(3.235.245.219) 您好!臺灣時間:2021/05/10 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李威進
研究生(外文):Wei-Jin Li
論文名稱:資訊融入九年一貫數學領域第一階段數學測驗之研究:以數字常識為例
論文名稱(外文):A Study of Computerized Number Sense Test for the 1-3 Graders and their Number Sense Development
指導教授:楊德清楊德清引用關係李茂能李茂能引用關係
指導教授(外文):Der-Ching YangFred Mao-Neng Li
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:數學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:146
中文關鍵詞:數字常識測驗編製因素分析第一階段1-3年級科技
外文關鍵詞:factor analysisfirst stage (grade 1-3)number sensetechnologytest design
相關次數:
  • 被引用被引用:39
  • 點閱點閱:424
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:13
本研究旨在編製「國小第一階段電腦化數字常識測驗」,並進一步以此測驗調查完成第一學習階段(國小一至三年級)之四年級學童數字常識的發展情形。
本研究採立意抽樣方式從全省公立小學中選取808位國小四年級學童參與本研究,並進行電腦線上測驗,以建立測驗之信、效度,同時瞭解國小四年級學童數字常識的發展情形。
本研究歷經上述各階段之資料蒐集與統計分析結果,其結論如下:
一、「國小第一階段數字常識測驗」具有良好之信、效度。
二、數字常識含有五大組成成分。
三、國小四年級學童在數字常識各組成份間的發展上具有顯著性差異,且達到中效果值,表示有其實際上應用的價值。
四、國小四年級不同性別之學童在數字常識各組成份發展上具有統計上顯著性差異,但因效果值偏低,因此在實際應用上的價值並不大。
此外,本研究測驗中所設置的原因選項亦有助於了解學生的迷思概念。最後,本研究根據研究之結論,分別對教育主管機關、學校教師及未來之研究提出可行之建議。
The major purposes of this study were to design a computerized number sense test for the 1-3 graders and to investigate their number sense development.
In order to investigate the reliability and validity of the newly-developed number sense test, 808 fourth graders from public primary school in Taiwan were selected and participated this on-line number sense test.
Based on the statistical analysis, the results of this study indicated:
1. Construct reliability and validity for the first-stage computerized number sense test is very good.
2. There are five major components in the number sense test.
3. There is a significant difference among the number sense components for the fourth graders. This result also indicates the practical value for application due to its medium effect size.
4. There is a significant statistical difference between male and female, yet the practical value of this difference in the real world is not useful due to the small effect size.
Finally, this study proposed several suggestions to teachers and researchers based on the research conclusions.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 3
第三節 待答問題與研究假設 3
第四節 名詞釋義 4
第五節 研究範圍 5
第二章 文獻探討 6
第一節 數字常識的意義 6
第二節 數字常識測驗的理論架構 11
第三節 九年一貫數學領域能力指標與數字常識之相關性 20
第四節 數學學習與電腦化測驗 25
第三章 研究方法與步驟 29
第一節 研究方法與架構 29
第二節 研究對象 31
第三節 研究工具 32
第四節 研究實施程序 40
第五節 資料處理 43
第四章 研究結果與討論 46
第一節 國小第一階段電腦化數字常識測驗試題之編製 46
第二節 完成國小第一階段數學學習之學童在數字常識各組成成份間之發展差異的情形 76
第三節 完成國小第一階段數學學習之不同性別學童在數字常識各組成成份發展之差異分析 86
第四節 研究題目之反思 89
第五章 結論、省思與建議 98
參考書目 104
中文部分 104
外文部分 106
附錄 112
附錄一 35題試題相關矩陣 112
附錄二 25題試題相關矩陣 114
附錄三 國小第一階段電腦化數字常識測驗初編之試題 116
附錄四 國小第一階段電腦化數字常識測驗正式試題 141
中文部分
王國川(2002)。圖解SAS在變異數分析上的應用。台北:五南。
何榮桂(1990)。電腦輔助教學系統中之測驗設計。中等教育,41(2),29-34。
何榮桂(1997)。遠距測驗-Dear CAT的設計與實施。物理教育,1(1),51-62。
余民寧(2002)。TESTER for Windows2.0(隨書附贈之電腦程式)。教育測驗與評量:成就測驗與教學評量。台北:心理。
余民寧(2002)。教育測驗與評量:成就測驗與教學評量。台北:心理。
吳明隆(2000)。SPSS統計應用實務。台北:松崗。
吳裕益(1995)。電腦在測驗上的應用。教育實習輔導季刊,5,10-13。
吳裕益(2000)。教學評量的新趨勢。教育研究,70,6-9。
李茂能(2003)。圖解式結構方程模式軟體AMOS之簡介與應用。國民教育研究學報,11,1-39。
周文正(1998)。WWW上電腦輔助測試系統之研製。論文載於第七屆國際電腦輔助教學研討會。高雄:國立高雄師範大學。
林素微(2002)。國小高年級學童數感特徵暨數感動態評量發展之探討。台北:國立台灣師範大學教育心理與輔導研究所博士論文(未出版)。
林素微、洪碧霞(2002,11月)。新能力指標-數感的評量。發表於九年一貫數學能力指標多元評量設計的理論與實務研討會。中國測驗學會2002年會多元評量工作坊。
林裕集(2001)。適用於電腦教室之網路測驗系統:以國小英語科為例。台中:國立台中師範學院測驗統計研究所碩士論文(未出版)。
洪素敏、楊德清(2002)。創意教學∼分數的補教教學。科學教育研究與發展季刊,29,33-52。
徐俊仁、楊德清(2000)。從數字常識的觀點探討九年一貫數學學習領域「數與計算」的能力指標。科學教育研究與發展季刊,21,56-67。
教育部(2000)。數學學習領域(第一學習階段)。國民中小學九年一貫課程暫行綱要。
許清陽(2001)。國小高年級學童數字常識發展之研究。嘉義:國立嘉義大學國民教育研究所碩士論文(未出版)。
許清陽、楊德清、李茂能(2001)。國小高年級學童數字常識評定測驗編製之研究。科學教育學刊,9(4),351-374。
郭生玉(1999)。心理與教育測驗(十三版)。台北:精華。
陳正昌、程炳林、陳新豐、劉子鍵(2003)。多變項分析方法-統計軟體應用。台北:五南。
黃俊英(1995)。多變量分析(五版)。台北:中國經濟企業研究所。
楊壬孝(1988)。國中小學生分數概念的發展(國科會專題研究計畫成果報告編號:NSC-77-0111-S-003-09A)。台北:中華民國行政院國家科學委員會。
楊國樞、文崇一、吳聰賢、李亦園(1989)。社會及行為科學研究法。台北:東華。
楊德清(1997)。數學教育中目前大眾所關切之一個話題-數字常識。科學教育月刊,200,12-18。
楊德清(1998)。筆算能力與數字常識表現之差異性的探討。科學教育月刊,212,3-10。
楊德清(2000a)。數字常識與筆算能力。教師之友,41(2),30-35。
楊德清(2000b)。國小六年級學生回答數字常識問題所使用之方法。科學教育學刊,8(4),379-394。
楊德清(2002)。從教學活動中幫助國小六年級學生發展數字常識能力之研究。科學教育學刊,10(3),233-260。
劉亞平(1997)。教育改革的關心程度問卷與線上測驗之研究。台南:國立台南師範學院資訊教育研究所碩士論文(未出版)。
外文部分
Australian Education Council. (1991). A national statement on mathematics for Australian schools. Melbourne: Curriculum Corporation.
Behr, M. J. (1989). Reflections on the conference. In J. T. Sowder & B. P. Schappelle (Eds.), Establishing foundations for research on number sense and related topics: Report of a conference (pp. 82-84). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15, 323-341.
Brownell, W.A. (1935). Psychological consideration in the learning and the teaching of arithmetic. In The Teaching of Arithmetic, in the tenth Yearbook of the National Council of Teachers of Mathematic(pp.1-31). Washington, DC: National Council of Teachers of Mathematics.
Carpenter, T. P., Coburn, T. G., Reys, R. E., & Wilson, J. W.(1976). Notes from national assessment: Estimation. Arithmetic Teacher, 23, 296-302.
Case, R. (1989). Fostering the development children’s number sense: Reflection on the conference. In J. T. Sowder & B. P. Schappelle (Eds.), Establishing foundations for research on number sense and related topics: Report of a conference (pp.57-64). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Clarke, D. J. (1989). Assessment Alternatives in Mathematics. Carlton, Victoria [Australia]: Curriculum Corporation.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences(2nd ed.). New York: Academic Press.
Cramer, K. A., Post, T. R., & Delmas R. C. (2002). Initial fraction learning by forth-and fifth-grade students: A comparison for the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2),111-144.
Dougherty, B. J. & Crites, T. (1989). Applying Number Sense to Problem Solving. Arithmetic Teacher, 36(6), 22-25.
Ekenstam, A.(1977). On children’s quantitative understanding of numbers. Educational Studies in Mathematics, 8, 317-332.
Enzmann, D. (1997). RanEigen: A program to determine the parallel analysis criterion for the number of principal components. Applied Psychological Measurement. 21(3). 232.
Girden, E. R. (1992). ANOVA: Repeated Measures (Sage university paper series on qualitative applications in the social sciences, 84), Newbury Park, CA: Sage.
Hart, K. (1988). Ratio and proportion, In J. Hibert & M. Behr, (Eds.), Number concepts and operations in the middle grades (pp. 198-279). Reston, VA: NCTM.
Hiebert, J. (1989). Reflections after the conference on number sense. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference(pp. 82-84). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Hope, J. (1989). Promoting number sense in school. Arithmetic Teachers, 36(6), 12-16.
Howden, H.(1989). Teaching number sense. Arithmetic Teachers, 36(6), 6-11.
Japanese Ministry of Education. (1989). Curriculum of Mathematics for the Elementary School. Tokyo:Printing Bureau.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31-36.
Kerslake, C. (1986). Fractions: Children’s strategies and errors: A report of the Strategies and Errors in Secondary Mathematics Project. Windsor, England: NFER-Nelso.
Korchia, M. (2001). SEM Stats. Retrieved Mar. 10, 2004 from the World Wide Web: http://mkorchia.free.fr/sem/sem_stats.xls
Lautenschlager, G. J. (1989). Parallel Analysis Criteria: Revised Equations for Estimating the Latent Roots of Random Data Correlation Matrices. Educational and Psychological Measurement, 49(2), 339-345.
Mack, N. K. (1993). Learning rational numbers with understanding: The case of informal knowledge. In T. Carpenter, T., E. Fennema, & T. Romberg (Eds.), Research on the teaching, learning, and assessing of rational number concepts (pp. 327-362). Hillsdale NJ: Lawrence Erlbaum Associates.
Markovits, Z. (1989). Reactions to the number sense conference. In J. T. Sowder, & B. P. Schappelle (Eds.), Establishing foundations for research on number sense and related topics:report of a conference(pp.78-81). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Markovits, Z., & Sowder, J.T. (1994). Developing number sense:An intervention study in grade 7. Journal for Research in Mathematics Education, 25(1), 4-29.
McIntosh, A., Reys, B. J. & Reys, R. E. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12, 2-8.
McIntosh, A., Reys, B. J. & Reys, R. E., Bana, J., & Farrel, B. (1997). Number Sense in School Mathematics: Student Performance in Four Countries. MASTEC: Mathematics, Science & Technology Education Centre.
National Center for Education Statistics, U.S. Department of Education. (2000). Pursuing Excellence:Comparisons of International Eighth-Grade Mathematics and Science Achievement from a U.S. Perspective, 1995 and 1999. P. Gonzales, C. Calsyn, L. Jocelyn, K. Mak, D. Kastberg, S. Arafeh, T. Williams, and W. Tsen. NCES 2001-028. Washington, DC: U.S. Government Printing Office.
National Center for Education Statistics. (2002). What Does the NAEP Mathematics Assessment Measure? Retrieved May 2, 2003 from the World Wide Web:http://www.nces.ed.gov/nationsreportcard/mathematics/whatmeasure.asp
National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA:National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics. (2000). The Principles and Standards for School Mathematics. Reston, VA:National Council of Teachers of Mathematics.
National Research Council. (1989). Everybody Counts. A report to the nation on the future of mathematics education. Washington, DC: National Academy.
Post, T. R., Cramer, K., Behr, M. J., & Lesh, R., Harel, G. (1992). Curricula implications of research on the teaching and learning of rational numbers concepts. In T. Carpenter, T., E. Fennema, & T. Romberg (Eds.), Research on the teaching, learning, and assessing of rational number concepts (pp. 327-362). Hillsdale NJ: Lawrence Erlbaum Associates.
Overall, J. E. & Klett, C. J. (1972). Applied Multivariate Analysis. New York: McGraw-Hill.
Resnick, L.B. (1989). Defining, assessing, and teaching number sense. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference(pp.35-39). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Reys, B. J. (1989). Conference on number sense:Reflections. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference(pp.70-73). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Reys, B. J. (1994). Promoting number sense in the middle grades. Mathematics Teaching in the Middle School, 1(2), 114-120.
Reys, B. J., Barger, R., Dougherty, B., Hope, J., Lembke, L., Markovits, Z., Parnas, A., Reehm, S., Sturdevant, R., Weber, M., & Bruckheimer, M., (1991). Developing number sense in the middle grades. Reston. VA: National Council of Teachers of Mathematics.
Reys, R. E., & Yang, D. C. (1998). Relationship between Computational Performance and Number Sense among Sixth- and Eighth-Grade Students in Taiwan, Journal for Research in Mathematics Education, 29, 225-237.
Reys, R. E. (1989). Some personal reflections on the conference on number sense, mental computation, and estimation. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference(pp.65-66). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Reys, R. E. (1998).Computation versus Number Sense. Mathematics teaching in the middle school, 4(2), 110-112.
Reys, R. E., Rybolt, J. F., Bestgen, B. J., & Wyatt, T. W. (1982). Processes used by good computational estimators. Journal for Research in Mathematics Education, 13(3), 183-201.
Rubenstein, R. N. (1985). Computational estimation and related mathematical skill. Journal for Research in Mathematics Education, 16(2), 106-119.
SAS Institute Inc. (2002). POLYCHOR macro Version 1.3. Retrieved DEC. 10, 2003 from the World Wide Web: http://www.sas.com
Schoen, H. (1989). Reaction to the conference on number sense. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference(pp. 67-69). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Sharma, S. (1996). Applied multivariate techniques. New York: John Wiley.
Silver, E. A. (1984). Computational estimation for numeracy. Educational Studies in Mathematics,15, 59-73.
Silver, E. A. (1989). On making sense of number sense. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference (pp. 92-96). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Sowder, J. (1992b). Making sense of numbers in school mathematics. In G. Leinhardt, & R. Hatterp(Eds.), Analysis of Arithmetic for Mathematics Teaching (pp.1-51). Hillsdale, NJ:Erlbaum.
Sowder, J. T. (1989). Introduction. In J. T. Sowder, & B. P. Schappelle(Eds.), Establishing foundations for research on number sense and related topics:report of a conference (pp.1-5). San Diego: San Diego University, Center for Research in Mathematics and Science Education.
Sowder, J. T., & Schappelle, B. (1994). Number sense-making. Arithmetic Teacher, 41(2), 342-345.
Sowder, J.T. (1992a). Estimation and number sense, in D. A. Grouws(Ed.), Handbook of research on mathematics teaching and learning (pp.371-389). New York: Macmillan.
Stanislas Dehaene(1997). The Number Sense:How The Mind Creates Mathematics. New York: Oxford University.
Thompson, C. S., & Rathmell, E. C. (1989). By way of introduction. Arithmetic Teacher, 36(6), 2-3.
Threadgill-Sowder, J. (1984). Computational estimation procedures of school children. Journal of Educational Research, 77(6), 332-336.
Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago.
Yang, D. C. (In press). Developing number sense through mathematical diarywriting, Australian Primary Classroom.(NSC 89-2511-S-415-001)
Yang, D. C., & Reys, R. E. (2001a) Developing Number Sense. Mathematics Teaching, 176, 39-41. (NSC 89-2511-S-415-001)
Yang, D. C., & Reys, R. E. (2001b). One Fraction Problem: Many Solution Paths. Mathematics Teaching in the Middle School, 7(3), 164-166. [NCTM official Journal] (NSC 89-2511-S-415-001)
Yang, D. C., & Reys, R. E. (2002) Fractional Number Sense Strategies Possessed by Sixth Grade Students in Taiwan. Hiroshima Journal of Mathematics Education, 10(December), 53-70.
Yang, D.C. (2003). Teaching and Learning Number Sense-An Intervention Study of fifth grade students in Taiwan. International Journal of Science and Mathematics Education. 1(1), 115-134.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔