由於其優異的材料特性,因此被廣泛的應用在全彩顯示器、發光二極體、半導體雷射等方面,特別是最近相當熱門的白光LED及下一代DVD。然而氮化物之材料特性仍然有許多有待研究之處,因此在本論文中我利用理論計算的方法,使用國科會高速電腦中心的CASTEP模擬軟體來分析其材料特性,希望能夠提供給長晶者作為參考之用。除了結構特性之外,我亦搜集最新的氮化物材料參數,使用LASTIP模擬軟體來研究藍紫光氮化銦鎵雷射之發光特性,並且分析其發光機制。
在第一章中我首先對影響元件發光性能之因素做簡介,接著對於目前材料的發展現況以及未來的展望做概括性的描述。在這一章的最後介紹Wurtzite及Zincblende的晶體結構及相關的結構參數,而在之後的章節中即開始進入主要研究內容。
在第二章中,我使用CASTEP軟體計算Wurtzite結構之AlGaN、AlInN、InGaN之晶格常數與能帶間隙。其中對於CASTEP軟體、理論基礎、以及計算結果都有詳細的介紹。第三章則是探討Zincblende結構之InGaN之晶格常數與能帶間隙,由於Zincblende結構之AlInN及AlGaN之研究尚未完成,因此在此並沒有一併介紹。
最後在第四章中我研究藍紫光氮化銦鎵量子井雷射在波長為400-480 nm之雷射效能,探討Band-offset ratio對於分析雷射性能所造成之影響,並與實驗之結果做比對。結果發現,除了實際長晶時造成之結構內部缺陷會影響氮化銦鎵的雷射性能之外,活性層量子井中的載子分佈對於氮化銦鎵的雷射性能而言,也是一項相當重要的因素。希望我的研究,不論是長晶前的結構參數設定,或者長晶後的發光效能分析,都能提供長晶者完整而有系統的參考資訊。

III-V nitride semiconductors are the major materials for optical devices due to their excellent characteristics. They are applied to the full-color display, light emitting diodes and semiconductor lasers extensively, and especially white LED and next-generation DVD. However, the physical and structural properties of the III-V nitrides have not been well developed. There are still some characteristics that need to be further clarified at present. In this thesis, the characteristics of the III-V nitrides are studied numerically with the CASTEP simulation program provided by the National Center for High-Performance Computating. Moreover, the characteristics and light-emission mechanism of the blue-violet InGaN lasers are also investigated. Hopefully, the results of this research could be useful for the real growth process.
In chapter 1, I first introduce the factors that affect the light emission efficiency. Then, the material development status and future prospect are reviewed and described. In the last part of this chapter, the wurtzite and zincblende crystal structures and their related parameters are discussed. After this chapter, the major part of my investigation is provided.
In chapter 2, I calculate the lattice constants and band gap energies of the wurtzite AlGaN, AlInN and InGaN with the CASTEP simulation program. The CASTEP simulation program, the numerical methods used in this study, and the calculated results are described in detail in this chapter. Similarly, in chapter 3, I study the lattice constants and band gap energies of the zincblende InGaN. Because the investigations of the zincblende AlInN and InGaN have not been completed, I do not include these two semiconductor materials in this thesis.
Finally, in chapter 4, the effect of band-offset ratio on the analysis of the laser performance of blue-violet InGaN multiple quantum-well lasers with a wavelength of 400-480 nm is studied. In the meantime, the results obtained numerically in this work are compared to the experimental results obtained by other researchers. It is noteworthy that, in additional to the internal loss produced during growth process, the uniformity of the carrier distribution in the active region is also an important factor that affects the InGaN laser performance. It is my hope that, for both structure parameters and laser performance, my research would offer systemantic and useful information for the crystal growers.

目錄 …………………………………………..………………………….. I
中文摘要 ………………………………..……………………………… IV
英文摘要 ………………………………..……………………………… VI
圖表索引 ……………………………………………..………………. VIII
第一章 Ⅲ-Ⅴ氮化物之應用與結構特性簡介 ……….…. 1
1.1 Ⅲ-Ⅴ氮化物之應用……………………..…………….. 2
1.1.1 GaN有關發光及雷射二極體之發展近況 …… 2
1.1.2藍光雷射之特性與問題探討 ….……………… 5
1.1.3下一代DVD及白光LED的發展現況 ….…… 9
1.2 Wurtzite 與Zincblende結構特性簡介 ……………… 13
1.2.1 Wurtzite結構 ………………………………… 13
1.2.2 Zincblende結構 ………………………...…… 15
參考文獻 ……………………………………………………………….. 17
第二章 Wurtzite結構之氮化鋁鎵銦晶格常數與能帶特性 …...… 18
2.1 CASTEP模擬軟體簡介 ……….….…..…….….…. 19
2.2 氮化鋁鎵之晶格常數與能帶特性 …………….….…. 21
2.2.1結果與討論 ………………………………….. 22
2.2.2結論 ..….…………………………………….. 32
2.3 氮化鋁銦之晶格常數與能帶特性 …………….….…. 32
2.3.1結果與討論 ………………………………….. 33
2.3.2結論 ..….…………………………………….. 43
2.4 氮化銦鎵之晶格常數與能帶特性 …………….….…. 43
2.4.1結果與討論 ………………………………….. 44
2.4.2結論 ..….…………………………………….. 54
2.5 結論 …...………………………….…………….….…. 54
參考文獻 …………………………………………………………….…. 56
第三章 Zincblende結構之氮化銦鎵晶格常數與能帶特性 ….… 64
3.1結果與討論 ………………………………….. 64
3.2結論與未來展望 ..…………………………….. 73
參考文獻 …………………………………………………………….…. 76
第四章 藍紫光氮化銦鎵雷射特性之探討 …………………..….. 79
4.1 LASTIP模擬軟體之簡介 ……….….…..…….….…. 79
4.2 Band-offset ratio對分析藍紫光雷射性能之影響 .. 83
4.2.1前言 ……………………………………….. 83
4.2.2模擬結構與參數設定 ……………………... 84
4.2.3模擬結果與分析討論 ……………………... 87
4.2.3.1電子溢流現象 .……..………….……... 87
4.2.3.2受激再結合速率之分析 ……………... 89
4.2.3.3雷射效能之探討 ……………………... 93
4.2.4 結論與未來展望 ……………..…………….. 96
參考文獻 …………………………………………………………….…. 98
第五章 結論 …………………....…………………..………….... 104
附錄一 已發表之相關論文 …..…………………………………….. 107

第一章
[1] 史光國 著, ”現代半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司出版, 90年5月初版。
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K, Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices”, Jpn. J. Appl. Phys. 36 (1997) L1568-L1571.
[3] Y. H. Cho, J. J. Song, S. Keller, M. S. Minsky, E. Hu, U. K. Mishra and S. P. DenBaars, “Influence of Si doping on characteristics of InGaN/GaN multiple quantum wells”, Appl. Phys. Lett. 73 (1998) 1128-1130.
[4] C. Kittel, “Introduction to Solid State Physics”, seventh edition, John Wiley & Sons Inc. (1996).
[5] G. Grosso and G. P. Parravicini, “Solid State Physics”, A Harcourt Science and Technology Company (2000).

第二章
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices”, Jpn. J. Appl. Phys. 36 (1997) L1568-L1571.
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu and W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys”, Appl. Phys. Lett. 80 (2002) 4741-4743.
[3] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap”, Phys. Status Solidi B 229 (2002) R1-R3.
[4] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, ”Unusual properties of the fundamental band gap of InN”, Appl. Phys. Lett. 80 (2002) 3967-3969.
[5] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett. 81 (2002) 1246-1248.
[6] CASTEP 4.6 program developed by Accelrys Inc., 2001.
[7] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140 (1965) A1133-A1138.
[8] G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev. B 54 (1996) 11169-11186.
[9] M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias and J. D. Joannopolous, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys. 64 (1992) 1045-1097.
[10] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations”, Phys. Rev. B 13 (1976) 5188-5192.
[11] P. E. Van Camp, V. E. Van Doren and J. T. Devreese, “High-pressure properties of wurtzite- and rocksalt-type aluminum nitride”, Phys. Rev. B 44 (1991) 9056-9059.
[12] P. E. Van Camp, V. E. Van Doren and J. T. Devreese, “High pressure structural phase transformation in gallium nitride”, Solid State Commun. 81 (1992) 23-26.
[13] K. Miwa and A. Fukumoto, “First-principles calculations of the structural, electronic, and vibr ational properties of gallium nitride and aluminum nitride”, Rhys. Rev. B 48 (1993) 7897-7902.
[14] K. Karch and F. Bechstedt, “Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces”, Phys. Rev. B 56 (1997) 7404-7415.
[15] K. Karch, J.-M. Wagner and F. Bechstedt, “Ab initio study of structural, dielectric, and dynamics properties of GaN”, Phys. Rev. B 57 (1998) 7043-7049.
[16] C. Bungaro, K. Rapcewicz and J. Bernholc, “Ab initio phonon dispersions of wurtzite AlN, GaN, and InN”, Phys. Rev. B 61 (2000) 6720-6725.
[17] Y. K. Kuo and W. W. Lin, “Band-Gap Bowing Parameter of the AlxGa1-xN Derived from Theoretical Simulation”, Jpn. J. Appl. Phys. 41 (2002) 73-74.
[18] G. Steude, B. K. Meyer, A. Goldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films”, Appl. Phys. Lett. 74 (1999) 2456-2458.
[19] S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han and R. M. Biefeld, “The band-gap bowing of AlxGa1-xN alloys”, Appl. Phys. Lett. 74 (1999) 3344-3346.
[20] Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki and I. Akasaki, “Energy band-gap bowing parameter in an AlxGa1-xN alloy”, J. Appl. Phys. 61 (1987) 4540-4543.
[21] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence”, J. Appl. Phys. 82 (1997) 5090-5096.
[22] S. Yoshida, S. Misawa and S. Gonda, “Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy”, J. Appl. Phys. 53 (1982) 6844-6848.
[23] D. K. Wickenden, C. B. Bargeron, W. A. Bryden, J. Miragliotta and T. J. Kistenmacher, “High quality self-nucleated AlxGa1-xN layers on (00.1) sapphire by low-pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. 65 (1994) 2024-2026.
[24] T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano and I. Akasaki, “Optical Properties of Strained AlGaN and GaInN on GaN”, Jpn. J. Appl. Phys. 36 (1997) L177-L179.
[25] L.-C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakas, J. Guo and J. Nordgren, “Density of states, hybridization, and band-gap evolution in AlxGa1-xN alloys”, Phys. Rev. B 58 (1998) 1928-1933.
[26] S. K. Pugh, D. J. Dugdale, S. Brand and R. A. Abram, “Band-gap and k.p. parameters for GaAlN and GaInN alloys”, J. Appl. Phys. 86 (1999) 3768-3772.
[27] T. J. Ochalski, B. Gil, P. Lefebvre, N. Grandjean, M. Leroux, J. Massies, S. Nakamura and H. Morkoc, “Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN”, Appl. Phys.Lett. 74 (1999) 3353-3355.
[28] G. B. Bachelet, D. R. Hamann and M. Schluter, “Pseudopotentials that work: From H to Pu”, Phys. Rev. B 26 (1982) 4199-4228.
[29] J. S. Lin, A. Qteish, M. C. Payne and V. Heine, “Optimized and transferable nonlocal separable ab initio pseudopotentials”, Phys. Rev. B 47 (1993) 4174-4180.
[30] A. M. Rappe, K. M. Rabe, E. Kaxiras and J. K. Joannopoulos, “Optimized pseudopotentials”, Phys. Rev. B 41 (1990) 1227-1230.
[31] N. Troullier and J. L. Martins, “Efficient pseudopotential for plane-wave calculations”, Phys. Rev. B 43 (1991) 1993-2006.
[32] J. Neugebauer and C. G. Van de Walle, “Atomic geometry and electronic structure of native defects in GaN”, Phys. Rev. B 50 (1994) 8067-8070.
[33] J. Furthmuller, P. Kackell and F. Bechstedt, “Extreme softening of Vanderbilt pseudopotentials: General rules and case studies of first-row and d-electron elements”, Phys. Rev. B 61 (2000) 4576-4587.
[34] A. F. Wright and J. S. Nelson, “Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method”, Phys. Rev. B 50 (1994) 2159-2165.
[35] H. Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN ”, Solid State Commun. 23 (1977) 815-819.
[36] N. E. Christensen and I. Gorczyca, “Calculated structural phase transitions of aluminum nitride under pressure”, Phys. Rev. B 47 (1993) 4307-4314.
[37] A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN”, Phys. Rev. B 51 (1995) 7866-7869.
[38] A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley and S. G. Louie, “Quasiparticle band structure of AlN and GaN”, Phys. Rev. B 48 (1993) 11810-11816.
[39] M. Suzuki, T. Uenoyama and A. Yanase, “First-principles calculations of effective-mass parameters of AlN and GaN”, Phys. Rev. B 52 (1995) 8132-8139.
[40] T. Strasser, C. Solterbeck, F. Starrost and W. Schattke, “Valence-band photoemission from the GaN (0001) surface”, Phys. Rev. B 60 (1999) 11577-11585.
[41] K. Osamura, S. Naka and Y. Murakami, “Preparation and optical properties of GaxIn1-xN thin films”, J. Appl. Phys. 46 (1975) 3432-3437.
[42] T. Matsuoka, “Calculation of unstable mixing region in wurtzite In1-x-yGaxAlyN”, Appl. Phys. Lett. 71 (1997) 105-106.
[43] M. Van Schilfgaarde, A. Sher and A.–B. Chen, “Theory of AlN, GaN, InN and their alloys”, J. Cryst. Growth 178 (1997) 8-31.
[44] M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1-xN, InxGa1-xN, and InxAl1-xN”, J. Appl. Phys. 88 (2000) 6476-6482.
[45] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys”, Phys. Status Solidi B 234 (2002) 787-795.
[46] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors”, J. Appl. Phys. 94 (2003) 3675-3696.
[47] W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman and R. A. Stall, “Optical properties of InxGa1-xN alloys grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 84 (1998) 4452-4458.
[48] M. D. McCluskey, C. G. Van de Walle, C. P. Master, L. T. Romano and N. M. Johnson, “Large band gap bowing of InxGa1-xN alloys”, Appl. Phys. Lett. 72 (1998) 2725-2726.
[49] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano and I. Akasaki, “Optical band gap in GaxIn1-xN (0< x <0.2) on GaN by photoreflection spectroscopy”, Appl. Phys. Lett. 73 (1998) 1994-1996.
[50] C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, N. A. El-Masry and L. H. Robins, “Optical band gap dependence on composition and thickness of InxGa1-xN (0< x <0.2) grown on GaN”, Appl. Phys. Lett. 75 (1999) 2566-2568.
[51] H. P. D. Schenk, P. de Mierry, M. Laügt, F. Omnès, M. Leroux, B. Beaumont and P. Gibart, “Indium incorporation above 800℃ during metalorganic vapor phase epitaxy of InGaN”, Appl. Phys. Lett. 75 (1999) 2587-2589.
[52] S. Pereira, M. R. Correia, T. Monteiro, E. Pereira, E. Alves, A. D. Sequeira and N. Franco, “Compositional dependence of the strain-free optical band gap in InxGa1-xN layers”, Appl. Phys. Lett. 78 (2001) 2137-2139.
[53] F. Bechstedt, J. Furthmüller, M. Ferhat, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, V. Yu. Davydov, O. Ambacher, and R. Goldhahn, “Energy gap and optical properties of InxGa1-xN”, Phys. Status Solidi A 195 (2003) 628-633.

第三章
[1] R. Goldhahn, J. Scheiner, S. Shokhovets, T. Frey, U. Köhler, D. J. As and K. Lischka, “Refractive index and gap energy of InxGa1-xN”, Appl. Phys. Lett. 76 (2000) 291-293.
[2] T. Miyajima, Y. Kudo, K.-L. Liu, T. Uruga, T. Honma, Y. Saito, M. Hori, Y. Nanishi, T. Kobayashi and S. Hirata, “Structure Analysis of InN Film Using Extended X-Ray Absorption Fine Structure Method”, Phys. Status Solidi b 234 (2002) 801-804.
[3] M. Ferhat, J. Furthmüller and F. Bechstedt, “Gap bowing and Stokes shift in InxGa1-xN alloys: First-principles studies”, Appl. Phys. Lett. 80 (2002) 1394-1396.
[4] A. F. Wright and J. S. Nelson, “Bowing parameters for zinc-blende AlxGa1-xN and Ga1-xInxN”, Appl. Phys. Lett. 66 (1995) 3051-3053.
[5] M. Van Schilfgaarde, A. Sher and A.-B. Chen, “Theory of AlN, InN and their alloys”, J. Cryst. Growth 178 (1997) 8-31.
[6] A. F. Wright and J. S. Nelson, “Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method”, Phys. Rev. B 50 (1994) 2159-2165.
[7] J. Neugebauer and C. G. Van de Walle, “Atomic geometry and electronic structure of native defects in GaN”, Phys. Rev. B 50 (1994) 8067-8070.
[8] K. Kim, W. R. L. Lambrecht and B. Segall, “Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN”, Phys. Rev. B 53 (1996) 16310-16326.
[9] C. Stampfl and C. G. Van de Walle, “Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation”, Phys. Rev. B 59 (1999) 5521-5535.
[10] A. Zoroddu, F. Bernardini, P. Ruggerone and V. Fiorentini, “First-principle prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Composition of local and gradient-corrected density-functional theory”, Phys. Rev. B 64 (2001) 045208-1-045208-6.
[11] L. E. Ramos, L. K. Teles, L. M. R. Scolfaro, J. L. P. Castineira, A. L. Rosa and J. R. Leite, “Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds”, Phys. Rev. B 63 (2001) 165210-1-165210-10.
[12] M. Fuchs and X. Gonze, “Accurate density functions: Approaches using the adiabatic-connection fluctuation-dissipation theorem”, Phys. Rev. B 65 (2002) 235109-1-235109-4.
[13] V. Cimalla, J. Pezoldt, G. Ecke, R. Kosiba, O. Ambacher, L. Spieß, G. Teichert, H. Lu and W. J. Schaff, “Growth of cubic InN on r-plane sapphire”, Appl. Phys. Lett. 83 (2003) 3468-3470.
[14] T. Lei, T. D. Moustakas, R. J. Graham, Y. He and S. J. Berkowitz, “Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon”, J. Appl. Phys. 71 (1992) 4933-4943.
[15] K. Osamura, S. Naka and Y. Murakami, “Preparation and optical properties of Ga1-xInxN thin films”, J. Appl. Phys. 46 (1975) 3432-3437.

第四章
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K, Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices”, Jpn. J. Appl. Phys. 36 (1997) L1568-L1571.
[2] M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura and S. P. Denbaars, “Higher efficiency InGaN laser diodes with an improved quantum well capping configuration”, Appl. Phys. Lett. 81 (2002) 4275-4277.
[3] K. Domen, R. Soejima, A. Kuramata and T. Tanahashi, “Electron Overflow to the AlGaN p-Cladding Layer in InGaN/GaN/AlGaN MQW Laser Diodes”, MRS Internet J. Nitride Semicond. Res. 3 (1998) 1-5.
[4] S. Nakamura and G. Fasol, in: The Blue Laser Diode, Springer-Verlag, Heidelberg, 1997.
[5] G. B. Stringfellow and M. G. Craford, in: High Brightness Light Emitting Diodes, Academic Press, San Diego, 1997.
[6] J. I. Pankove and T. D. Moustakas, in: Gallium Nitride (GaN) I, Academic Press, San Diego, 1998.
[7] J. I. Pankove and T. D. Moustakas, in: Gallium Nitride (GaN) II, Academic Press, San Diego, 1999.
[8] G. Martin, A. Botchkarev, A. Rockett and H. Morkoc, “Valence-band discontinuous of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy”, Appl. Phys. Lett. 68 (1996) 2541-2543.
[9] J. Piprek, R. K. Sink, M. A. Hansen, J. E. Bowers, S. P. Denbaars, in: R. H. Binder, P. Blood, M. Osinski (Ed.), “Simulation and optimization of 420-nm InGaN/GaN laser diodes”, Physics and Simulation of Optoelectronic Devices VIII, Proc. SPIE. 3944 (2000) 28-39.
[10] C.-C. Chen, H.-W. Chung, G.-C. Chi, C.-C. Chuo and J.-I. Chyi, “Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures”, Appl. Phys. Lett. 77 (2000) 3758-3760.
[11] H. Ünlü and A. Asenov, “Band offsets in III-nitride heterostructures”, J. Phys. D: Appl. Phys. 35 (2002) 591-594.
[12] T. Deguchi, A. Shikanai, K. Torii, T. Sota, S. Chichibu and S. Nakamura, “Luminescence spectra from InGaN multiquantum wells heavily doped with Si”, Appl. Phys. Lett. 72 (1998) 3329-3331.
[13] Y. D. Jho, J. S. Yahng, E. Oh and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells”, Phys. Rev. B 66 (2002) 035334-1-035334-11.
[14] J. Dalfors, J. P. Bergman, P. O. Holtz, B. E. Semelius, B. Monemar, H. Amano and I. Akasaki, “Optical properties of doped InGaN/GaN multiquantum-well structures”, Appl. Phys. Lett. 74 (1999) 3299-3301.
[15] R. M. Chu, Y. D. Zheng, Y. G. Zhou, S. L. Gu, B. Shen, R. Zhang, R. L. Jiang, P. Han and Y. Shi, “Strong quantum confinement and high carrier concentration in AlGaN/InGaN/GaN heterostructure field-effect transistors”, Appl. Phys. A 75 (2002) 1-3.
[16] M. H. Lee, K. J. Kim and E. Oh, “Spectroscopic ellipsometry investigation of Ga1-xInxN/GaN single and double quantum well structures”, Solid State Commun. 123 (2002) 395-398.
[17] M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence”, Appl. Phys. Lett. 72 (1998) 1066-1068.
[18] J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers”, IEE Proc.-Optoelectron 149 (2002) 145-151.
[19] C. Y. Lai, T. M. Hsu, W.-H. Chang, K.-U. Tseng, C.-M. Lee, C.-C. Chuo and J.-I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy”, J. Appl. Phys. 91 (2002) 531-533.
[20] A. Kunold and P. Pereyra, “Photoluminescence transition in semiconductor superlattices. Theoretical calculations for InGaN blue laser device”, J. Appl. Phys. 93 (2003) 5018-5024.
[21] Ch. Manz, M. Kunzer, H. Obloh, A. Ramakrishnan and U. Kaufmann, “InxGa1-xN/GaN band offsets as inferred from the deep, yellow-red emission band in InxGa1-xN”, Appl. Phys. Lett. 74 (1999) 3993-3995.
[22] Y. D. Jho, J. S. Yahng, E. Oh and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells”, Appl. Phys. Lett. 79 (2001) 1130-1132.
[23] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm”, Appl. Phys. Lett. 76 (2000) 22-24.
[24] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett. 72 (1998) 2014-2016.
[25] T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida and M. Ikeda, “100-mW Kink-Free Blue-Violet Laser Diodes With Low Aspect Ratio”, IEEE J. Quantum Electron. 39 (2003) 135-140.
[26] M. Kneissl, W. S. Wong, D. W. Treat, M. Teepe, N. Miyashita and N. M. Johnson, “Continuous-Wave Operation of InGaN Multiple-Quantum-Well Laser Diodes on Copper Substrate Obtained by Laser Liftoff”, IEEE J. Select. Topics Quantum Electron. 7 (2001) 188-191.
[27] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsuhita, Y. Sugimoto, H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes”, Appl. Phys. Lett. 69 (1996) 4056-4058.
[28] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diodes emitting at 420 nm”, Appl. Phys. Lett. 70 (1997) 981-983.
[29] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, “Optical gain and carrier lifetime of InGaN multi-quantum well structure laser diodes”, Appl. Phys. Lett. 69 (1996) 1568-1570.
[30] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, “Subband emissions of InGaN multi-quantum-well laser diodes under room-temperature continuous wave operation”, Appl. Phys. Lett. 70 (1997) 2753-2755.
[31] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes Grown on GaN Substrates with a Fundamental Transverse Mode”, Jpn. J. Appl. Phys. 37 (1998) L1020-L1022.
[32] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu and W. J. Schaff, “Small band gap bowing in InxGa1-xN alloys”, Appl. Phys. Lett. 80 (2002) 4741-4743.
[33] D. Fritsch, H. Schmidt and M. Grundmann, “Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN”, Phys. Rev. B 67 (2003) 235205-1-235205-13.
[34] I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett. 69 (1996) 2701-2703.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊