跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱時甫
研究生(外文):Chiou,Shyr-Fuu
論文名稱:複合式螺旋管流與衝擊噴柱陣列活塞冷卻系統熱傳研究
論文名稱(外文):Heat Transfers Of Reciprocating Spiral Tube and Impingement Jet-Array in Compound Piston Cooling System
指導教授:張始偉張始偉引用關係
指導教授(外文):Chang, Shyy-Woei
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:往復螺旋管流往復衝擊噴柱陣列活塞冷卻
外文關鍵詞:Reciprocating Spiral TubeReciprocating Impinging Jets-ArrayPiston Cooling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
由於船舶引擎單位重量馬力輸出持續提高,引擎活塞熱負載(含熱應力及活塞材料溫度)亦逐漸增高,因此必須配合此發展趨勢,提昇活塞之冷卻系統效能,以確保引擎運轉時活塞構件之可靠性。本研究針對活塞裙內設之冷卻螺旋通道及活塞冠下方設置衝擊噴柱陣列,探討此類流場應用在活塞冷卻時之熱傳性能。研究焦點分析螺旋管內因離心力引生之渦流(Dean flows),由於隨活塞往復運動,其熱傳性能自非往復流場改變之情形。另一主題探討非往復及往復狀態之衝擊噴柱陣列熱傳特性。研究內容係以實驗方法,檢測平滑螺旋管及衝擊噴柱陣列於0、0.83、1.25、1.67和2Hz等五個往復頻率之熱傳係數分佈。並比較往復與非往復狀態之熱傳結果,探討往復運動對平滑螺旋管流與衝擊噴柱陣列熱傳性能所造成之影響。熱傳現象之參數分析,探討熱傳係數因受流場慣性力、往復力及浮力之個別與偶合效應作用所產生之變化;推導熱傳實驗公式,提供相關業者參考使用。
關鍵詞:往復螺旋管流, 往復衝擊噴柱陣列, 活塞冷卻
As a result of ever-mounting power-to-weight ratio of a marine diesel engine, the thermal loads of a piston (involving the thermal stress and material temperatures)increased accordingly. To cope with this particular developing trend, heat transfer augmentation for the internal cooling system of piston is essential in order to assure the reliability of piston. This research program examined the heat transfer performances of a spiral cooling passage and an impingement jets array with piston cooling application. The research focused on the influences of reciprocation on the heat transfers in the spiral passage and impingement jets-array. This research implemented an experimental approach that measured the local heat transfer distributions along the spiral flow passage and over the impingement surface at reciprocating frequencies of 0, 0.83, 1.25, 1.67 and 2Hz. The heat transfer results attained from the static and reciprocating tests were compared to unravel the impact of reciprocation on the heat transfer performance. The parametric relationships between the convective heat transfer and inertial, reciprocating and buoyancy forces were subsequently performed with the aim of deriving the designer friendly heat transfer correlations for piston cooling system.
Keywords: Reciprocating Spiral Tube,
Reciprocating Impinging Jets-Array, Piston Cooling.
目 錄
致謝…………………………………………………………………………I
中文摘要……………………………………………………………………II
英文摘要……………………………………………………………………III表目錄………………………………………………………………………IV
圖目錄………………………………………………………………………V
符號說明……………………………………………………………………VIII
第一章 前言………………………………………………………………1
1-1 船舶推進柴油引擎發展趨勢……………………………………1
1-2 活塞冷卻系統熱傳強化…………………………………………9
1-3 研究目標…………………………………………………………12
第二章 文獻回顧與研究策略……………………………………………13
2-1 彎管(螺旋管)流熱傳研究……………………………………13
2-2 噴柱衝擊(陣列)流熱傳研究…………………………………15
2-3 脈動流與往復流熱傳研究………………………………………18
2-4 研究策略…………………………………………………………24
2-4-1 往復流理論分析………………………………………………24
2-4-2 研究規劃 ……………………………………………………32
第三章 實驗設備與方法…………………………………………………34
3-1 往復實驗機組……………………………………………………34
3-2 熱傳實驗模組……………………………………………………36
3-2-1 螺旋管熱傳實驗模組…………………………………………36
3-2-2 衝擊噴柱陣列熱傳實驗模組…………………………………38
3-3 實驗步驟…………………………………………………………40
3-3-1 往復螺旋管流實驗……………………………………………41
3-3-2 往復衝擊噴柱陣列實驗………………………………………42
3-3-3 熱損失實驗 …………………………………………………43
3-4 數據處理…………………………………………………………44
3-5 參數範圍…………………………………………………………47
第四章 往復螺旋管流熱傳………………………………………………50
4-1 靜態螺旋管流熱傳………………………………………………50
4-2 往復螺旋管流熱傳………………………………………………54
4-3 參數分析…………………………………………………………58
第五章 噴柱陣列衝擊面熱傳……………………………………………67
5-1 靜止狀態噴柱陣列………………………………………………67
5-2 往復狀態噴柱陣列………………………………………………73
5-3參數分析 …………………………………………………………75
第六章 結論………………………………………………………………89
6-1 往復螺旋管流熱傳………………………………………………89
6-2 噴柱陣列衝擊面熱傳……………………………………………90
參考文獻 …………………………………………………………………92
個人著作目錄 ……………………………………………………………95
參考文獻
(References)
1.Editorial Board of MESJ, 1999, Annual review of marine
engineering progress in 1998, Journal of The Marine Engineering Society in Japan, Vol.34, No.7, pp. 436~441.
2.Christen K, 1979, Diesel motor ships engines and machinery, Reprinted by Georges Book Shop, pp.201~278, GAD Publishers, Copenhagen.
3.樓無畏, 1997, “船舶輪機實務” , pp.12~40, 前程出版社.
4.Bergles A.E., 1997, Heat transfer enhancement - the encouragement and accommodation of high fluxes’, Journal of Heat Transfer, ASME, Vol. 119, pp. 8~19.
5.Mori,Y. and Nakayama,W., 1965, Study on forced convective heat transfer in curved pipes(1st Report, laminar), Int. J. Heat Mass Transfer, Vol. 8, pp.67~82.
6.Mori,Y. and Nakayama,W., 1967a, Study on forced convective heat transfer in curved pipes (2nd Report, turbulent region), Int. J. Heat Mass Transfer, Vol. 10, pp37~57.
7.Mori,Y. and Nakayama,W., 1967b, Study on forced convective heat transfer in curved pipes (3rd Report, theoretical analysis under the condition of uniform wall temperature and practical formulae), Int. J. Heat Mass Transfer, Vol. 10, pp. 681~695.
8.Kalb, C. E. and Seader, J. D., 1983, Entrance region heat transfer in a uniform wall-temperature helical coil with transition from turbulent to laminar flow, Int. J. Heat Mass Transfer, Vol. 26, No. 1, pp.23~32.
9.Prusa, J. and Yao, L. S., 1982, Numerical solution for fully developed flow in heated curved tubes, J. Fluid Mech. Vol.123, pp. 503~522.
10.Koopman, R. N. and Sparrow, E. M., 1976, Local and average transfer coefficients due to an impinging rows of jets, Int. J. Heat Mass Transfer, 19, pp. 673~683.
11.Florschuetz, L. W., Truman, C. R. and Metzger, D. E.,1981, Streamwise flow and heat transfer distribution for jet impingement with crossflow, ASME Journal of Heat Transfer, 103, No. 2, pp. 337~342.
12.Obot, N. and Trabold, T. A., 1987, Impingement heat transfer within arrays of circular jets. Part I:effects of minimum, intermediate, and complete crossflow for small and large spacing, ASME Journal of Heat Transfer, 109, No. 4, pp. 872~879.
13.Metzger, D. E. and Korstad, R. J., 1972, Effects of crossflow on impingement hat transfer, ASME Journal of Engineering for Power, 94, pp. 35~42.
14.Florschutz, L. W., Berry, R. A. and Metzger, D. E., 1980, Periodic streamwise variation of heat transfer coefficients for inline and staggered arrays of circular jets with crossflow of spent air, ASME Journal of Heat Transfer, 102, No. 1, pp. 132~137.
15.Florschutz, L. W., Metzger, D. E.and Su. C. C., Isoda, Y. and Tseng, H,H., 1987, Heat transfer characteristics for jets array impingement with initial crossflow, ASME Journal of Heat Transfer, 106, No. 1, pp. 34~41.
16.Hollworth, B.R. and Dagan, L., 1980, Arrays of impinging jets with spent fluid removal through vent holes on the target surface-Part I:average heat transfer, ASME Journal of Engineering for Power, 102, pp. 994~999.
17.Huber, A.M. and Viskanta R., 1994a, Convective heat transfer to a confined impinging array of air jets with spent air exits, ASME Journal of Heat Transfer, 116, pp. 570~576.
18.Huber, A.M. and Viskanta R., 1994b, Effect of jet-to-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets, Int. J. Heat Mass Transfer, 37, No. 18, pp. 2859~2869.
19.Pan, Y. and Webb, B.W., 1995, Heat transfer characteristics of arrays of free-surface liquid jets, ASME Journal of Heat Transfer, 117, pp.878~883.
20.Su,L.M and Chang, S.W. 2002, Detailed heat transfer measurement of impinging jet arrays, issued from grooved surfaces, International Journal of Thermal Sciences, 41,pp 823~841.
21.Chang, S,W. and Su,L.M. 1997, Reciprocating motion affected heat transfer inside a ribbed duct with piston cooling application for marine diesel engine”, JOURNAL OF SHIP RESEARCH, Vol. 41, No. 4, pp. 332~339, Dec.
22.Zabieiski L. and Mestel A.J., 1998, Unsteady blood flow in a helical symmetric pipe, J. Fluid Mech. Vol. 370, pp.321~345.
23.Guo L., Chen X., Feng Z. and Bai B., 1998, Transient convective heat transfer in a helical coiled tube with pulsatile fully developed turbulent flow, Int. J. Heat Mass Transfer, Vol. 41. pp. 2867~2875.
24.Dittus F.W. and Boe;ter L.M.K.,1930,Univ.Calif.,Berkeley,Publ.Eng.,
PartⅡ,pp.443.
25.Sonntag and Van Wylen,1982,“Introduction to Thermodynamics Classical &Statistical”, Second Edition, Copyright at 1982 by John Wiley &Sone Inc.,pp.103,
26.Xin, R.C. and Ebadian, M.A., 1997,The Effects of Prandtl Numbers on Local and Averaged Convective Heat Transfer Characteristics in Helical Pipes, ASME J. Heat Transfer, Vol. 119, pp. 467-473.
27.Chang, S.W., Su, L.M., Morris, W.D., and Liou, T.M., Heat Transfer in a Smooth-walled Reciprocating Anti-Gravity Open Thermosyphon, Int. J. Thermal Sciences, Vol. 42, (2003) pp. 1089-1103.
28.王毓弘,往復運動下平滑面熱虹吸管熱傳與流場之實驗研究,清華大學動機系碩士論文(2003).
29.Aldabbagh, L.B.Y., and Sezai, l., 2002, Numerical simulation of three-dimensional laminar multiple imping square jets, Int. J. Heat Fluid Flow, 23, pp. 509~518.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top