跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭元正
研究生(外文):Yuan-Cheng Cheng
論文名稱:依據路口壅塞偵測的機動式交通號誌控制系統之研究
論文名稱(外文):The Study on the Versatile Traffic Control System with the Detection of Intersections Congestion
指導教授:孫宗瀛孫宗瀛引用關係
指導教授(外文):Tsung-Ying Sun
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:智慧型運輸系統交叉路口壅塞派翠網排隊理論機動式交通號誌系統模糊理論模糊推理系統智慧型機動式交通號誌控制系統。
外文關鍵詞:Intelligent Versatile Traffic Control System (IVIntelligent Transportation Systems (ITS)Intersections CongestionPetri NetQueueing theoryVersatile Traffic Control System (VTCS)Fuzzy Inference System (FIS)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:4
台灣由於經濟的迅速發展,車輛數量持續的快速成長。雖然政府推廣智慧型運輸系統(Intelligent Transportation Systems ITS)企圖對都會運輸的交通尖峰獲得改善,但侷限交通建設發展的程度跟不上小客車持有率增加的速度,都市地區交通壅塞問題日益嚴重,因此如何解決都市交通問題之有效方法是大眾所關心重視的議題。
都市中的道路系統,大都以交叉路口(Intersection)為主體,號誌控制又是交叉路口時間與空間之交替重要控制關鍵點因此我們將先論述理論部份:派翠網(Petri Net)及排隊理論(Queueing Theory),再配合交通工程手冊,推導出機動式交通號誌系統(Versatile Traffic Control System VTCS),以替代尖峰壅塞(congestion)時段需動用許多交通警察維持秩序為目標。
VTCS架構中壅塞程度的判斷方式是以單車道Link長度三分之二容量之車輛數為基準,可能較不具彈性客觀。因此,本論文又提出智慧型機動式交通號誌控制系統(Intelligent Versatile Traffic Control System, IVTCS),以解決此問題。IVTCS應用模糊理論(fuzzy theory)的概念,發展一組模糊決策針對VTCS的缺點進行改善。採用模糊推理系統(fuzzy inference system, FIS)的原因,在於交通號誌控制是一個無法用明確的數學式或模型表示複雜系統,模糊推論可以更接近人類的近似推理模式,對模糊不明的事實也可以進行判斷並做出最後的決策。本論文的各項模擬結果也證明VTCS較傳統固定時相的交通號誌控制策略有更佳的效能表現,同樣的也驗證IVTCS較VTCS有更佳的效能表現。
With the growth in Taiwan’s economy, the amount of vehicles increased year by year. Although the authorities pushed ahead with considerable public works in transportation, the boosting number of automobiles still heavily contributed to the traffic problem in urban area. For the purpose of utility in present communications to be efficient, most researcher focus on the phase control of intersections that mainly compose road system. This thesis proposed a Versatile Traffic Control System (VTCS) based on Petri Net and Queueing Theory instead of adopting stationary period to analyze instantaneous traffic flows. Under congestion, VTCS can automatically infer better strategy for all parameters of traffic signal control to improve the movement of single intersection.
The determination of traffic congestion in VTCS could be not objective by basing on the number of vehicle over two third of road capacity on single link. Therefore, for acquiring more objective conclusion we proposed IVTCS (Intelligent Versatile Traffic Control System). We know that the traffic is obviously a complex system, and it can’t be expressed as explicit mathematical equation or model. Hence, IVTCS adapts fuzzy theory and approaches the way of human being’s reasoning to making decision on uncertain conditions and improve the shortcoming of VTCS. Simulations on IVTCS and VTCS showed that in traffic control on intersection the former attain more efficient performance than the latter. So are compared with traditional stationary traffic control, we also got reasonable results to prove that adapting IVTCS is sensible than others.
致謝Ⅰ
中文摘要Ⅱ
英文摘要Ⅲ
目錄Ⅴ
圖目錄Ⅷ
表目錄Ⅹ
第一章緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 交通號誌專業名詞簡介 3
1.2.2 交通號誌控制的論述 5
1.3 研究目的與課題 10
1.4 論文內容與架構 11
第二章論文理論基礎 14
2.1 排隊理論 14
2.1.1 排隊模型架構 14
2.1.2 排隊系統的執行 17
2.1.3 Little,s Law 19
2.1.4 排隊理論總結 21
2.2 派翠網 22
2.2.1 派翠網基本定義 22
2.2.2 動態的派翠網 24
2.2.3 派翠網應用實例 30
2.3 模糊系統 32
2.3.1 模糊集合之基本定義 33
2.3.2 模糊邏輯運算與模糊規則的分類38
2.3.3 模糊推論之架構與應用 41
第三章機動式交通號誌控制系統 46
3.1 機動式交通號誌控制架構 46
3.1.1 車種資料前處理 48
3.1.2 執行相位決定 51
3.1.3 執行時間決定 55
3.1.4 執行相位時間是否延長 57
3.1.5 是否產生左轉保護時相 57
3.1.6 轉換時相 58
3.2 固定時相與機動號誌控制比較 59
3.2.1 壅塞部份 64
3.2.2 不壅塞部份 66
3.3本章結論 68
第四章 智慧型交通號誌控制系統 69
4.1 以模糊理論控制交通號誌 69
4.1.1 執行時間決定方塊圖(Time)71
4.1.2 執行相位延長決定方塊圖(Extension)72
4.1.3 下一相位方塊圖(Next phase)74
4.1.4 決定轉態方塊圖(Decision)75
4.2 機動策略與模糊策略做比較76
4.2.1 壅塞部份 76
4.2.2 不壅塞部份 78
4.3本章結論 79
第五章結論及建議 80
5.1 結論 80
5.2 未來研究方向與建議 81
參考文獻 82
作者簡歷 85
1.交通部交通技術標準規範公路類公路工程部,交通工程手冊,交通部編審,幼獅文化事業公司印行,(1990)。
2.孫信泰,號制化路口衝突左轉車流容量之研究,交通大學交通運輸研究所論文,(1998)。
3.陳建旭,交叉路口間距對幹道車流紓解影響之研究,交通大學交通運輸研究所論文,(1998)。
4.李建昌,幹道系統車道配置與時制計畫整合設計之研究,逢甲大學交通管理研究所論文,(2002.8)。
5.李昭賢,路段交通管制績效意義之研究,交通大學交通運輸研究所論文,(1998)。
6.交通部台灣區國道新建工程局,編訂公路交控工程設計手冊,(1999.12)
7.張智華,應用智慧型號誌控制器執行適應性控制之研究,台灣大學土木研究所論文,(2002.6)。
8.Jee-Hyong Lee and Lee-Kwang Hyung, “Distributed and cooperative fuzzy controllers for traffic intersections group,” IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol.29 Issue:2, Page(s): 263 —271, May 1999.
9.Robert Hoyer and Ulrich Jumar,“Fuzzy control of traffic lights,”IEEE World Congress on Computational Intelligence the Third IEEE Conference on Fuzzy Systems, vol.3, Page(s): 1526 -1531, June 1994.
10.Devinder Kaur, Elisa Konga and Esa Konga,“Fuzzy traffic light controller,”the 37th Midwest Symposium on Circuits and Systems, Vol.2, Page(s): 1507 —1510, Aug. 1994.
11.J. Favilla, A. Machion and F. Gomide, “Fuzzy traffic control: adaptive strategies,” Second IEEE International Conference on Fuzzy Systems, vol.1, Page(s): 506 —511, 28 March-1 April 1993.
12.M. Patel and N. Ranganathan, “IDUTC: an intelligent decision-making system for urban traffic-control applications,” IEEE Transactions on Vehicular Technology, Vol.50 Issue:3, May 2001.
13.S. Chiu and S. Chand,“Self-organizing traffic control via fuzzy logic,”the 32nd IEEE Conference on Decision and Control, vol.2, Page(s): 1897 -1902, 15-17 Dec. 1993.
14.T. Iokibe, N. Mochizuki and T. Kimura,“Traffic prediction method by fuzzy logic,”Second IEEE International Conference on Fuzzy Systems, vol.2, Page(s): 673 -678, 28 March-1 April 1993.
15.Jong-Wan Kim and Byeong-Man Kim,“A GA-based fuzzy traffic simulation for crossroad management,”the 2001 Congress on Evolutionary Computation, vol.2, Page(s): 1289 —1295, 27-30 May 2001.
16.Shing-Fei Lee, You-Wei Teng and Wen-June Wang,“Highway ramp control via fuzzy logic,”The Ninth IEEE International Conference on Fuzzy Systems, vol.1, Page(s): 274 -278, 7-10 May 2000.
17.H. Hellendoorn and R. Baudrexl, “Fuzzy neural traffic control and forecasting,” IEEE International Conference on International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, vol.4, Page(s): 2187 -2194, 20-24 March 1995.
18.T. Murata, “Petri nets: Properties, analysis and applications,” the IEEE, Vol.77 Issue:4, Page(s): 541 —580, April 1989.
19.Shyi-Ming Chen, Jyh-Sheng Ke and Jin-Fu Chang, “Knowledge representation using fuzzy Petri nets,” IEEE Transactions on Knowledge and Data Engineering, vol.2 Issue:3, Page(s): 311 —319, Sept. 1990.
20.Xiaoou Li, Wen Yu and Lara-Rosano F., “Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework,” IEEE Transactions on Systems, Man and Cybernetics, Part C, vol.30 Issue:4, Page(s): 442 —450, Nov. 2000.
21.P. Cheng and K. Forward, “Fuzzy Petri nets,” 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, vol.2, Page(s): 402— 408, 21-23 May 1997.
22.Shyi-Ming Chen,“A knowledge acquisition scheme for rule-based systems,”IEEE Region 10 Conference on TENCON ''93. Proceedings. Computer, Communication, Control and Power Engineering, vol.2 Issue:0, Page(s): 621 -625, 19-21 Oct. 1993.
23.Christos G. Cassandras and Stephane Lafortune, Introduction to Discrete Event Systems, Kluwer Academic Publishers, 1999.
24.FHWA, “Development of IVHS Traffic Parameter Specifications, a Report for Detection Technology for IVHS Contract NUMBER DTFHGI-91-C-00076” April 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊