(3.227.0.150) 您好!臺灣時間:2021/05/08 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊智凱
研究生(外文):Yang Chih-Kai
論文名稱:桿上平衡球系統影像伺服控制器之設計與製作
論文名稱(外文):Design and Implementation of an Image Servo Controller of Ball on Beam System
指導教授:蕭瑛星
指導教授(外文):Shiao Ying-Shing
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:99
中文關鍵詞:桿上球系統影像伺服
外文關鍵詞:Ball on BeamImage Servo
相關次數:
  • 被引用被引用:3
  • 點閱點閱:213
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用影像伺服的方法來實現桿上球系統的平衡控制。平衡桿的驅動器是交流伺服馬達,球位置及桿角度是用CCD取像,由影像處理的方法求得。此一系統是結合個人電腦來完成閉迴路控制。控制程式包括影像處理、系統補償及馬達運動控制等程式,這些都是利用LabVIEW來設計。影像處理的方法包括影像加強及影像對比調整,用來克服環境光源的影響;邊緣偵測及樣板比對等方法,是用來檢測球位置及平衡桿的傾斜角度。影像處理後的球位置輸入至補償器程式,並結合影像處理後的桿角度,送入馬達控制器,控制馬達帶動平衡桿轉動,完成桿上球平衡的即時控制。利用影像伺服控制桿上球系統,因平衡點設定不受硬體的限制,可設定於桿上的任意位置,使得桿上球系統的平衡控制模式更具彈性。由實驗証明影像伺服的方法可以用於桿上球系統且有令人滿意的結果。
This thesis proposes a control strategy based on the image servo method for a ball-on-beam system. The beam actuator is an AC servo motor. A CCD camera is used to acquire the ball-on-beam system image in which the ball position and the beam angle are obtained using the proposed image processing algorithms. This ball-on-beam system is implemented on a personal computer using an image processing program, a system compensator program and a motion control program. These programs were designed using LabVIEW. To overcome the influence of environmental lighting, the image processing method includes image enhancement and histogram equalization. Edge detection and template pattern methods are utilized to measure the ball position on the beam and the beam angle. After image processing, the ball position signal is fed to the compensator program, which combines the beam angle signal into the motion control program to control the AC servo motor that drives the beam motion. These sequences control the ball moving to and fixing at the balance point on the beam in real-time. In the ball-on-beam system servo control image the balance point can be set at any point on the beam because the balance point is not restricted by the hardware. The ball-on-beam system control models with image servo are therefore more flexible. The experimental results demonstrate that the proposed image servo method is effective and efficient for a ball-on-beam system.
第一章 緒論………………………………………………………1
1.1研究背景與動機………………………………………………1
1.2文獻回顧與研究目的…………………………………………4
1.3論文架構………………………………………………………7
第二章 研究實驗系統……………………………………………8
2.1影像處理技術…………………………………………………8
2.2桿上球系統……………………………………………………26
2.3控制器設計……………………………………………………34
第三章 建立實驗系統……………………………………………37
3.1系統架構規劃…………………………………………………37
3.2控制程式設計…………………………………………………41
第四章 實驗結果分析與討論……………………………………46
4.1系統整合………………………………………………………46
4.2平衡桿擺動角度解析度實驗…………………………………47
4.3球位置準確度實驗……………………………………………54
4.4桿上球伺服系統的實驗結果…………………………………58
第五章 結論及未來展望…………………………………………69
參考文獻……………………………………………………………70
附錄A………………………………………………………………A1
附錄B………………………………………………………………B1
附錄C………………………………………………………………C1

[1] J. Huang and C. F. Lin, “Robust Nonlinear Control of the Ball and Beam System,” Proceedings of the American Control Conference, Seattle, Washington USA, Vol. 1, pp. 306-310, June 21-23, 1995.
[2] H. H. Li, N. Godfrey, and Y. Ji, “A Beam-and-Ball Controller Prototype,” IEEE Micro, Vol. 15, No. 6, pp. 64, December 1995.
[3] W. Guanghi, T. Yantao, H. Wei, and J. Huimin, “Stabilization and Equilibrium Control of Super Articulated Ball and Beam System,” Proceedings of the 3rd World Congress on Intelligent Control and Automation, Vol. 5, pp. 3290-3293, June 28-July 2, 2000.
[4] Q. Zhao and C. Cheng, “Robust State Feedback for Actuator Failure Accommodation,” Proceedings of the American Control Conference, Vol. 5, pp. 4225-4230, June 4-6, 2003.
[5] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear Control via Approximate Input-Output Linearization: The Ball and Beam Example” IEEE Transactions on Automatic Control, Vol. 37, No. 3, pp. 392-398, March 1992.
[6] B. C. Chang, H. Kwatny, and S. S. Hu, “An Application of Robust Feedback Linearization to a Ball and Beam Control Problem,” Proceedings of the 1998 IEEE International Conference on Control Applications Trieste, Italy, Vol. 1, pp. 694-698, September 1-4, 1998.
[7] R. P. Ignatov and D. A. Lawrence, “Gain Scheduling via Control Signal Interpolation: The Ball and Beam Example,” Proceedings of the 33rd Southeastern Symposium on System Theory, Athens, pp. 419-423, March 18-21, 2001.
[8] J. Yi, N. Yubazaki, and K. Hirota, “Stabilization Control of Ball and Beam Systems,” IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Vol. 4, pp. 2229-2234, July 25-28, 2001.
[9] F. Song and S. M. Smith, “Applying Incremental Best Estimate Directed Search to Optimize Fuzzy Logic Controllers for a Ball-and-Beam System,” Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu, Vol. 2, pp. 1132-1137, May 12-17, 2002.
[10] J. Glower and J. Munighan, “Fuzzy Saturating Control of a Ball & Beam System,” IEEE 39th Midwest Symposium on Circuits and Systems, Vol. 3, pp. 991-994, August 18-21, 1996.
[11] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Design of a Fuzzy Controller for Stabilizing a Ball-and-Beam System,” The 25th Annual Conference of the IEEE on Industrial Electronics Society, Vol. 2, pp. 520-524, November 29-December 3, 1999.
[12] Y. Jiang, C. McCorkell, and R. B. Zmood, “Application of Neural Networks for Real Time Control of a Ball-Beam System,” Proceedings IEEE International Conference on Neural Networks, Vol. 5, pp. 2397-2402, November 27 -December 1, 1995.
[13] H. Benbrahim, J. S. Doleac, J. A. Franklin, and O. G. Selfridge, “Real-Time Learning: a Ball on a Beam,” International Joint Conference on Neural Networks, Baltimore, Maryland USA, Vol. 1, pp. 98-103, June 7-11, 1992.
[14] H. H. Tack, Y. G. Choo, C. G. Kim, and M. W. Jung, “The Stabilization Control of a Ball-Beam Using Self-Recurrent Neural Networks,” Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, Adelaide, SA Australia, pp. 222-225, August 31-September 1, 1999.
[15] H. K. Kim, D. H. Lee, T. Y. Kuc, and T. C. Yi, “ A Backstepping Design of Adaptive Robust Learning Controller for Fast Trajectory Tracking of Ball-Beam Dynamic Systems,” IEEE International Conference on Systems, Man, and Cybernetics, Beijing China, Vol. 3, pp. 2311-2314, October 14-17, 1996.
[16] F. Gordillo, J. Aracil, and F. Gomez-Estern, “Stabilization of Autonomous Oscillations and the Hopf Bifurcation in the Ball and Beam,” Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 4, pp. 3924-3925, December 10-13, 2002.
[17] R. Olfati-Saber and A. Megretski, “Controller Design for the Beam-and-Ball System,” Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, Vol. 4, pp. 4555-4560, December 16-18, 1998.
[18] L. X. Wang, “Design of Adaptive Fuzzy Controllers for Nonlinear Systems by Input-Output Linearization,” Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference, San Antonio, Texas USA, pp. 89-93, December 18-21, 1994.
[19] Y. Guo, D. J. Hill, and Z. P. Jiang, “Global Nonlinear Control of the Ball and Beam System,” Proceedings of the 35th IEEE of Conference on Decision and Control, Vol. 3, pp. 2818-2823, Dec. 11-13, 1996.
[20] G. Cristadoro, A. De Carli, and L. Onofri, “A Robust Control Strategy for an Unstable Mechanical System,” Proceedings of the 4th International Workshop on Advanced Motion Control, Vol. 2, pp. 488-493, March 18-21, 1996.
[21] E. Laukonen and S. Yurkovitch, “A Ball and Beam Testbed for Fuzzy Identification and Control Design,” The 1993 American Control Conference, San Francisco, CA, June 1993.
[22] P. E. Wellstead, et. al., “Ball and Beam Control Experiment,” International Journal Electrical Engineering Education, Vol. 15, pp. 21, 1989.
[23] L. Di Stefano, S. Mattoccia, and M. Mola, “An Efficient Algorithm for Exhaustive Template Matching Based on Normalized Cross Correlation,” Proceedings of the 12th International Conference on Image Analysis and Processing, pp. 322-327, Sept. 17-19, 2003.
[24] P. I. Corke and P. A. Dunn, “Frame-Rate Stereopsis using Non-Parametric Transforms and Programmable Logic,” Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 1928-1933, May 10-15, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔