跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鐘加
研究生(外文):Chung-Chia Huang
論文名稱:鋯鈦酸鉛薄膜於蘭姆波感測元件之製作與訊號量測
論文名稱(外文):The Fabrication and Response Measurement of Lamb-Wave Devices Using PZT Thin Film
指導教授:余志成
指導教授(外文):Jyh-Cheng YU
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:102
中文關鍵詞:蘭姆波平板波鋯鈦酸鉛薄膜微感測元件表面聲波
外文關鍵詞:Flexural Plate Wave SensorsLamb waveSurface Acoustic waveMicrosensorPZT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
本論文旨在探討鐵電薄膜於超聲波微感測元件之應用架構,包括元件設計、材料與製程之應用整合技術,以及感測訊號的量測與分析。在基板或薄膜上傳遞的應力波如表面聲波(Surface Acoustic Wave ) 與平板波(Flexural Wave)/ 蘭姆波(Lamb Wave),其傳遞速度對外界刺激所產生的物理量如應變、質量等,具有相當高的敏感度,在機械與生醫感測元件上具有相當高的應用潛力(相當高重複)。而結合鐵電薄膜於矽結構的超聲波元件,更具有低成本、微小化、易與電路系統整合等優點。蘭姆波因不易受到待測液體的波傳能量散射,且其背蝕刻所造成薄膜孔穴,剛好可作為待測溶液的負載區,可精確檢出傳遞基材因外界刺激所產生的物理量如吸附質量與平板內應力等變化。本研究利用溶膠-凝膠法製備鋯鈦酸鉛壓電薄膜,同時配合表面及塊材微細加工技術,來進行壓電薄膜聲波元件的製作。研究中成功的製作出藍姆波感測元件,元件的材料系統為Pt/Ti/PZT/LSMO/SiO2/Si, PZT薄膜厚度約0.6 (mm),Si平板厚度約為30 (mm),板波波長為100 (mm)。本文除了探討不同指叉電極參數對波傳訊號的影響、不同平板厚度對訊號特性曲線的改變、元件的電路匹配以及元件製作的各製程參數外,並實際將該元件應用於負載液體重量、壓力與溫度的感測,結果顯示其延遲線設計所造成的波傳相位差對這些物理量具有明顯的線性關係,驗證了本元件架構於感測應用的可行性。
This thesis focuses on the integration of the electromechanical design, the thin film formation, and the fabrication of the Lamb wave (Flexural Plate Wave, FPW) microsensors using the ferroelectric thin film on silicon membrane. The ultrasonic mechanics waves such as Rayleigh and Lamb waves are very sensitive to the stimuli including loading mass and stiffness change, and thus are widely used in mechanical and biomedical sensors. The proposed sensor using the ferroelectric films on silicon structure has many advantages such as low cost, miniature, and easy integration with existing measuring systems. There is less scattering of energy from the Lamb Wave to the examined liquid due to its low phase velocity. The etched cavity can be served as the loading zone to detect the density of liquid and the stress of membrane. This research adopts the Sol-Gel method to prepare piezoelectric lead piezoelectric lead zirconate titanates (PZT) thin films. Surface and bulk micromachining technologies are used to fabricate the acoustic wave devices. An interdigital transducer is fabricated successfully on PZT thin films to generate the acoustic waves. The material system of the device is Pt/Ti/PZT/LSMO/SiO2/Si. The thickness of the PZT thin films is about 0.6 (mm) and the thickness of the Si membrane is 30 (mm). The plate wave wavelength is 100 (mm). Several design issues are discussed to analyze their effects on the sensor performance: (1) the geometric parameters of the IDT, (2) the thickness of the plate membrane, (3) the resistance and impedance matching of the measuring circuit, and (4) the fabrication parameters of the devices. The transmitted constant (S21) of the fabricated sensors are measured using the network analyzer to study the sensitivity of liquid mass, pressure, and temperature. The results show a significant linear relationship between the phase shift and these measurands, that demonstrates the application feasibility of the lamb wave sensors.
目錄
第一章 諸論 1
1.1 簡介 1
1.2 文獻回顧 3
1.3 研究目的與各章摘要 5
第二章 超聲波原理簡介 7
2.1 壓電材料與特性 7
2.1.1 壓電效應 7
2.1.2 鋯鈦酸鉛鐵電材料 8
2.2 聲波原理 11
2.2.1 波傳理論 11
2.2.2 IDT指叉電極 16
2.2.3 指叉電極等效電路 17
2.3 聲波元件應用 22
第三章 壓電薄膜與聲波元件製作 25
3.1 元件製作流程 25
3.2 基板準備 26
3.3 光罩設計 26
3.4 氧化物電極LSMO的製備與披覆 28
3.4.1 氧化物電極LSMO的製備 29
3.4.2 氧化物電極的披覆 30
3.5 PZT壓電薄膜之製備與披覆 31
3.5.1 PZT壓電薄膜的製備 32
3.5.2 PZT壓電薄膜的披覆 33
3.6 壓電薄膜性質分析與量測 34
3.6.1 XRD結晶型態與成份鑑定分析 35
3.6.2 AFM表面微結構之觀察 38
3.6.3 SEM薄膜厚度量測 39
3.6.4 P-E hysterisis curve鐵電及壓電性質的分析量測 40
3.7 RIE蝕刻氮化矽參數分析 42
3.7.1 實驗步驟與目的 42
3.7.2 光阻微影製程 43
3.7.3 RIE蝕刻Si3N4 47
3.8 聲波元件結構製作 49
第四章 元件設計與聲波特性 54
4.1 簡介 54
4.2 聲波元件量測方法 54
4.2.1 S參數訊號量測 54
4.2.2 阻抗匹配 56
4.3 指叉對數與頻率響應之關係 58
4.4 指叉電極交叉長度與頻率響應之關係 60
4.5 延遲距離與頻率響應之關聯 63
4.6 匹配與未匹配比較 65
4.7 基材厚度與頻率響應之關係探討 69
第五章 感測元件的應用與訊號量測 73
5.1 感測原理 73
5.2 質量感測器之應用與量測 74
5.2.1 水質量改變與頻率及相位偏移之關係探討 74
5.2.2 甘油滴數改變與頻率及相位偏移之關係探討 79
5.2.3 不同液體對頻率及相位偏移之關係探討 84
5.3 溫度感測器之應用與量測 90
5.4 壓力感測器之應用與量測 95
第六章 結論及未來研究方向 99
6.1 結論 99
6.2 未來研究方向 100
參考文獻 102
1.參考文獻
[1]簡俊謙(2001)”表面聲波元件之設計及其在寬頻振盪器之應用”,交通大學電信工程所碩士論文
[2]T.Y. Jiang, T.Y. Ng, K.Y. Lam (2000) “Optimization of a piezoelectric ceramic acutator”, Sensors and Actuators A, Vol. 84, pp. 81-94
[3]Michael Koch, Nick Harris(1998) “A novel micromachined pump based on thick-film piezoelectric actuation”, Sensors and Actuators A, Vol. 70, pp. 98-103
[4]J.Deng, W.Zhu, O.K. Tan, X.Yao(2001) “Amorphous Pb(Zr,Ti)O3 thin film hydrogen gas sensor”, Sensors and Actuators B, Vol. 77, pp. 416-420
[5]Y.Nemirovsky, A.Nemirovsky, N.Setter (1996) “Design of a novel thin-film piezoelectric accelerometer”, Sensors and Actuators A, Vol. 56, pp. 239-249
[6]Vijay K. Varadan, Hareesh Subramanian (2001) “Fabrication,characterization and testing of wireless MEMS-IDT based microaccelerometer”, Sensors and Actuators A, Vol. 90, pp. 7-19
[7]Shifeng Li, Shaochen Chen (2003) “Analytical analysis of a circular PZT actuator for valveless micropumps”, Sensors and Actuators A, Vol. 104, pp. 151-161
[8]Sheng-Yuan Chu, Te-Yi Chen, I-Ta Tsai (2004) “Effects of poling field on the piezoelectric and dielectric properties of Nb additive PZT-based ceramics and their applications on SAW devices”, Materials Letters, Vol. 58, pp. 752-756
[9]吳朗,(1994)“電子壓電陶瓷”, 全欣圖書
[10]X.G.Tang, H.L.W.Chan, Q.R.Yin (2002) “Processing effects on the microstructure and ferroelectric properties of Pb(Zr,Ti)O3 thin film prepared sol-gel process”, Surface and Coatings Technology, Vol. 161, pp. 169-173
[11]Yuhuan Xu (2001) “Ferroelectric thin films fabricated by sol-gel technique”, IEEE, pp. 696-701
[12]Tatsuya Omori, Hirofumi Makita (1999) “Selective area PZT-preparation by sol-gel method”, IEEE Ultrasonic Symposium, pp. 995-998
[13]Kashyap R. Bellur, H.N. Al-shareef (1999) “Electrical charaterization of sol-gel derived PZT thin films”, IEEE, pp. 448-451
[14]X.J.Zheng, Z.Y. Yang, Y.C. Zhou (2003) “Residual stress in Pb(Zr0.52Ti0.48)O3 thin films deposited by metal organic decomposition ”, Scripta Materialia, Vol. 49, pp. 71-76
[15]Cheng-Hsiung Lin, I-Nan Lin (1999) “Ferroelectric properties of Pb(Zr0.52Ti0.48)O3 thin films prepared by metal-organic decomposition process”, Applied Surface Science, Vol. 142, pp. 418-421
[16]C.C. Chang, P.C. Lu (1999) “The effect of annealing on improving the quality of lead zircinate titanate thin films on Pt/SiO2/Si sunstrates”, Journal of materials processingTachnology, Vol. 95, pp. 128-132
[17]A.C. Rastogi, S.R. Darvish, P.K. Bhatnagar (2002) “Phase evolution of electron-beam evaporated Pb(Zr,Ti)O3 thin films”, Materials Chemistry and Physics, Vol. 73, pp. 135-143
[18]Chengtao Yang, Jinsong Liu (2003) “Characterization of Pb(Zr,Ti)O3 thin film prepared by pulsed laser deposition”, Materials Science and Engineering B, Vol. 99, pp. 356-359
[19]R.M. White, and F.W. Voltmer, (1965) “Direct piezoelectric coupling to surface elastic waves”, Applied Phys. Lett., Vol. 7, pp. 314-316
[20]P. Verardi, M. Dinescu, F. Craciun (2000) “Pulsed laser deposition and characterization of PZT thin films”, Applied Surface Science, Vol. 154-155, pp. 514-518
[21]Kozi Toda, Akira Kawabata (1971) “Surface wave delay lines with Interdigital Transducers on Unpolarized PZT ceramic plates”, Japanese Journal of Applied Physics, Vol. 10, pp. 671-677
[22]Kozi Toda (1973) “Lamb-wave delay lines with Interdigital electrodes”, Japanese Journal of Applied Physics, Vol. 44, pp. 56-62
[23]S.W. Wenzel, R.M. White (1988) “Generalized lamb-wave multisensor”, Ultrasonic Symposium, pp. 563-567
[24]S.W. Wenzel, R.M. White (1989) “Flexural plate-wave sensor: chemical vapor sensing and electrostrictive excitation”, Ultrasonic Symposium, pp. 598-598
[25]S.W. Wenzel, R.M. White (1991) “Phase noise measurements of plexural plate wave ultrasonic sensors”, Ultrasonic Symposium, pp. 321-326
[26]S.W. Wenzel, R.M. White (1988) “Silicon-based ultrasonic lamb-wave multisensors”, Ultrasonic Symposium, pp. 27-30
[27]Y. Jin, S.G. Joshi (1991) “Lamb wave propagation in piezoelectric plates”, Ultrasonic Symposium, pp. 1023-1027
[28]Y. Jin, S.G. Joshi (1992) “Excitation of higher order modes in lamb wave delay lines”, Ultrasonic Symposium, pp. 387-390
[29]B.D. Zaitsev, S.G. Joshi (1998) “Reflection of ultrasonic lamb waves propagation in thin piezoelectric plates”, Ultrasonic Symposium, pp. 423-426
[30]F. Teston, G.. Feuillard (1997) “Characteristics of lamb waves in piezoelectric ceramic”, Ultrasonic Symposium, pp.363-366
[31]F. Teston, G.. Feuillard (1999) “Propagation of lamb waves in 1-3 piezicomposite bordered by liquids”,IEEE, pp. 1066-1069
[32]Ph. Luginbuhl, S.D. Collins (1997) “Flexural plate wave acouators based on PZT thin film”, IEEE, pp. 327-332
[33]Ph. Luginbuhl, S.D. Collins (1997) “Microfabricated lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids”, Journal of Microelectromechanical systems, Vol. 6,pp. 337-346
[34]張所鋐,陳志清(1998)“壓電薄膜表面彈性元件設計與製作”,國立台灣大學工程學刊, 第七十四期,pp. 139-153
[35]A. Choujaa and C. Pommier (1995) “AlN/silicon lamb wave microsensors for pressure and gravimetric measurements”, Sensors and Actuators A, Vol. 46,pp. 179-182
[36]T. Laurent and C, Pommier (1995) “Lamb wave and plate mode in ZnO/silicon and AlN/silicon membrane application to sensors able to operate in contact with liquid”, Sensors and Actuators A, Vol. 87,pp. 26-37
[37]許怡儒(2003)”鈦鋯酸鉛薄膜於聲波感測元件之應用與探討”,台灣科技大學機械所碩士論文
[38]吳朗,唐敏注(1994)”陶瓷材料的物理和化學特性及其檢測”,陶瓷技術手冊, pp. 224-273
[39]鄭世裕(1994)”壓電陶瓷”,陶瓷技術手冊, pp. 443-485
[40]王友志(2001)”鈦酸鈣鉛陶瓷之微觀結構與鐵電性質”, 台灣科技大學機械所碩士論文
[41]江進富(2001)”溶膠凝膠法製備鈦鋯酸鉛鐵電薄膜與錳酸鍶鑭氧化物電極薄膜及應用元件製程規劃”, 台灣科技大學機械所碩士論文
[42]MICRO-CHEM,”NANO SU-8 negative Tone Photoresists Formulations 2-25”。
[43]D.S. Ballantine, Jr., R. M. White, ... et al.(1997) “Acoustic Wave Sensors : Theory, Design, and Physico-Chemical Applications,” Academic Press.
[44]S.G. Joshi ,Y. Jin, (1991) “Excitation of ultrasonic Lamb waves in piezoelectric plates”, American Institute of Physics, pp. 8018-8024
[45]S.G. Joshi, Y. Jin, (1990) “Lamb wave excitation in piezoelectric plates”, Ultrasonic Symposium, pp. 455-458
[46]S.G. Joshi, Y. Jin, (1995) “Excitation of ultrasonic lamb waves in composite membranes”, Ultrasonic Symposium, pp. 429-432
[47]Y. Jin, S.G. Joshi (1993) “Lamb wave propagation in 128o Y-X lithium niobate plates”, Ultrasonic Symposium, pp. 847-851
[48]S.G. Joshi, Y. Jin, (1991) “Propagation of ultrasonic lamb waves in piezoelectric plates”, American Institute of Physics, pp. 4113-4120
[49]W.R. Smith, H.M. Gerard (1969) “Analysis of interdigital transducers by use of an equivalent circuit model”, IEEE Trans. Microwave Theory Tech., pp. 856-864
[50]Kiyoshi Inagawa and Masanori Koshiba (1994) “Equivalent networks for SAW interdigital transducer ”, IEEE Trans. On Ultrasonic, Ferroelectrics ,and frequency Control., Vol. 41,pp. 402-411
[51]Michel Feldmann and JeannieH’enaff, (1989) " Surface Acoustic Wave for Signal Processing ", Artech House.
[52]C. K. Cambell, (1998) " Surface Acoustic Wave Devices for Mobile and Wireless Communication ", Academic Press, INC.
[53]S.M. Sze(1994) “Semiconduotor Sensor” New Nork Press.
[54]Michael J. Vellekoop (1998) “Acoustic wave sensors and their technology”, Ultrasonics, pp. 7-14
[55]何中庸 編譯(2001)“高頻電路設計基礎”, 全華圖書
[56]黎文新(2001)” 雙聲波感測器應用於流體特性之量測”, 國立成功大學機械所碩士論文
[57]D.S. Ballantine, Jr., R. M. White, ... et al.(1997) “Acoustic Wave Sensors : Theory, Design, and Physico-Chemical Applications,” Academic Press.
[58]賴均星(2001)” 雙層(聚偏二氟乙烯/鈦酸鉛)薄膜型焦電感測器之研究”, 國立中山大學電機所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊