|
1. Griendling, K.K. and G.A. FitzGerald, Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 2003. 108(16): p. 1912-6. 2. Cines, D.B., et al., Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood, 1998. 91(10): p. 3527-61. 3. Pinkney, J.H., et al., Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes, 1997. 46 Suppl 2: p. S9-13. 4. Jaffe, E.A., Physiologic functions of normal endothelial cells. Ann N Y Acad Sci, 1985. 454: p. 279-91. 5. Zwick, Y.C., Bleeding disorders. Von Willebrand factor. Thromb Haemost, 2003. 90(3): p. VII-X. 6. Suri, C., et al., Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 1996. 87(7): p. 1171-80. 7. Moslen, M.T., Reactive oxygen species in normal physiology, cell injury and phagocytosis. Adv Exp Med Biol, 1994. 366: p. 17-27. 8. Schwentker, A., et al., Nitric oxide and wound repair: role of cytokines? Nitric Oxide, 2002. 7(1): p. 1-10. 9. Fleming, I., et al., Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res, 2001. 88(1): p. 44-51. 10. Rajagopalan, S., et al., Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest, 1996. 97(8): p. 1916-23. 11. Cannan, C.R., et al., Natural history of hypertrophic cardiomyopathy. A population-based study, 1976 through 1990. Circulation, 1995. 92(9): p. 2488-95. 12. McMillan, G.C., Historical review of research on atherosclerosis. Adv Exp Med Biol, 1995. 369: p. 1-6. 13. Bradley, J.R., D.R. Johnson, and J.S. Pober, Endothelial activation by hydrogen peroxide. Selective increases of intercellular adhesion molecule-1 and major histocompatibility complex class I. Am J Pathol, 1993. 142(5): p. 1598-609. 14. Galis, Z.S. and J.J. Khatri, Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res, 2002. 90(3): p. 251-62. 15. Collins, T., Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab Invest, 1993. 68(5): p. 499-508. 16. Nishida, M., et al., G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature, 2000. 408(6811): p. 492-5. 17. Torres, M. and H.J. Forman, Redox signaling and the MAP kinase pathways. Biofactors, 2003. 17(1-4): p. 287-96. 18. Wink, D.A., et al., Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal, 2001. 3(2): p. 203-13. 19. Jugdutt, B.I., Nitric oxide and cardiovascular protection. Heart Fail Rev, 2003. 8(1): p. 29-34. 20. Rossig, L., et al., Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J Biol Chem, 2000. 275(33): p. 25502-7. 21. Matsunaga, T., et al., Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. J Biol Chem, 2004. 22. Kotamraju, S., et al., Nitric oxide inhibits H2O2-induced transferrin receptor-dependent apoptosis in endothelial cells: Role of ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A, 2003. 100(19): p. 10653-8. 23. Muhl, H., et al., Nitric oxide donors induce apoptosis in glomerular mesangial cells, epithelial cells and endothelial cells. Eur J Pharmacol, 1996. 317(1): p. 137-49. 24. Takeuchi, K., et al., Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I2 production and nitric oxide synthase expression. Cardiovasc Res, 2004. 62(1): p. 194-201. 25. Westermarck, J. and V.M. Kahari, Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J, 1999. 13(8): p. 781-92. 26. Stetler-Stevenson, W.G., Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest, 1999. 103(9): p. 1237-41. 27. Kuzuya, M. and A. Iguchi, Role of matrix metalloproteinases in vascular remodeling. J Atheroscler Thromb, 2003. 10(5): p. 275-82. 28. Ravanti, L. and V.M. Kahari, Matrix metalloproteinases in wound repair (review). Int J Mol Med, 2000. 6(4): p. 391-407. 29. Yamamoto-Tabata, T., et al., Human cytomegalovirus interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J Virol, 2004. 78(6): p. 2831-40. 30. Saarialho-Kere, U.K., et al., Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J Clin Invest, 1993. 92(6): p. 2858-66. 31. Vaalamo, M., et al., Distinct populations of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds. J Invest Dermatol, 1997. 109(1): p. 96-101. 32. Fisher, G.J., et al., Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J Clin Invest, 1998. 101(6): p. 1432-40. 33. Ashcroft, G.S., et al., Human ageing impairs injury-induced in vivo expression of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -2 proteins and mRNA. J Pathol, 1997. 183(2): p. 169-76. 34. Kumada, M., et al., Adiponectin Specifically Increased Tissue Inhibitor of Metalloproteinase-1 Through Interleukin-10 Expression in Human Macrophages. Circulation, 2004. 35. Chen, B.P., et al., ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem, 1994. 269(22): p. 15819-26. 36. Hsu, J.C., et al., Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci U S A, 1991. 88(9): p. 3511-5. 37. Beelman, C.A. and R. Parker, Degradation of mRNA in eukaryotes. Cell, 1995. 81(2): p. 179-83. 38. Brawerman, G., mRNA decay: finding the right targets. Cell, 1989. 57(1): p. 9-10. 39. Liang, G., et al., ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem, 1996. 271(3): p. 1695-701. 40. Cano, E., C.A. Hazzalin, and L.C. Mahadevan, Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol Cell Biol, 1994. 14(11): p. 7352-62. 41. Kyriakis, J.M., et al., The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 1994. 369(6476): p. 156-60. 42. Mahadevan, L.C. and D.R. Edwards, Signalling and superinduction. Nature, 1991. 349(6312): p. 747-8. 43. Hai, T., et al., ATF3 and stress responses. Gene Expr, 1999. 7(4-6): p. 321-35. 44. Allen-Jennings, A.E., et al., The roles of ATF3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas. J Biol Chem, 2001. 276(31): p. 29507-14. 45. Chen, B.P., C.D. Wolfgang, and T. Hai, Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol, 1996. 16(3): p. 1157-68. 46. Shtil, A.A., et al., Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene, 1999. 18(2): p. 377-84. 47. Zimmermann, J., et al., Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene, 2000. 19(25): p. 2913-20. 48. Amundson, S.A., et al., Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene, 1999. 18(24): p. 3666-72. 49. Cai, Y., et al., Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood, 2000. 96(6): p. 2140-8. 50. Benbrook, D.M. and N.C. Jones, Heterodimer formation between CREB and JUN proteins. Oncogene, 1990. 5(3): p. 295-302. 51. Wolfgang, C.D., et al., Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem, 2000. 275(22): p. 16865-70. 52. Soderberg, L.S., L.W. Chang, and J.B. Barnett, Inhaled isobutyl nitrite produced lung inflammation with increased macrophage TNF-alpha and nitric oxide production. Adv Exp Med Biol, 1996. 402: p. 187-9. 53. Hattori, Y., et al., Glycated serum albumin-induced nitric oxide production in vascular smooth muscle cells by nuclear factor kappaB-dependent transcriptional activation of inducible nitric oxide synthase. Biochem Biophys Res Commun, 1999. 259(1): p. 128-32. 54. Gooch, K.J., C.A. Dangler, and J.A. Frangos, Exogenous, basal, and flow-induced nitric oxide production and endothelial cell proliferation. J Cell Physiol, 1997. 171(3): p. 252-8. 55. Kook, H., et al., Nitric oxide-dependent cytoskeletal changes and inhibition of endothelial cell migration contribute to the suppression of angiogenesis by RAD50 gene transfer. FEBS Lett, 2003. 553(1-2): p. 56-62. 56. Chen, H.H. and D.L. Wang, Nitric Oxide Inhibits Matrix Metalloproteinase-2 Expression via the Induction of Activating Transcription Factor 3 in Endothelial Cells. Mol Pharmacol, 2004. 65(5): p. 1130-40. 57. Kawasaki, K., et al., Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol, 2003. 23(16): p. 5726-37. 58. Goligorsky, M.S., et al., Co-operation between endothelin and nitric oxide in promoting endothelial cell migration and angiogenesis. Clin Exp Pharmacol Physiol, 1999. 26(3): p. 269-71. 59. Gurjar, M.V., R.V. Sharma, and R.C. Bhalla, eNOS gene transfer inhibits smooth muscle cell migration and MMP-2 and MMP-9 activity. Arterioscler Thromb Vasc Biol, 1999. 19(12): p. 2871-7. 60. Okada, Y., et al., Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem, 1990. 194(3): p. 721-30. 61. Hanemaaijer, R., et al., Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J, 1993. 296 ( Pt 3): p. 803-9. 62. Galis, Z.S., et al., Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res, 1994. 75(1): p. 181-9. 63. Owens, M.W., et al., Effects of reactive metabolites of oxygen and nitrogen on gelatinase A activity. Am J Physiol, 1997. 273(2 Pt 1): p. L445-50. 64. Matsunaga, T., et al., Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation, 2002. 105(18): p. 2185-91. 65. Lau, Y.T. and W.C. Ma, Nitric oxide inhibits migration of cultured endothelial cells. Biochem Biophys Res Commun, 1996. 221(3): p. 670-4. 66. Tan, E., et al., Estrogen receptor-alpha gene transfer into bovine aortic endothelial cells induces eNOS gene expression and inhibits cell migration. Cardiovasc Res, 1999. 43(3): p. 788-97. 67. Bian, J. and Y. Sun, Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol, 1997. 17(11): p. 6330-8. 68. Price, S.J., D.R. Greaves, and H. Watkins, Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem, 2001. 276(10): p. 7549-58. 69. Qin, H., Y. Sun, and E.N. Benveniste, The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem, 1999. 274(41): p. 29130-7. 70. Peracchia, F., et al., cAMP involvement in the expression of MMP-2 and MT-MMP1 metalloproteinases in human endothelial cells. Arterioscler Thromb Vasc Biol, 1997. 17(11): p. 3185-90. 71. Papadimitriou, E., et al., Regulation of extracellular matrix remodeling and MMP-2 activation in cultured rat adrenal medullary endothelial cells. Endothelium, 2001. 8(3): p. 181-94. 72. Arenas, I.A., et al., Angiotensin II-induced MMP-2 release from endothelial cells is mediated by TNF-alpha. Am J Physiol Cell Physiol, 2004. 286(4): p. C779-84. 73. Toschi, E., et al., Wild-type p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells. J Invest Dermatol, 2000. 114(6): p. 1188-94. 74. Yan, C., H. Wang, and D.D. Boyd, ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem, 2002. 277(13): p. 10804-12. 75. Hashimoto, Y., et al., An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res, 2002. 30(11): p. 2398-406. 76. Kawauchi, J., et al., Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem, 2002. 277(41): p. 39025-34. 77. Ricote, M., et al., Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A, 1998. 95(13): p. 7614-9. 78. Marx, N., et al., PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol, 1999. 19(3): p. 546-51. 79. Kliewer, S.A., J.M. Lehmann, and T.M. Willson, Orphan nuclear receptors: shifting endocrinology into reverse. Science, 1999. 284(5415): p. 757-60. 80. Ricote, M., et al., The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998. 391(6662): p. 79-82. 81. Fukushima, M., Prostaglandin J2--anti-tumour and anti-viral activities and the mechanisms involved. Eicosanoids, 1990. 3(4): p. 189-99. 82. Park, E.Y., I.J. Cho, and S.G. Kim, Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-gamma and retinoid X receptor heterodimer. Cancer Res, 2004. 64(10): p. 3701-13. 83. Goetze, S., et al., Leptin induces endothelial cell migration through Akt, which is inhibited by PPARgamma-ligands. Hypertension, 2002. 40(5): p. 748-54. 84. Goetze, S., et al., PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun, 2002. 293(5): p. 1431-7. 85. Worley, J.R., et al., Metalloproteinase expression in PMA-stimulated THP-1 cells. Effects of peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and 9-cis-retinoic acid. J Biol Chem, 2003. 278(51): p. 51340-6. 86. Hsueh, W.A. and R.E. Law, PPARgamma and atherosclerosis: effects on cell growth and movement. Arterioscler Thromb Vasc Biol, 2001. 21(12): p. 1891-5. 87. Nawa, T., et al., Repression of TNF-alpha-induced E-selectin expression by PPAR activators: involvement of transcriptional repressor LRF-1/ATF3. Biochem Biophys Res Commun, 2000. 275(2): p. 406-11. 88. Calnek, D.S., et al., Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol, 2003. 23(1): p. 52-7. 89. Ceaser, E.K., et al., Oxidized low-density lipoprotein and 15-deoxy-delta 12,14-PGJ2 increase mitochondrial complex I activity in endothelial cells. Am J Physiol Heart Circ Physiol, 2003. 285(6): p. H2298-308. 90. Levonen, A.L., et al., Biphasic effects of 15-deoxy-delta(12,14)-prostaglandin J(2) on glutathione induction and apoptosis in human endothelial cells. Arterioscler Thromb Vasc Biol, 2001. 21(11): p. 1846-51. 91. Erl, W., et al., Cyclopentenone prostaglandins induce endothelial cell apoptosis independent of the peroxisome proliferator-activated receptor-gamma. Eur J Immunol, 2004. 34(1): p. 241-50. 92. Lennon, A.M., et al., MAP kinase cascades are activated in astrocytes and preadipocytes by 15-deoxy-Delta(12-14)-prostaglandin J(2) and the thiazolidinedione ciglitazone through peroxisome proliferator activator receptor gamma-independent mechanisms involving reactive oxygenated species. J Biol Chem, 2002. 277(33): p. 29681-5. 93. Martinet, W. and M.M. Kockx, Apoptosis in atherosclerosis: focus on oxidized lipids and inflammation. Curr Opin Lipidol, 2001. 12(5): p. 535-41. 94. Liao, F., et al., Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest, 1994. 94(2): p. 877-84. 95. Keaney, J.F., Jr., et al., Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest, 1995. 95(6): p. 2520-9. 96. Rajagopalan, S., et al., Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest, 1996. 98(11): p. 2572-9. 97. Nawa, T., et al., Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis, 2002. 161(2): p. 281-91. 98. Gurjar, M.V., et al., Role of reactive oxygen species in IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. Am J Physiol Heart Circ Physiol, 2001. 281(6): p. H2568-74. 99. Libby, P. and G.K. Hansson, Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest, 1991. 64(1): p. 5-15. 100. Lo, Y.Y., et al., Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem, 1998. 69(1): p. 19-29. 101. Rogers, R.J., J.M. Monnier, and H.S. Nick, Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway. J Biol Chem, 2001. 276(23): p. 20419-27. 102. Drysdale, B.E., D.L. Howard, and R.J. Johnson, Identification of a lipopolysaccharide inducible transcription factor in murine macrophages. Mol Immunol, 1996. 33(11-12): p. 989-98. 103. Farber, J.M., A collection of mRNA species that are inducible in the RAW 264.7 mouse macrophage cell line by gamma interferon and other agents. Mol Cell Biol, 1992. 12(4): p. 1535-45. 104. Nie, G.Y., et al., Construction and application of a multispecific competitor to quantify mRNA of matrix metalloproteinases and their tissue inhibitors in small human biopsies. J Biochem Biophys Methods, 1999. 40(3): p. 81-99. 105. Kelm, M. and J. Schrader, Control of coronary vascular tone by nitric oxide. Circ Res, 1990. 66(6): p. 1561-75. 106. Wink, D.A., et al., The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys, 1998. 351(1): p. 66-74. 107. Zanetti, M., Z.S. Katusic, and T. O''Brien, Expression and function of recombinant endothelial nitric oxide synthase in human endothelial cells. J Vasc Res, 2000. 37(6): p. 449-56. 108. Wung, B.S., et al., NO modulates monocyte chemotactic protein-1 expression in endothelial cells under cyclic strain. Arterioscler Thromb Vasc Biol, 2001. 21(12): p. 1941-7. 109. Katusic, Z.S., N.M. Caplice, and K.A. Nath, Nitric Oxide Synthase Gene Transfer as a Tool to Study Biology of Endothelial Cells. Arterioscler Thromb Vasc Biol, 2003. 110. Hashimoto, K., R.T. Ethridge, and B.M. Evers, Peroxisome proliferator-activated receptor gamma ligand inhibits cell growth and invasion of human pancreatic cancer cells. Int J Gastrointest Cancer, 2002. 32(1): p. 7-22. 111. Hashimoto, K., B.J. Farrow, and B.M. Evers, Activation and role of MAP kinases in 15d-PGJ2-induced apoptosis in the human pancreatic cancer cell line MIA PaCa-2. Pancreas, 2004. 28(2): p. 153-9. 112. Bouloumie, A., et al., Leptin induces oxidative stress in human endothelial cells. Faseb J, 1999. 13(10): p. 1231-8. 113. Maack, C., et al., Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation, 2003. 108(13): p. 1567-74. 114. Zeng, H., D. Zhao, and D. Mukhopadhyay, Flt-1-mediated down-regulation of endothelial cell proliferation through pertussis toxin-sensitive G proteins, beta gamma subunits, small GTPase CDC42, and partly by Rac-1. J Biol Chem, 2002. 277(6): p. 4003-9. 115. Eberhardt, W., et al., Nitric oxide modulates expression of matrix metalloproteinase-9 in rat mesangial cells. Kidney Int, 2000. 57(1): p. 59-69. 116. Zhang, H.J., et al., Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem, 2002. 277(23): p. 20919-26. 117. Trachtman, H., et al., Nitric oxide stimulates the activity of a 72-kDa neutral matrix metalloproteinase in cultured rat mesangial cells. Biochem Biophys Res Commun, 1996. 218(3): p. 704-8. 118. Upchurch, G.R., Jr., et al., Nitric oxide inhibition increases matrix metalloproteinase-9 expression by rat aortic smooth muscle cells in vitro. J Vasc Surg, 2001. 34(1): p. 76-83. 119. Johnson, C. and Z.S. Galis, Matrix Metalloproteinase-2 and -9 Differentially Regulate Smooth Muscle Cell Migration and Cell-Mediated Collagen Organization. Arterioscler Thromb Vasc Biol, 2003. 120. Thomas, D.D., et al., Guide for the use of nitric oxide (NO) donors as probes of the chemistry of NO and related redox species in biological systems. Methods Enzymol, 2002. 359: p. 84-105. 121. Chiu, J.J., et al., Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signal-regulated kinase pathway in endothelial cells. Circ Res, 1999. 85(3): p. 238-46. 122. Gu, Z., et al., S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science, 2002. 297(5584): p. 1186-90. 123. Ichijo, H., From receptors to stress-activated MAP kinases. Oncogene, 1999. 18(45): p. 6087-93. 124. Yin, T., et al., Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem, 1997. 272(32): p. 19943-50. 125. Zhuge, Y. and J. Xu, Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J Biol Chem, 2001. 276(19): p. 16248-56. 126. Kintscher, U., et al., Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes. Eur J Pharmacol, 2000. 401(3): p. 259-70. 127. Angeli, V., et al., Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. J Immunol, 2003. 170(10): p. 5295-301. 128. Murata, T., et al., Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci, 2000. 41(8): p. 2309-17. 129. Liu, H., et al., PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat, 2003. 79(1): p. 63-74. 130. Law, R.E., et al., Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation, 2000. 101(11): p. 1311-8. 131. Chawla, A., et al., PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med, 2001. 7(1): p. 48-52. 132. Kim, H.Y., et al., Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol, 2003. 171(11): p. 6072-9. 133. Inoue, K., et al., TNFalpha-induced ATF3 expression is bidirectionally regulated by the JNK and ERK pathways in vascular endothelial cells. Genes Cells, 2004. 9(1): p. 59-70. 134. Boraschi, D., et al., Endothelial cells express the interleukin-1 receptor type I. Blood, 1991. 78(5): p. 1262-7.
|