跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周育廷
研究生(外文):Yu Ting Chou
論文名稱:狼尾草不同粒徑對荷蘭牛瘤胃、產乳、血液性狀及行為影響之研究
論文名稱(外文):The Effect of Particle Size of Napier Grass on Rumen, Blood, Milk Characteristics, and Behavior of Holstein Cow
指導教授:夏良宙夏良宙引用關係
指導教授(外文):Liang Chou Hsia
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:畜產系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:230
中文關鍵詞:狼尾草粒徑瘤胃產乳血液性狀行為荷蘭牛
外文關鍵詞:Napier grassParticle sizeRumenMilkBlood characteristicsBehaviorHolstein cow
相關次數:
  • 被引用被引用:2
  • 點閱點閱:470
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本實驗的目的,是利用不同粒徑大小之狼尾草作為芻料來源,探討對瘤胃性狀、乳量、乳蛋白率及乳牛行為的影響。試驗動物為三頭瘤胃開窗牛(二頭為泌乳牛,一頭為乾乳牛),試驗分為四種不同狼尾草長度之處理組,分別為2公分、4公分、6公分、12公分組,精粗乾物質比為40:60,每一處理試驗期為3天,於第一天與第三天作24小時行為觀察,各項行為依不同處理組、階段、時段進行統計分析其變化及交互作用。飼養管理:每日餵飼三次,分別為早上6:00、中午12:00、下午6:00,且於隔日早晨5:50收集剩料,記錄攝食量。每一個別欄中有一水碗及獨立水表,提供清潔飲水任飲並記錄飲水量。上午5:30及下午5:30擠乳計步與秤重,記錄產乳量,導電度並採集個別乳樣進行乳成分分析。總試驗天數為12天,試驗期間於早晨5:50分作尾根採血進行生化分析,早晨6:00開始,每三小時採瘤胃液進行分析其溫度、pH值、氨態氮、硝酸態氮、氧化還原電位等。結果與討論:攝食量各處理組間無顯著差異,但以2公分組有最高的攝食量,飲水量隨處理組長度增加而減少(p<0.01)。24小時行為統計中發現,隨處理組粒徑長度增加,採食時間有增加之趨勢(p>0.05)。但在總反芻時間,以短粒徑增加至長粒徑時,反芻時間極顯著地減少(p<0.001)。不同階段上,乾乳牛站立時間要多於泌乳牛(p<0.001),而排糞、排尿次數泌乳牛要顯著多於乾乳牛。在不同時段上,乳牛主要活動在白天,包括吃、飲水、站立、移動、舔鹽磚等,而在晚上主要是休息,躺臥、反芻時間增加。瘤胃液分析上,各處理組隨狼尾草粒徑減短,瘤胃pH值呈顯著下降(p<0.01)。不同階段,泌乳牛瘤胃溫度極顯著高於乾乳牛(p<0.01),pH值則極顯著低於乾乳牛(p<0.01)。血液生化分析,各處理組以2公分組血中葡萄糖最高,隨粒徑增加有減少的趨勢。血中尿素氮以2公分組最低,隨粒徑增加有增加之趨勢。不同階段,泌乳牛血中葡萄糖顯著低於乾乳牛,而尿素氮則極顯著高於乾乳牛(p<0.01)。產乳量及乳成分分析,各處理組隨粒徑減短,產乳量與乳糖率呈極顯著增加(p<0.01),乳蛋白率有上升之趨勢(p>0.05),乳脂率有下降之趨勢(p>0.05),與乳品質相關的導電度及體細胞數也有下降之趨勢(p>0.05)。因此,減短狼尾草粒徑至2公分,具有增加產乳量及提高乳蛋白率及提升乳品質的效果。
The purpose of this experiment was to study effect of the different particle size Napier Grass on the dairy cow by rumen characteristics, milk yield and milk protein percentage. Three ruminally cannulated Holstein cows were used in this experiment (two is a lactation cow, other one is a dry cow). Four particle size treatment is involved in the experiment. Treatment 1: 2 centimeter, treatment 2:4 centimeter, treatment 3:6 centimeter, treatment 4:12 centimeter. Every treatment was conducted for three days. Behavior observation was conducted 24 hours at the 1st and 3rd day of each treatment. Observation item, are eating (E), drinking (D), standing (S), lying (L), moving (M), urination (U), defecation (De), eructation (Er), lick salt (LK), milking (MK), standing rumination (SR), left lying rumination (LR), right lying rumination (RR). The ratio of concentrate to forage(C:F) is 40:60. Each cow have individual pen. Feed was provided three times per day (06:00,12:00,18:00). Feed and water were provided ad libitum and record everyday. Milking was twice a day(0530, 1730). Milk yield, pedometer, conductivity and body weight were recorded by computer system (S.A.E. afikim system). Take the 50ml milk sample analyses component and SCC. During the trail drive blood sample of tail root in the morning (0550) to proceed biochemical analyses. Sampling to be taken at three-hour intervals. The following item of ruminal liquid were measured: temperature, pH, NH4+, NO3-, ORP, VFA component etc. The result of dry matter intake of cow was similar in all diet treatment. There is a tendering that the cow in 2 centimeter treatment has higher feed intake (p>0.05). Water intake was reduced by increasing the particle size (p<0.01). The results of 24 hours behavior observation shown there was a tendering to spend longer time to eating when the particle size increasing. Total rumination time were increased with reducing the particle size (p<0.01). Dry cow spend more stand up time when compare with the lactation cow (p<0.001). Lactation cow spend the more defecation and urination time then the dry cow (p<0.001). The dairy cow activity were mainly in the daytime, include eating, drinking, stand up, move, lick etc. The cows were take a rest, include lying and rumination, in night. Rumen pH a drop with decreasing the particle size (p<0.001). Lactation cow has lower rumen pH then dry cow, but rumen temperature were high then the dry cow. The longer particle size induce arise acetate production. The shorter particle size causes higher propionate production. The shorter particle size causes higher blood glucose and reduce BUN. The shorter particle size causes higher lactose production and lower fat in milk, but there is a tendering that milk protein increasing with decreasing of particle size. Milk yield were increasing with decreasing particle size. The milk quality, conductivity and S.C.C, reduced with decreasing particle size. The above result shown that the shorter particle size of Napier grass, about 2 centimeter the better milk quality and quantity of milk yield and milk protein percentage.
目 錄
中文摘要…………………………………………………………….……....1
英文摘要…………………………………………………………….………4
誌謝………………………………………………………………….………6
目錄………………………………………………………………….………8
表次目錄…………………………………………………………………...11
圖次目錄………………………………………………………………..….14
縮寫索引…………………………………………………………….…..…16
壹、前言………………………………………………………………..….20
貳、文獻探討…………………………………………………..………….22
一、反芻動物消化率測定方式……………………………..…………22
(一)In vivo動物試驗………………………………..…………..22
(二)In vitro簡單實驗室試管試驗…………………..…………..25
(三)In vitro酵素試驗………………………………..…………..26
(四)In vitro gas醱酵試驗…………………………..……………27
(五)精密In vitro實驗室試驗(人工瘤胃)……..………….…30
(六)In situ評估法…………………...……………...……………32
二、影響反芻動物瘤胃消化因子及可導致的代謝性疾病………..…34
(一)影響瘤胃消化因子………………………………………….34
(二)瘤胃代謝疾病…………………………………………....….40
三、影響乳成分及產乳量變動之因素…………………………....…..64
(一)影響主要乳成分變動之因素…………………………....….64
(二)碳水化合物與蛋白質的搭配…………………………....….71
(三)添加脂肪對產乳量及乳蛋白率之影響………………....….81
(四)代謝蛋白對乳蛋白合成之影響………………………....….87
(五)粒徑對產乳量及乳成分之影響…………………….…..….107
參、材料與方法………………………………………………………..…115
一、試驗動物…………………………………………………………..115
(一)試驗牛隻…………………………………………………….115
(二)適應期……………………………………………………….115
(三)試驗日糧處理……………………………………..………..116
(四)行為觀察………………………………………….…………118
二、飼養管理…………………………………………………..………120
(一)欄位……...………………………………………….………120
(二)工作內容...………………………………………….….……121
三、測定項目與方法………………………………………………….122
(一)日糧分析……………………………………………..……..122
(二)採血與血液生化分析……………..……………….………122
(三)產乳量、導電度、活動步數及體重…………….…..……123
(四)乳成分………………...………………………….…...……126
(五)瘤胃液採樣與分析…..………………………….…………127
四、統計分析…………………………………………………………133
肆、結果與討論………………………………………………………….134
一、對行為之影響…………………………………………....………134
二、對瘤胃性狀之影響……………………………………...….……162
三、對血液性狀之影響……………………………………...….……177
四、對產乳性狀之影響……………………………………....………181
五、對乳成分之影響………………………………………...….……181
伍、結論………………………………………………………...….…….184
參考文獻………………………………………………………………….186
附錄………………………………………………………………….……225
作者簡介…………………………………………………………….……230
表次目錄
表2-1. 利用化學分析比較各種蛋白質來源與乳蛋白中限制胺基酸及必需胺基酸指數..………………………….….………………...…...102
表2-2. 比較牛乳蛋白質、菌體蛋白與各種蛋白質來源中離胺酸及甲硫胺酸含量……………………………………….…………….……103
表2-3. 利用化學分析表示牛乳蛋白與各種蛋白質來源之關係………..104
表3-1. 試驗套管牛之基本資料…………………………………..………115
表3-2. 試驗期間飼養管理流程…………………………………….…….121
表4-1. 不同狼尾草粒徑對牛隻攝食量之影響…………………………..136
表4-2. 不同泌乳階段牛隻攝食量之變化………………………………..137
表4-3. 不同狼尾草粒徑對牛隻飲水量之影響…………………………..138
表4-4. 不同狼尾草粒徑對牛隻行為24小時統計之影響………………141
表4-5. 不同狼尾草粒徑處理組對乳牛12小時行為統計之影響……….142
表4-6. 不同時段對牛隻行為12小時統計之影響……………………….143
表4-7. 不同狼尾草粒徑處理組對乳牛每6小時行為統計之影響.….….144
表4-8. 不同時段對乳牛每6小時行為統計之影響……………………..145
表4-9. 不同狼尾草粒徑長短處理組對乳牛每3小時行為統計之影響...147
表4-10.不同時段對牛隻行為3小時統計之影響………………………...148
表4-11.不同狼尾草粒徑對牛隻行為1小時統計之影響………………...151
表4-12.不同時段對牛隻行為1小時統計之影響………………………...152
表4-12.續……………………………………………...…………………...153
表4-13.不同狼尾草粒徑對乳牛不同階段24小時行為統計之影響.……156
表4-14.不同泌乳階段對牛隻行為12小時統計之影響…………….……157
表4-15.不同泌乳階段對乳牛每6小時行為統計之影響………….……..158
表4-16.不同泌乳階段對牛隻行為3小時統計之影響…………….……..159
表4-17.不同泌乳階段對牛隻行為1小時統計之影響…………….……..160
表4-18.每1小時行為統計對處理、階段、時段之交互作用…….……..161
表4-19.不同狼尾草粒徑長短處理組對牛隻瘤胃液測定之影響..………164
表4-20.不同泌乳階段牛隻瘤胃液測定之變化…………………………..165
表4-21.不同採樣時段對瘤胃液測定之影響……………………………..166
表4-22.不同處理組、階段、時段對瘤胃液之影響及交互作用………..167
表4-23.不同處理組對揮發性脂肪酸之影響……………………………..172
表4-24.不同泌乳階段對揮發性脂肪酸之差異…………………………..173
表4-25.不同時段對揮發性脂肪酸之差異………………………………..174
表4-26.不同處理及時段對揮發性脂肪酸之交互作用…………………..175
表4-27.不同狼尾草粒徑對牛隻血液測定之影響………………………..179
表4-28.不同泌乳階段牛隻血液成分測定之變化………………………..180
表4-29.不同狼尾草粒徑對產乳量、導電度及體重之影響……………..182
表4-30.不同狼尾草粒徑對泌乳牛乳成分之影響………………………..183
圖次目錄
圖2-1. 高產牛發生代謝障礙的危險來源…………………………..……...41
圖2-2. 瘤胃過酸症pH值變化之影響流程圖…………………………...…46
圖2-3. 各種可能影響蹄葉炎發生之流程圖………………………….……56
圖2-4. 可能引發第四胃異位影響之流程…………………………..……...59
圖2-5. 各項可能影響酮症發生之流程圖……………………………..…...62
圖3-1. 屏東科技大學畜牧場種植之台畜二號狼尾草…………………...116
圖3-2. 切草機將狼尾草切成四種不同粒徑大小之處理……………...…117
圖3-3. 四種不同粒徑之狼尾草處理……………………………………...117
圖3-4. 每一試驗第一及第三天行為觀察人員24小時連續記錄牛隻各項行為……………………………………………………………...118
圖3-5 .試驗期間瘤胃開窗牛之個別欄………………………...………….120
圖3-6. 試驗期間利用尾根採血進行血液生化分析…………..………….123
圖3-7. 試驗牛於左後腿帶上該計步器代表其識別碼並記錄活動步數...124
圖3-8. 六個獨立擠乳站記錄牛隻個別資料並傳送至電腦管理系統儲存……..124
圖3-9. 乳量計中導電度感應器…………………………………………...125
圖3-10.牛隻自動秤重器…………………………………………….……..125
圖3-11.S.A.E.-AFI farm電腦管理系統儲存每頭牛之各項記錄………...126
圖3-12.近紅外線乳成分分析儀及體細胞分析儀…………………….…..127
圖3-13.試驗期間每三小時採取瘤胃液樣品進行分析…………………...128
圖3-14.利用四層紗布過濾瘤胃液………………………………………...128
圖3-15.測定氨態氮、硝酸態氮及氧化還原電位之測定儀器……….……129
圖3-16.測定pH及溫度之測定儀器…………………………………….…129
圖3-17.瘤胃液離心後待取樣品…………………………………………...131
圖3-18.1µm微注射管……………………………………………..…….…131
圖3-19.氣相分析儀……………………………………………….…….….132
圖3-20.氣相分析儀配套之操作軟體(CE Trace 2000 Chrom-Card, Italy)………132
圖4-1. 不同時段對牛隻3小時行為統計之影響…………………...….…149
圖4-2. 不同時段對牛隻1小時行為統計之變化………………….….….154
圖4-3. 攝食行為與總反芻行為對瘤胃pH值之影響……………..……..168
圖4-4. 不同狼尾草粒徑處理組對瘤胃pH值之影響……………...….….169
圖4-5. 不同採樣時段瘤胃內揮發性脂肪酸之變化………………..…….176
參考文獻
白火城、吳兩新、林仁壽。1996。家畜內分泌學。藝軒圖書出版社。台北市。
李美珠。1995。蛋白質對乳牛生產效率之影響。八十四年度飼料新知研討會(反芻獸班)。國立屏東技術學院技藝訓練中心發行。pp. 13-25.
吳永惠。1997。牛病學。藝軒圖書出版社。台北市。
林仁壽、白火城、黃森源。1996。 家畜臨床血液生化學。 立宇出版社。
林育徽。2002。應用in vitro氣體生成法研究芻料之動態降解變化。碩士論文。國立中興大學。台中市。
夏良宙。1995。影響牛乳脂肪之因素。八十四年度飼料新知研討會(反芻獸班)。國立屏東技術學院技藝訓練中心發行。pp. 59-89.
陳靜宜。1995。澱粉與蛋白質分解率搭配對人工瘤胃中微生物之影響。碩士論文。國立台灣大學。台北市。
黃森源。2000。乳牛群餵飼缺失之監控-以血清、乳汁、尿液的測定和糞便外觀監控乳牛群的營養和健康狀況。八十九年度農村青年中短期農業專業訓練(乳牛飼養管理及人工授精班)。國立屏東技術學院技藝訓練中心發行。pp. 221-245.
黃森源。2002。台灣泌乳牛群餵飼監控系統之建立。博士論文。國立中興大學。台中市。
楊价民。1997。瘤胃生態系統與反芻動物對營養分的利用。藝軒圖書出版社。台北市。
顏宏達。1992。動物營養學。華香園出版社。台北市。
Adesogen, A. T., D. I. Givens, and E. Owen. 1998. Prediction of in vivo digestibility of whole crop wheat from in vitro digestibility, chemical composition, in situ rumen degradability, in vitro gas production and near infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 74: 259-272.
Adrian, J. 1974. Nutritional and physiological consequences of the Maillard reaction. World Rev. Nutr. Dietetics. 19: 71.
ARC. 1993. Energy and Protein Requirements of Ruminants. Agricultural and Food Research Council. CAB Int., Wallingford, Oxon, U.K.
Ahrar, M. and D. J. Schingoethe. 1979. Heat-treated soybean meal as a protein supplement for lactating cows. J. Dairy Sci. 62: 932-940.
Akerblom, E. 1977. Fang — histamine — rheumatic symptoms. Svensk Vet. Tidn. 29(1): 5-10.
Aldrich, J. M., L. D. Muller, and G. A. Varga. 1993. Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 76: 1091-1105.
Allen, M. S. 1996. Physical constrains on voluntary intake of forages by ruminants. J. Anim. Sci. 74: 3063-3075.
Allen, M. S. 1997. Relationships between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80: 1447-1462.
Baile, C. A. and J. M. Forbes. 1974. Control of feed intake and regulation of energy balance in ruminants. Physiol. Rev. 54: 160-214.
Bailey, C. B. and C. C. Balch. 1961. Saliva secretion and its relation to feeding in cattle. 2. The composition and rate of secretion in the cow during rest. Br. J. Nutr. 15: 371-382.
Batajoo, K. K. and R. D. Shaver. 1994. Impact of nonfiber carbohydrate on intake, digestion and milk production by dairy cows. J. Dairy Sci. 77: 1580-1588.
Bauer, M., R. Britton, R. Stock, T. Klopfenstein, and D. Yates. 1992. Laidlomycin propionate and acidosis. Nebr. Cattle Feeders Day. pp. 46-48. University of Nebraska, Lincoln.
Bauman, D. E. and W. B. Currie. 1980. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63: 1514.
Bauman, D. E. and J. M. Elliot. 1983. Control of nutrient partitioning in lactating ruminants. In: T. B. Mepham (ed.) Biochemistry of Lactation. pp. 437-468. Elsevier Science Publishers B. V.
Beauchemin, K. A. 1991. Ingestion and mastication of feed by dairy cattle. Vet. Clin. North Am. Feed Anim. Pract. 7: 439.
Beauchemin, K. A., B. I. Farr, L. M. Rode, and G. B. Schaalje. 1994. Optimal neutral detergent fiber concentration of barley-based diets for lactating dairy cows. J. Dairy Sci. 77: 1013-1029.
Beauchemin, K. A. and L. M. Rode. 1997. Minimum versus optimum concentrations of fiber in dairy cow diets based on barley silage and concentrates of barley or corn. J. Dairy Sci. 80: 1629-1639.
Beauchemin, K. A., L. M. Rode, and M. V. Eliason. 1997. Chewing activities and milk production of dairy cows fed alfalfa as hay, silage, or dries cubes of hay or silage. J. Dairy Sci. 80: 324-333.
Beauchemin, K. A. 2002. Applying nutriental management to rumen health. Agriculture & Agri-food Canada. pp.107-114.
Belyea, R. L., F. A. Martz, and G. A. Mbagaya. 1989. Effect of particle size of alfalfa hay on intake, digestibility, milk yield, and ruminal cell wall of dairy cattle. J. Dairy Sci. 72: 958.
Bergen, W. G. 1979. Free amino acids in blood of ruminants-philosophical and nutritional regulation. J. Anim. Sci. 49: 1577.
Beuvink, J. M. W. and S. F. Spoelstra. 1992. Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbiol. Biotechnol. 37: 505-509.
Bilodeau, P. P., D. Petitclerc, N. S. Pierre, G. Pelletier, and G. J. S. Laurent. 1989. Effects of photoperiod and pair-feeding on lactation of cows fed corn or barley grain in total mixed rations. J. Dairy Sci. 72: 2999-3005.
Blanchart, G., M. Durand, J. L. Barry, M. Bouiller-Oudot, and J. P. Jouany. 1989. Advantages and limits of the semi-continuous artificial rumen (Rusitec) for the study of rumen fermentation. Ann. Zootech. 38: 285-314.
Blummel, M. and E. R. Orskov. 1993. Comparison of gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed Sci. Technol. 40: 109-119.
Blummel, M. and K. Becker. 1997. The degradability characteristic of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Anim. Feed Sci. Technol. 77: 757-768.
Borsting, C. F. and M. R. Weisbjerg. 1989. Fatty acid metabolism in the digestive tract of ruminants. PhD Royal Vet. Agric. Univ., Copenhagen, Denmark. p. 249.
Brent, B. E. 1976. Relationship of acidosis to other feedlot ailments. J. Anim. Sci. 43: 930-935.
Broderick, G. A. 1998. Can cell-free enzymes replace rumen microorganisms to model energy and protein supply. In: E. R. Dea-ville, E. Owens, A. T. Adesogan, C. Rymer, J. A. Huntington, and T. L. J. Lawrence (ed.) In vitro Techniques for Measuring Nutrient Supply to Ruminants. pp. 99-114. Occasional Publication No. 22, British Society of Animal Sciences, Edinburgh.
Broderick, G. A., L. D. Satter, and A. E. Harper. 1974. Use of plasma amino acid concentration to identify limiting amino acids for milk production. J. Dairy Sci. 57: 1015-1023.
Broderick, G. A., R. J. Wallace, and E. R. Orskov. 1991. Control of rate and extent of protein degradation. In: T. Tsuda, Y. Sasaki, and R. Kawashima (ed.) Physioological Aspects of Digestion and Metabolism in Ruminants. pp. 541-592. Academic Press, Orlando, FL.
Bruhn, J. C. and A. A. Franke. 1977. Monthly variations in gross composition of California herd milks. J. Dairy Sci. 60: 696.
Buttery, P. J. and A. N. Foulds. 1985. Amino acid requirements of ruminants. In: Recent Advances in Animal Nutrition. p. 257. Butterworths, London, Engl.
Cabrita, A. R., A. J. M. Fonseca, R. J. Dewhurst, C. V. P. Sampaio, M. F. S. Miranda, G. N. S. Sousa, M. F. Miranda, and E. Gomes. 2003. Nitrogen supplementation of corn silages. 1. Effects on feed intake and milk production of dairy cows. J. Dairy Sci. 86: 4008-4019.
Calsmiglia, S. and M. D. Stern. 1993. A three step procedure to estimate postruminal protein digestion in ruminants. J. Dairy Sci. 76(Suppl. 1): 176(Abstract).
Canale, C. J., P. L. Burgess, L. D. Muller, and G. A. Varga. 1990. Calcium Salts of fatty acids in diets that differ in neutral digestibility. J. Dairy Sci.73: 1031.
Cant, J. P., E. J. DePeters, and R. L. Baldwin. 1991. Effect of dietary fat and postruminal casein administration on milk composition of lactating dairy cows. J. Dairy Sci. 74: 211.
Cant, J. P., E. J. DePeters, and R. L. Baldwin. 1993. Mammary amino acid utilization in dairy cow fed fat and its relationship to milk protein depression. J. Dairy Sci. 76: 762-774.
Carro, M. D., S. Lopez, J. S. Gonzalez, and F. J. Ovejero. 1994. Comparison of laboratory methods for predicting digestibility of hay in sheep. Small Rumin. Res. 14: 9-17.
Carter, R. R. and W. L. Grovum. 1990. A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. J. Anim. Sci. 68: 2811-2832.
Cary, C. A. 1920. Amino acids of the blood as precursors of milk proteins. J. Biol. Chem. 43: 477-489.
Casper, D. P. and D. J. Schingoethe. 1988. Protected methionine supplementation to a barley-based diet for cows during early lactation. J. Dairy Sci. 71: 164-172.
Casper, D. P. and D. J. Schingoethe. 1989. Lactational responses of early lactation dairy cows to diets varying on ruminal solubilities of carbohydrate and crude protein. J. Dairy Sci. 72: 928-941.
Casper, D. P., D. J. Schingoethe, and W. A. Eisenbeisz. 1990. Response of early lactation dairy cows fed diets varying in source of nonstructural carbohydrate and crude protein. J. Dairy Sci. 73: 1039-1050.
Casper, D. P., A. A. Maiga, M. J. Brouk, and D. J. Schingoethe. 1999. Synchronization of carbohydrate and protein sources on fermentation and passage rates in dairy cows. J. Dairy Sci. 82: 1779-1790.
Cassida, K. A. and M. R. Stokes. 1986. Eating and resting salivation in early lactation dairy cows. J. Dairy Sci. 69: 1282-1291.
Cecava, M. J., N. R. Merchen, L. L. Berger, R. I. Mackie, and G. C. Fahey Jr. 1990. Effects of dietary energy level and protein source on nutrient digestion and ruminal nitrogen metabolism in steers. J. Anim. Sci. 69: 2230-2243.
Cecava, M. J. and J. E. Parker. 1993. Intestinal supply of amino acids in steers fed ruminally degradable and undegradable crude protein sources alone and in combination. J. Anim. Sci. 71: 1596-1605.
Chalupa, W., B. Rickabaugh, D. S. Kronfeld, and D. Sklan. 1984. Rumen Fermentation in vitro as influenced by long-chain fatty acids. J. Dairy Sci. 67: 1439-1444.
Chalupa, W., B. Vecchiarelli, A. E. Elser, D. S. Kronfeld, D. Sklan, and D. L. Palmquist. 1986. Ruminal fermentation in vivo as influenced by long-chain fatty acids. J. Dairy Sci. 69: 1293-1301.
Chan, S. C., J. T. Huber, C. B. Theurer, Z. Wu, K. H. Chen, and J. M. Simas. 1997. Effects of supplemental fat and protein source on ruminal fermentation and nutrient flow to the duodenum in dairy cows. J. Dairy Sci. 80: 152-159.
Chandler, P. T. 1989. Achievement of optimum amino acid balance possible. Feedstuffs 61(26): 14-25.
Chen, X. B., F. D. D. Hovell, E. R. Orskov, and D. S. Brown. 1990. Excretion of purine derivatives by ruminants: Effect of exogenous nucleic acid supply on purine derivative excretion by sheep. Br. J. Nutr. 63: 131-142.
Chen, K. H., J. T. Huber, C. B. Theurer, D. V. Armstrong, R. C. Wanderley, J. M. Simas, S. C. Chan, and J. L. Sullivan. 1993. Effect of protein quality and evaporative colling on lactational performance of Holstein cows in hot weather. J. Dairy Sci. 76: 819.
Chow, J. M., E. J. DePeters, and R. L. Baldwin. 1990. Effect of rumen-protected methionine and lysine on casein in milk when diets high in fat or concentrate are fed. J. Dairy Sci. 73: 1051.
Christiansen, W. C., W. Woods, and W. Burroughs. 1964. Ration characteristics influencing rumen protozoal population. J. Anim. Sci. 23: 984-988.
Christensen, R. A., G. L. Lynch, J. H. Clark, and Y. Yu. 1993a. Influence of amount and degradability of protein on production of milk and milk components by lactating Holstein cows. J. Dairy Sci. 76: 3490-3496.
Christensen, R. A., M. R. Cameron, T. H. Klusmeyer, J. P. Elliot, J. H. Clark, D. R. Nelson, and Y. Yu. 1993b. Influence of the amount and degradability of dietary protein on nitrogen utilization by dairy cows. J. Dairy Sci. 76: 3497-3513.
Christensen, R. A., M. R. Cameron, J. H. Clark, J. K. Drackley, J. M. Lynch, and D. M. Barbano. 1994. Effects of amount of protein and ruminally protected amino acids in the diet of dairy cows fed supplemental fat. J. Dairy Sci. 77: 1618-1629.
Clark, J. H., T. H. Klusmeyer, and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75: 2304.
Clark, P. W. and L. E. Armentano. 1998. Effect of particle size on the effectiveness of fiber in alfalfa silage. J. Dairy Sci. 81(Suppl.1): 290(Abstr.).
Clarkson, M. J., D. Y. Downham, W. B. Faull, J. W. Hughes, F. J. Manson, J. B. Merritt, R. D. Murray, W. B. Russell, J. E. Sutherst, and W. R. Ward. 1996. Incidence and prevalence of lameness in dairy cattle. Vet. Rec. 138(23): 563-567.
Cockburn, J. E., M. S. Dhanoa, J. France, and S. Lopez. 1993. Overestimation of solubility when using Dacron bag methodology. Proceedings of the 1993 Annual Meeting of the British Society of Animal Science, Scarborough. p. 188.
Coellho, M., F. G. Hembry, F. E. Barton, and A. M. Saxton. 1988. A comparison of microbial, enzymatic, chemical and near-infrared reflectance spectroscopy method in forage evaluation. Anim. Feed Sci. Technol. 20: 219-231.
Coleman, G. S. 1985. Possible causes of the high death rate of ciliate protozoa in the rumen. J. Agric. Sci., Camb. 105: 39-43.
Coleman, G. S. and D. C. Sandford. 1979. Engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo. J. Agric. Sci. Camb. 92: 729.
Colenbrander, V. F., C. H. Noller, and R. J. Grant. 1991. Effect of fiber content and particle size of alfalfa silage on performance and chewing behavior. J. Dairy Sci. 74: 2681.
Collard, B. L., P. J. Boettcher, J. C. Dekkers, D. Petitclerc, and L. R. Schaeffer. 2000. Relationships between energy balance and health traits of dairy cattle in early lactation. J. Dairy Sci. 83: 2683-2690.
Cone, J. W., A. H. Van Gelder, and F. Driehuis. 1997. Description of gas production profiles with a three-phasic model. Anim. Feed Sci. Technol. 66: 31-45.
Conrad, H. R., A. D. Pratt, and J. W. Hibbs. 1964. Regulation of feed intake in dairy cows. Ι. Change in importance of physical and physiological factors with increasing digestibility. J. Dairy Sci. 47: 54-62.
Coppock, C. E. and D. L. Wilks. 1991. Supplemental fat in high energy rations for lactating cows: effects on intake, digestion, milk yield, and composition. J. Anim. Sci. 69: 3826.
Cooper, R. and T. Klopfenstein. 1996. Effect of rumensin and feed intake variation on ruminal pH. In: Scientific Update on Rumensin/Tylan/Mycotil for the Professional Feedlot Consultant. pp. A1-A14. Elanco Animal Health, Indianapolis, IN.
Correa, M. T., C. R. Curtis, H. N. Erb, J. M. Scarlett, and R. D. Smith. 1990. Ecological analysis of risk factors for postpartum disorders of Holstein — Friesian cows from thirty — two New York farms. J. Dairy Sci. 73: 1515.
Curtis, C. R., H. N. Erb, C. J. Sniffen, R. D. Smith, and D. S. Kronfeld. 1985. Path analysis of dry period nutrition, postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. J. Dairy Sci. 68: 2347.
Cressman, S. G., D. G. Grieve, G. K. Macleod, E. E. Wheeler, and L. G. Young. 1980. Influence of dietary protein concentration on milk production by dairy cattle in early lactation. J. Dairy Sci. 63: 1839-1847.
Czerkawski, J. W., W. W. Christie, G. Breckenridge, and M. L. Hunter. 1975. Changes in the rumen metabolism of sheep give increasing amounts of linseed oil in their diet. Br. J. Nutr. 34: 25-44.
Dawson, K. A. 1995. The use of yeast strain 8417 in manipulating ruminant high concentrate diets. Minn. Nutr. Conf. pp. 25-36. University of Minnesota, St. Paul.
Dawson, L. J., E. P. Aalseth, L. E. Rice, and G. D. Adams. 1992. Influence of fiber form in a complete mixed ration on incidence of left displaced abomasums in postpartum dairy cows. JAVMA 200: 1989.
Deavill, E. R. and D. I. Givens. 1998. Investigation of direct gas production from silage fermentation acids. Proceedings of the British Society of Animal Science Annual Meeting, Scarborough. p. 64.
De Boer, G., J. J. Murphy, and J. J. Kennelly. 1987. Mobile nylon bag for estimating availability of rumen undegradable protein. J. Dairy Sci. 70: 977-982.
De Chant, G. M., C. A. Risco, G. A. Donovan, T. Q. Tran, H. H. Van Horn, and E. L. Williams. 1998. Effect of transition energy and fiber levels on subclinical laminitis and rumen acidosis in Holstein cows in Florida. In: E. I. Williams (ed.) 31st Conf. AABP, Spokane. p.186.
Demeyer, D. I. and H. K. Henderickx. 1967. The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochem. Biophys. Acta. 137: 484-497.
Depeters, E. J. and S. J. Taylor. 1985. Effects of feeding corn or barley on composition of milk and diet digestibility. J. Dairy Sci. 68: 2027-2032.
DePeters, E. J. and J. P. Cant. 1992. Nutritional factors influencing the nitrogen composition of bovine milk: a review. J. Dairy Sci. 75: 2043-2070.
Dewhurst, R. J. and A. J. F. Webster. 1992. Effects of diet, level of intake, sodium bicarbonate and monensin on urinary allantoin excretion in sheep. Br. J. Nutr. 67: 345-356.
Dewhurst, R. J., A. M. Mitton, N. W. Offer, and C. Thomas. 1996. Effect of the composition of grass silages on milk production and nitrogen utilization by dairy cows. Anim. Sci. 62: 25-34.
Dewhurst, R. J., D. R. Davies, and R. J. Merry. 2000. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 85: 1-21.
Dewhurst, R. J., R. T. Evans, T. T. Mottram, P. Spanel, and D. Smith. 2001. Assessment of rumen processes by selected-ion-flow-tube mass spectrometric analysis of rumen gases. J. Dairy Sci. 84: 1438-1444.
Dijkstra, J. 1994. Simulation of the dynamics of protozoa in the rumen. Br. J. Nutr. 72: 679-699.
Dinn, N. E., J. A. Shelford, and L. J. Fisher. 1998. Use of the Cornell net carbohydrate and protein system and rumen-protected lysine and methionine to reduce nitrogen excretion from lactating dairy cows. J. Dairy Sci. 81: 229-237.
Dirksen, G. U., H. G. Liebich, and E. Mayer. 1985. Adaptive changes of the ruminal mucosa and their functional and clinical significance. Bovine Pract. 20: 116.
Durand, D., Y. Chilliard, and D. Bauchart. 1992. Effects of lysine and methionine on in vivo hepatic secretion of VLDL in the high yielding dairy cow. J. Dairy Sci. 75(Suppl. 1): 279(Abstract).
Dyk, P. B. 1995. The association of prepartum non-esterified fatty acids and body condition with peripartum health problems on 95 Michigan dairy farms. M. S. Thesis, Michigan State Univ., East Lansing.
El Hag, G. A. and T. B. Miller. 1972. Evaluation of whisky distillery by-products. VI. The reduction in digestibility of malt distiller’s grains by fatty acids and the interaction with calcium and other reversal agents. J. Sci. Food Agric. 23: 247-258.
Emery, R. S. 1978. Feeding for increased milk protein. J. Dairy Sci. 61: 825-828.
Emmanuele, S. E. and C. R. Staples. 1988. Effect of forage particle size on in situ digestion kinetics. J. Dairy Sci. 71: 1947-1954.
Erasmus, L. J., P. M. Botha, and A. Kistner. 1992. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci. 75: 3056-3065.
Erasmus, L. J., P. M. Botha, and H. H. Meissner. 1993. Effect of protein source on ruminal fermentation and passage of amino acid to the small intestine of lactating cows. J. Dairy Sci. 77: 3655.
Essig, H. W., G. B. Huntington, R. T. Emerick, and J. R. Carlson. 1988. Nutritional problems related to the gastro-intestinal tract. In: Church, D. C (ed.) The Ruminant Animal Digestive Physiology and Nutrition. USA. p. 468.
Ewart, J. M. 1974. Continuous in vitro rumen system. Proc. Nutr. Soc. 33: 125-133.
Fahey, G. C. and L. L. Berger. 1988. Carbohydrate nutrition of ruminants. In: D. C. Church (ed.) The Ruminant Animal: Digestive Physiology and Nutrition. pp. 269-279. Prentice Hall, Englewood Cliffs, NJ.
Fegan, J. T. 1979. Factors affecting protein composition of milk and their significance to dairy processing. Aust. J. Dairy Technol. 34: 77.
Feng, P., W. H. Hoover, T. K. Miller, and R. Blauwiekel. 1993. Interactions of fiber and nonstructural carbohydrates on lactation and ruminal function. J. Dairy Sci. 76: 1324.
Ferguson, K. A. 1975. The protection of dietary proteins and amino acids against microbial fermentation in the rumen. In: I. W. McDonald, and A. C. I. Warner (ed.) Digestion and Metabolism in the Ruminant. pp. 448-464 University of New England Publishing Unit, Armidale. NSW, Australia.
Ferguson, J. D., C. J. Sniffen, T. Muscato, T. Pilbeam, and T. Sweeney. 1989. Effects of protein degradability and protected fat supplementation on milk yield in dairy cows. J. Dairy Sci. 72(Suppl. 1): 415 (Abstr.).
Ferlay, A. and M. Doreau. 1995. Influence of method of administration of rapeseed oil in dairy cows. 2. Status of divalent cations. J. Dairy Sci. 78:2239-2246.
Fischer, J. M., J. G. Buchanan-Smith, C. Campbell, D. G. Grieve, and O. B. Allen. 1994. Effects of forage particle size and long hay for cows fed total mixed rations based on alfalfa and corn. J. Dairy Sci. 77: 217-229.
Frydrych, Z. 1992. Intestinal digestibility of rumen undegraded protein of various feeds as estimated by the mobile bag technique. Anim. Feed Sci. Technol. 37: 161-172.
Gagliostro, G. and Y. Chilliard. 1991. Duodenal rapeseed oil infusion in early and midlactation cow. 2. Voluntary intake, milk production, and composition. J. Dairy Sci. 74:499-509.
Galbraith, H., T. B. Miller, A. M. Paton, and J. K. Thompson. 1971. Antibacterial activity of long-chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J. Appl. Bacteriol. 34: 803-813.
Galbraith, H. and T. B. Miller. 1973a. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bact. 36: 659-675.
Galbraith, H. and T. B. Miller. 1973b. Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J. Appl. Bacteriol. 36: 635-646.
Garza, J. D., F. N. Owens, and J. E. Breazile. 1989. Effects of diet on ruminal liquid and on blood serum osmolarity and hematocrit in feedlot heifers. Okla. Agric. Exp. Stn. MP, 127: 68-76.
Getachew, G., M. Blummel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72: 261-281.
Gibson, J. P. 1981. The effects of feeding frequency on the growth and efficiency of food utilization of ruminants: an analysis of published results. Anim. Prod. 32: 275-283.
Gibson, J. P. 1984. The effects of feeding frequency on milk production of dairy cattle: an analysis of published results. Anim. Prod. 38: 181-189.
Givens, D. I., B. G. Cottyn, P. J. S. Dewey, and A. Steg. 1995. A comparison of the neutral detergent-cellulase method with other laboratory methods for predicting the digestibility in vivo of maize silages from three European countries. Anim. Feed Sci. Technol. 54: 55-64.
Godfrey, S. I., M. D. Boyce, J. B. Rowe, and E. J. Speijers. 1992. Changes within the digestive tract of sheep following engorgement with barley. Aust. J. Agric. Res. 44: 1093-1101.
Goff, J. P. and R. L. Horst. 1997. Physiology and management: physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80: 1260-1268.
Grant, R. J., V. F. Colenbrander, and D. R. Mertens. 1990a. Milk fat depression in dairy cows: Role of particle size of alfalfa hay. J. Dairy Sci. 73: 1823-1833.
Grant, R. J., V. F. Colenbrander, and D. R. Mertens. 1990b. Milk fat depression in dairy cow: Role of silage particle size. J. Dairy Sci. 73: 1834-1842.
Green, L. E., V. J. Hedges, C. O. Callaghan, R. W. Blowey, and A. Packington. 2000. Biotin supplementation to dairy cows - Multivariate analysis of the prospective longitudinal study. In: C. M. Mortellaro, L. De Vecchis and A. Brizzi (ed.) Int. Symp. Disorders Ruminant Digit & Int. Conf. Bov. Lameness. Parma, pp. 305-307.
Greenough, P. R., F. J. MacCallum, and A. D. Weaver. 1972. Lameness in Cattle. J. B. Lippincott, Philadelphia, PA.
Grieve, D. G., S. Korver, Y. S. Rijpkema, and G. Hof. 1986. Relationship between milk composition and some nutritional parameters in early lactation. Livest. Prod. Sci. 14: 239.
Grings, E. E., R. E. Roffler, and D. P. Deitelhoff. 1992. Evalualactation fed alfalfa-based diets. J. Dairy Sci. 75: 193-200.
Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76: 3882.
Hart, S. P. and C. E. Polan. 1984. Simultaneous extraction and determination of ytterbium and cobaltethylenediaminetetraacetate complex in feces. J. Dairy Sci. 67: 888.
Harouna, A, M. and D. J. Schingoethe. 1997.Optimizing the utilization of animal fat and ruminal bypass proteins in the diets of lactating dairy cows. J. Dairy Sci. 80: 343-352.
Henderson, C. 1973. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. (Camb.) 81: 107-112.
Herrera-Saldana, R. and J. T. Huber. 1989. Influence of varying protein and starch degradabilities on performance of lactating cows. J. Dairy Sci. 72: 1477-1483.
Herrera-Saldana, R., R. Gomez-Alarcon, M. Torabi, and J. T. Huber. 1990. Influence of synchronizing protein and starch degradation in the rumen on nutrient utilization and microbial protein synthesis. J. Dairy Sci. 73: 142-148.
Higginbotham, G. E., M. Torabi, and J. T. Huber. 1989. Influence of dietary protein concentration and degradability on performance of lactating cows during hot environmental temperature. J. Dairy Sci. 72: 2554.
Hino, T. and J. B. Russell. 1987. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro. J. Anim. Sci. 64: 261-270.
Holter, J. B., H. H. Hayes, N. Kierstead, and J. Whitehouse. 1993. Protein-fat bypass supplement for lactating dairy cows. J. Dairy Sci. 76: 1342-1352.
Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69: 2755-2766.
Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 74: 3630-3644.
Huber, T. L. 1971. Effect of acute indigestion of compartmental water volumes and osmolarity in sheep. Am. J. Vet. Res. 32: 887.
Huber, T. L. 1976. Physiological effects of acidosis on feedlot cattle. J. Anim. Sci. 43: 902-909.
Huffman, R., T. Klopfenstein, R. Stock, R. Britton, and L. Roth. 1993. Lactobacillus acidophilus (MCI811) and subacute ruminal acidosis. Nebr. Cattle Feeders Day. pp. 60-63. University of Nebraska, Lincoln.
Hungate, R. E. 1966. The rumen and Its Microbes. Academic Press, New York and London.
Hungate, R. E. 1968. Ruminal Fermentation. In: C. F. Code (ed.) Handbook of Physiology. Chap. pp. 2725-2745. American Physiology Society, Washington, DC.
Huntington, G. B. and R. A. Britton. 1979. Effective dietary lactic acid on rumen lactate metabolism and blood acid base stasis of lambs switched from low to high concentrate diets. J. Anim. Sci. 49: 1569.
Huntington, G. B., R. A. Britton, and R. L. Prior. 1981. Feed intake, rumen fluid volume, and turnover, nitrogen and mineral balance and acid-base status of wethers changed form low to high concentrate diets. J. Anim. Sci. 52: 1376.
Huntington, J. A. and D. I. Givens. 1995. The in situ technique for studying the rumen degradation of feeds: a review of the procedure. Nutrition Abstracts and Reviews (Series B). 65: 65-93.
Hurrell, R. F. and R. A. Finot. 1985. Effect of food processing on protein digestibility and amino acid availability. In: J. W. Finely, and D. T. Hopkins (ed.) Digestibility and Animo Acid Availability in Cereals and Oilseeds. pp. 233-258 American Association of Cereal Chemists, St. Paul, MN.
Hutjens, M. F. 1991. Feed additives. Vet. Clin. N. Am. Food Animal Pract. 7: 525.
Hutjens, M. F. and J. A. Barmore. 1995. Milk urea test gives us another tool. Hoard’s Dairyman May(25): 401.
Hutjens, M. F. 1996. Practical approaches to feeding the high producing cow. Anim. Feed Sci. Technol. 59: 199-206.
Hvelplund, T. 1985. Digestibility of rumen microbial protein and undegraded protein estimated in the small intestine of sheep and by in sacco procedure. Acta Agric. Scand. Suppl. 25: 132-144.
Ibbotson, C. F., M. C. Phillips, P. J. Turner, and M. Delaney. 1982. The alkali treatment of whole crop cereals. Part Ⅰ- Farm scale feasibility trial with barley. Experimental Husbandry 38: 154-162.
Illius, A. W. and N. S. Jessop. 1996. Metabolic constraints on voluntary intake in ruminants. J. Anim. Sci. 74: 3052-3062.
Ikwuegbu, O. A. and J. D. Sutton. 1982. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr. 48: 365-375.
Jaster, E. H. and M. R. Murphy. 1983. Effects of varying particle size of forage on digestion and chewing behavior of dairy heifers. J. Dairy Sci. 66: 802-810.
Johnson, A. H. 1978. The composition of milk. In: B. H. Webb, H. H. Jahnson, and J. A. Alford (ed.) Fundamentals of Dairy Chemistry. pp: 1-57. Avi Publ. Co, Westport.
Jouany, J. P. 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. J. Nutr. 126: 1335S-1346S.
Jouany, J. P. and K. Ushisa. 1999. The role of protozoa in feed digestion. Review. AJAS. 12: 1113-128.
Ketelaars, J. J. and B. J. Tolkamp. 1996. Oxygen efficiency and the control of energy flow in animals and humans. J. Anim. Sci. 74: 3036-3051.
Khorasani, G. R., G. D. Boer, B. Robinson, and J. J. Kennelly. 1994. Influence of dietary protein and starch on production and metabolic responses of dairy cows. J. Dairy Sci. 77: 813.
Kim, Y. K., D. J. Schingoethe, D. P. Casper, and F. C. Ludens. 1991. Lactational response of dairy calves to increased dietary crude protein with added fat. J. Dairy Sci. 74: 3891-3899.
King, K. J., J. T. Huber, M. Sadik, W. G. Bergen, A. L. Grant, and V. L. King. 1990. Influence of dietary protein sources on the amino acid profiles available for digestion and metabolism in lactating cows. J. Dairy Sci. 73: 3208.
King, K. J., W. G. Bergen, C. J. Sniffen, A. L. Grant, D. B. Grieve, V. L. King, and N. K. Ames. 1991. An assessment of absorbable lysine requirements in lactating cows. J. Dairy Sci. 74: 2530.
Klopfenstein, T., R. Huffman, and R. Stock. 1995. Effect of Lactobacillus acidophilus on subacute acidosis and cattle performance. Nebr. Cattle Feeders Day. pp. 37-38. University of Nebraska, Lincoln.
Klusmeyer, T. H., R. D. McCarthy, Jr., J. H. Clark, and D. R. Nelson. 1990a. Effects of source and amount of protein on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. J. Dairy Sci. 73: 3526.
Klusmeyer, T. H., M. R. Cameron, G. C. McCoy, and J. H. Clark. 1990b. Effects of feed processing and frequency of feeding on ruminal fermentation, milk yield, and milk composition. J. Dairy Sci. 73: 3538.
Koers, W. C., R. Britton, T. J. Klopfenstein, and W. R. Woods. 1976. Ruminal histamine, lactate and animal performance. J. Anim. Sci. 43: 684-691.
Kononoff, P. J. 2002. The Effect of Ration Particle Size on Dairy Cows in Eairy Lactation. PhD. The Pannsylvania State University. USA.
Kossaibati, M. A. and R. J. Esslemont. 1997. The costs of production diseases in dairy herds in England. Vet. J. 154(1): 41-51.
Krause, K. M., D. K. Combs, and K. A. Beauchemin. 2002. Effects of forage particle size and grain fermentability in midlactation cows. I. Milk production and diet digestibility. J. Dairy Sci. 85: 1936-1946.
Krause, K. M. and D. K. Combs. 2003. Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation cows. J. Dairy Sci. 86: 1382-1397.
Krishnamoorthy, U., T. V. Muscato, C. J. Sniffen, and P. J. Van Soest. 1982. Nitrogen fractions in selected feedstuffs. J. Dairy Sci. 65: 217-225.
Kung, L. and J. T. Huber. 1983. Performance of high producing cows in early lactation fed proteins of varying amounts, sources, and degradability. J. Dairy Sci. 66: 227-234.
Kung, L., Jr. and A. O. Hession. 1995. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J. Anim. Sci. 73: 250-256.
Kusmartono, A., A. Shimada, and K. J. Stafford. 1996. Intra-ruminal particle size reduction in deer fed fresh perennial ryegrass (Lolium perenne) or chicory (Cichorium intybus). J. Agric. Sci. 127: 525-531.
Lammers, B. P., D. R. Buckmaster, and A. J. Heinrichs. 1996. A simplified method for the analysis of particle sizes of forage and total mixed rations. J. Dairy Sci. 79: 922-928.
Leedle, J. A. Z. 1993. Modulating ruminal fermentation in high —grain fed cattle: The role of Rumensin. In: Scientific Update on Rumensin/Tylan for the Professional Feedlot Consultant. pp. B1-B24. Elanco Animal Health, Indianapolis, IN.
Leng, R. A. and J. V. Nolan. 1984. Nitrogen metabolism in the rumen. J. Dairy Sci. 67: 1072.
Leng, R. A. 1993. Quantitative ruminant nutrition- A green science. Aust. J. Agric. Res. 44: 363-380.
Leonardi, C., M. Stevenson, and L. E. Armentano. 2003. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J. Dairy Sci. 86: 4033-4042.
Littledike, E. T., J. W. Young, and D. C. Beitz. 1981. Common metabolic diseases of cattle: ketosis, milk fever, grass tetany, and downer cow complex. J. Dairy Sci. 64: 1465.
Livesey, C. T. and F. L. Fleming. 1984. Nutritional influences on laminitis, sole ulcer and bruised sole in Friesian cows. Vot. Rec. 114(21): 510-512.
Loerch, S. C. and B. O. Oke. 1989. Rumen protected amino acids in ruminant nutrition. In: M. Friedman (ed.) Absorption and Utilization of Amino Acids Vol Ⅲ pp. 187-200. CRC Press, Boca Raton, FL, US.
Lopez, S., F. D. D. Hovell, B. Manyuchi, and I. Smart. 1995. Comparison of sample preparation methods for the determination of the rumen degradation characteristics of fresh and ensiled forages by the nylon bag technique. Anim. Sci. 60: 439-450.
Lubsy, K. S. 1993. Rumen-stable methionine improves gain of lightweight cattle. Feedstuffs 65: 14-16.
Lykos, T. and G. A. Varga. 1995. Effects of processing method on degradation characteristics of protein and carbohydrate sources in situ. J. Dairy Sci. 78: 1789-1801.
Mabjeesh, S. J., A. Arieli, I. Bruckental, S. Zamwell, and H. Tagari. 1997. Effect of ruminal degradability of crude protein and nonstructural carbohydrates on the efficiency of bacterial crude protein synthesis and amino acid flow to the abomasums of dairy cows. J. Dairy Sci. 80: 2939-2949.
Mackie, R. I. and B. A. White. 1990. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J. Dairy Sci. 73: 2971-2995.
Mackle, T. R., D. A. Dwyer, K. L. Ingvartsen, P. Y. Chouinard, D. A. Ross, and D. E. Bauman. 2000. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. J. Dairy Sci. 83: 93-105.
MacLeod, G. K., D. G. Grieve, I. McMillan, and G. C. Smith. 1984. Effect of varying protein and energy desities in complete rations fed to cow in first lation. J. Dairy Sci. 67: 1421-1429.
MacZulak, A. E., B. A. Dehority, and D. L. Palmquist. 1981. Effect of long-chain fatty acids on growth of rumen bacteria. Appl. Environ. Microbiol. 42: 856-862.
Maekawa, M., K. A. Beauchemin, and D. A. Christensen. 2002. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci. 85: 1165-1175.
Mahadevan, S., J. D. Erfle, and F. D. Sauer. 1980. Degradation of soluble and insoluble proteins by Bacteroides amylophilus Protease and by rumen microorganisms. J. Anim. Sci. 50: 723-728.
Makkar, H. P. S., M. Blummel, N. K. Borowy, and K. Becker. 1993. Gravimetric determination of tannins and their correlations withchemical and protein precipitation methods. J. Sci. Feed Agric. 61: 161-165.
Makkar, H. P. S., M. Blummel, and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 73: 897-913.
Mangan, J. L. 1972. Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. Br. J. Nutr. 27: 261-283.
Manson, F. J. and J. D. Leaver. 1987. Effect of concentrate to silage ratio and hoof trimming on lameness in dairy — cows. Anim. Prod. 44: 469.
Manson, F. J. and J. D. Leaver. 1988. The influence of concentrate amount on locomotion and clinical lameness in dairy cattle. Anim. Prod. 47: 185-190.
Markusfeld, O. 1987. Periparturient traits in seven high dairy herds. Incidence rates, association with parity, and interrelationships among traits. J. Dairy Sci. 70: 158.
Martin, S. A. and M. N. Streeter. 1995. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 73: 2141-2145.
Martz, F. A. and R. L. Belyea. 1986. Forage utilization by the lactating cow. J. Dairy Sci. 69: 1996-2008.
Massey, C. D., C. Wang, G. A. Donovan, and D. K. Beede. 1993. Hypocalcemia at parturition as a risk factor for left displaced abomasums in dairy cows. JAVMA 203: 852.
McAllen, A. B. 1982. The fate of nucleic acids in ruminants. Proc. Nutr. Soc. 41: 309-317.
McCarthy, R. D., Jr., T. H. Klusmeyer, J. L. Vicini, J. H. Clark, and D. R. Nelson. 1989. Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. J. Dairy Sci. 72: 2002-2016.
McCormick, M. E., D. D. French, T. F. Brown, G. J. Cuomo, A. M. Chapa, J. M. Fernandez, J. F. Beatty, and D. C. Blouin. 1999. Crude protein and rumen undegradable protein effects on reproduction and lactation performance of Holstein cows. J. Dairy Sci. 82: 2697-2708.
McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, and C. A. Morgan. 1995. Animal Nutrition, 5th edn. Longman Scientific and Technical, Harlow, US. pp. 221-237.
McGuire, M. A., J. L. Vicini, D. E. Bauman, and J. J. Veenhuizen. 1992. Insulin-like growth factors and binding proteins in ruminants and their nutritional regulation. J. Anim. Sci. 70: 2901.
Mehrez, A. Z. and E. R. Orskov. 1997. The use of a Dacron bag technique to determine rate of degradation of protein and energy in the rumen. J. Agric. Sci. 88: 645-650.
Mendoza, G. and R. Britton. 1991. Ruminal protozoa and urea level affect starch digestion in vitro. Nebr. Cattle Feeders Day. pp. 64-67. University of Nebraska, Lincoln.
Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. J. Agric. Sci. 93: 217-222.
Mertens, D. R. 1987. Predicting intake and digestibility using mathematical models of ruminal function. J. Dairy Sci. 64: 1548-1558.
Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80: 1463-1481.
Mertens, D. R. 2000. Physically effective NDF and its use in dairy rations expored. Feedstuffs. pp.11-14.
Merchen, N. R. and E. C. Titgemeyer. 1992. Manipulation of amino acid supply to the growing ruminant. J. Anim. Sci. 70: 3238-3247.
Midla, L. T., K. H. Hoblet, W. P. Weiss, and M. L. Moeschberger. 1998. Supplemental dietary biotin for prevention of lesions associated with aseptic subclinical laminitis (pododermatitis aseptica diffusa) inprimiparous cows. Am. J. Vet. Res. 59(6): 733-783.
Minson, D. J. 1990. Forage in ruminant nutrition. Academic Press. San Diego, CA. pp. 482.
Mir, P. S. and Z. Mir. 1994. Effect of live-yeast culture and lasalocid supplementation on performance of growing-finishing steers fed alfalfa- silage, corn-silage, and high-grain diets sequentially. Can. J. Anim. Sci. 74: 563-566.
Mooney, C. S. and M. S. Allen. 1997. Physical effectiveness of the neutral detergent fiber of whole linted cottonseed relative to that of alfalfa silage at two lengths of cut. J. Dairy Sci. 80: 2052-2061.
Munro, G. L., P. A. Grieve, and B. J. Kitchen. 1984. Effects of mastitis on milk yield, milk composition, processing properties and yield and quality of milk products. Aust. J. Dairy Technol. 39: 7.
Murray, R. D., D. Y. Downham, M. J. Clarkson, W. B. Faull, J. W. Hughes, F. J. Manson, J. B. Merritt, W. B. Russell, J. E. Sutherst, and W. R. Ward. 1996. Epidemiology of lameness in dairy cattle: Description and analysis of food lesions. Vet. Rec. 138(24): 586-591.
Nagel, S. and G. A. Broderick. 1992. Effect of formic acid or formaldehyde treatment of alfalfa silage on nutrient utilization by dairy cows. J. Dairy Sci. 75: 140.
National Research Council. 1985. Ruminant Nitrogen Usage. Natl. Acad. Sci. Washington, DC.
National Research Council. 1989. Cutrient Requirements of Dairy Cattle. 6th rev. ed. Natl. Acad. Sci. Washington, DC.
National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci. Washington, DC.
Newbold, C. J. and R. J. Wallace. 1988. Effects of the ionophores monensin and tetronasin on simulated development of ruminal lactic acidosis in vitro. Appl. Environ. Microbiol. 54: 2981-2985.
Ng-Kwai-Hang, K. F., J. F. Hayes, J. E. Moxley, and H. G. Monardes. 1984. Variability of test-day milk production and composition and relation of somatic cell counts with yield and compositional changes of bovine milk. J. Dairy Sci. 67: 361.
Ng-Kwai-Hang, K. F., J. F. Hayes, J. E. Moxley, and H. G. Monardes. 1985. Percentages of protein and nonprotein nitrogen with varying fat and somatic cells in bovine milk. J. Dairy Sci. 68: 1257.
Nilsson, S. A. 1963. Clinical, morphological and experimental studies of laminitis in cattle. Acta. Vet. Scand. 4, sup 1: 304.
Nimrick, K., E. E. Hatfield, J. Kaminski, and F. N. Owens. 1970. Qualitative assessment of supplemental amino acid needs for growing lambs fed urea as the sole nitrogen source. J. Nutr. 100: 1293-1300.
Nocek, J. E. 1985. Evaluation of specific variables affecting in situ estimates of ruminal dry matter and protein digestion. J. Anim. Sci. 60: 1347-1358.
Nocek, J. E. 1988. In situ and other methods to estimate ruminal protein and energy digestibility: a review. J. Dairy Sci. 71: 2051-2069.
Nocek, J. E. 1997. Bovine acidosis: implication on laminitis. J. Dairy Sci. 80: 1005-1028.
Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71: 2070-2107.
Nocek, J. E. and S. Tamminga. 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 74: 3598-3629.
Nolan, C. J., R. C. Bull, R. G. Sasser, C. A. Ruder, P. M. Panlasigui, H. M. Schoeneman. 1988. Post-partum reproduction in protein restricted beef cows: Effect on the hypothalamic-pituitary-ovarian axis. J. Anim. Sci. 66: 3208-3217.
Nordlund, 1995. Herd — based rumenocentesis: A clinical approach to the diagnosis of subacute rumen acidosis. The Compendium (August): 48-56.
Nordlund, K. V. and E. F. Garrett. 1994. Rumenocentesis: a technique for collecting rumen fluid for the diagnosis of subacute rumen acidosis in dairy herds. Bovine Pract. 28: 109.
Noziere, P. and B. Michalet-Doreau. 2000. In sacco methods. In: D’Mello, J. P. F. (ed.) Farm animal metabolism and nutrition. CAB International, Wallingford, pp. 233-254.
Nugent, J. H. A. and J. L. Mangan. 1978. Rumen proteolysis of fraction Ⅰ leaf protein, casein, and bovine serum albumin. Proc. Nutr. Soc. 37: 48A.
Nugent, J. H. A., W. T. Jones, D. J. Jordan, and J. L. Mangan. 1983. Rates of proteolysis in the rumen of the soluble proteins casein, Fraction 1 (18S) leaf protein, bovine serum albumin, and bovine submaxillary mucoprotein. Br. J. Nutr. 50: 357-368.
Oetzel, G. R. 1994. Dry cow nutrition AABP Seminar 19 Conf. Proc. AABP. Pittsburgh. PA. p. 74.
Oke, B. O., S. C. Loerch, and L. E. Deetz. 1986. Effects of rumen-protected methionine and lysine on ruminant performance and nutrient metabolism. J. Anim. Sci. 62: 1101-1112.
Olubobokun, J. A., W. M. Craig, and K. R. Pond. 1990. Effects of mastication and microbial contamination on ruminal in situ forage disappearance. J. Anim. Sci. 68: 3371.
Opstvedt, J., P. Miller, R. W. Hardy, and J. Spinelli. 1984. Heat-induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gaifdneri). J. Agric. Food Chem. 32: 929-935.
Orskov, E. R. 2000. The in situ technique for the estimation of forage degradability in ruminants. In: D. I. Givens, E. Owen, R. F. E. Axford, and H. M. Omed (ed.) Forage Evaluation in Ruminant Nutrition. pp. 175-188. CABI International, UK.
Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agic. Sci. 92: 499-503.
Orskov, E. R. and M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier, London. pp. 149.
Orten, J. M. and O. W. Neuhaus. 1975. Human Biochemistry. Ninth Edition. C. V. Mosby Company. Saint Louis, MO.
Ostergarrd, S. and Y. T. Grohn. 2000. Concentrate feeding, dry matter intake, and metabolic disorders in Danish dairy cows. Livest. Prod. Sci. 665: 107-118.
Owens, F. N., D. S. Secrist, W. J. Hill, and D. R. Gill. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76: 275-286.
Palmquist, D. L. and T. C. Jenkins. 1980. Fat in lactation rations: revirw. J. Dairy Sci. 63: 1-14.
Palmquist, D. L., M. R. Weisbjerg, and T. Hvelplund. 1993.Ruminal, intestinal, and total digestabilities of nutrients in cows fed diets high in fat and undegradable protein. J. Dairy Sci.76: 1353-1364.
Pell, A. N. and P. Schofield. 1993. Computerized monitoring of gas production to measure forage digestion in vitro. J. Dairy Sci. 76: 1063-1073.
Phillips, C. J. C. 2001. Feeding methods. In: C. J. C. Phillips (ed.) Principles of Cattle Production. pp. 11-57. CABI International, UK.
Piva, G., S. Belladonna, G. Fusconi, and F. Sicbaldi. 1993. Effects of yeast on dairy cow performance, ruminal fermentation, blood components and milk manufacturing properties. J. Dairy Sci. 76: 2717-2722.
Pollitt, C. C. 1996. Basement membrane pathology: a feature of acute equine laminitis. Equine Vet. J. 28(1): 38-46.
Quin, J. L. 1943. Studies on the alimentary tract of merino sheep in south Africa: VⅡ. Fermentation in the forestomachs of sheep. Onderstepoort J. Vet. Sci. Anim. Industry 2: 91-117.
Radostits, O. M., D. C. Blood, and C. C. Gay. 1994. Veterinary Medicine. p. 1618 Bailliere Tindall, Philadelphia, PA.
Rae, R. C. and R. R. Smithard. 1985. Estimation of true nitrogen digestibility in cattle by a modified nylon bag technique. Proc. Nutr. Soc. 44: 116A.
Rode, L. M., D. C. Weakley, and L. D. Satter. 1985. Effect of forage amount and particle size in diets of lactating dairy cows on site of digestion and microbial protein synthesis. Can. J. Anim. Sci. 65: 101-111.
Rode, L. M. and L. D. Stter. 1988. Effect of amount and length of forage in diets containing barley or corn on site of digestion and efficiency of rumen microbial protein synthesis. Can. J. Anim. Sci. 68: 461.
Rogers, J. A., M. E. Branine, C. R. Miller, M. I. Wray, S. J. Bartle, R. L. Preston, D. R. Gill, R. H. Pritchard, R. P. Stilborn, and D. T. Bechtol. 1995. Effect of dietary viginianycin on performance and liver abscess incidence in feedlot cattle. J. Anim. Sci. 73: 9-20.
Rook, J. A. F. 1961. Variations in the chemical composition of the milk of the cow. Part Ⅰ. Dary Sci. Abster. 23: 251.
Rooke, J. A., P. Alvarez, and D. G. Armstrong. 1986. The digestion by cattle of barley and silage diets containing increasing quantities of soya-bean meal. J. Agric. Sci. Cambr. 107: 263-272.
Roseler, D. K., J. D. Ferguson, C. J. Sniffen, and J. Herrema. 1993. Dietary protein degradability effects on plasma and milk urea nitrogen and milk nonprotein in Holstein cows. J. Dairy Sci. 76: 525.
Rulquin, H. and R. Verite. 1993. Amino acid nutrition of dairy cows: production effects and animal requirements. In: P. C. Garnsworthy, and D. J. A. Cole (ed.) Recent Advances in Animal Nutrition pp. 55-77. Nottingham University Press, UK.
Russell, J. B. and R. J. Wallace. 1997. Energy-yielding and energy-consuming reactions. In: P. N. Hobson and C. S. Stewart (ed.) The Rumen Microbial Ecosystem, 2nd Edition. pp. 246-282. Blackie Academic and Professional, London.
Russell, J. B., W. M. Sharp, and R. L. Baldwin. 1979. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. J. Anim. Sci. 48: 251.
Russell, J. B. and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 39: 604-610.
Russell, J. B. and C. J. Sniffen. 1984. Effect of carbon-4 and carbon-5 volatile fatty acids on growth of mixed rumen bacteria in vitro. J. Dairy Sci. 67: 987-994.
Russell, J. B. and T. Hino. 1985. Regulation of lactate production in Streptococcus bovis. A spiraling effect that contributes to rumen acidosis. J. Dairy Sci. 68: 1712-1721.
Russell, J. B. and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl. Envioron. Microbiol. 55: 1-6.
Russell, J. B., H. J. Strobel, and S. A. Martin. 1990. Strategies of nutrient transport by ruminal bacteria. J. Dairy Sci. 73: 2996-3012.
Rymer, C. 2000. The measurement of forage digestibility in vivo. In: D. I. Givens, E. Owen, R. F. E. Axford, and H. M. Omed (ed.) Forage Evaluation in Ruminant Nutrition. pp. 113-134. CABI International. UK.
Sahlu, T., D. J. Schingoethe, and A. K. Clark. 1984. Lactational and chemical evaluation of soybean meals heat-treated by two methods. J. Dairy Sci. 67: 1725-1738.
Sanderson, R., S. A. S. Lister, and M. Dhanoa. 1997. Effect of particle size on in vitro fermentation of silages differing in dry matter content. Proceedings of British Society of Animal Science Annual Meeting, Scarborough, p. 197.
Santini, F. J., A. R. Hardie, N. A. Jorgensen, and M. F. Finner. 1983. Proposed use of adjusted intake based on forage particle length for calculation of roughage indexes. J. Dairy Sci. 66: 811-820.
Santos, F. A. P. and J. T. Huber. 1995. Effects of rumen undegradable protein on dairy cow performance: a 10 year literature review. J. Dairy Sci. 78(Suppl. 1): 293(Abstr.).
Santos, F. A. P., J. E. P. Santos, C. B. Theurer, and J. T. Huber.1998. Nutrition, feeding, and calves: Effects of rumen-undegradable protein on dairy cow performance: a 12-year literature review. J. Dairy Sci. 81: 3182-3213.
Sarwar, M., J. L. Firkins, and M. L. Eastridge. 1992. Effects of varying forage and concentrate carbohydrates on nutrient digestibilities and milk production by dairy cows. J. Dairy Sci. 75: 1533-1542.
Scheifinger, C., N. Russell, and W. Chalupa. 1976. Degradation of amino acids by pure cultures of rumen bacteria. J. Anim. Sci. 43: 821-827.
Schingoethe, D. J. 1996. Dietary influence on protein level in milk and milk yield in dairy cows. Anim. Feed Sci. Technol. 60: 181-190.
Schingoethe, D. J., D. P. Casper, C. Yang, D. J. Illg, J. L. Sommerfeldt, and C. R. Mueller. 1988. Lactational responses to soybean meal, heated soybean meal and extruded soybeans with ruminally protected methionine. J. Dairy Sci. 71: 173-180.
Schofield, P. 2000. Gas production methods. In: J. P. F. D’mello (ed.) Farm Animal Metabolism and Nutrition. pp. 209-232. CAB International, Wallingford.
Schmidt, G. H., L. D. Van Vleck, and M. F. Hutjens. 1988. Principles of dairy science. Prentice Hall.
Schultz, L. H. 1988. Milk fever, ketosis and the fat cow syndrome. In: D. C. Church (ed.) The Ruminant Animal: Digestive Physiology and Nutrition. p. 493 Waveland Press, Inc., Prospect Heights, IL.
Schwab, C. G. 1994. Optimizing amino acid nutrition for optimum yields of milk and milk protein. pp. 114-129.
Schwab, C. G. 1995. Protected proteins and amino acids for ruminants. In Biotechnology in Animal Feeds and Animal Feeding. p. 115.
Schwab, C. G., C. K. Bozak, N. L. Whitehouse, and V. M. Olson. 1992. Amino acid limitation and flow to the duodenum at four stages of lactation. 2. Extent of lysine limitation. J. Dairy Sci. 75: 3503.
Schwab, C. G., M. T. Socha, and N. L. Whitehouse. 1993. Opportunities for rumen protected lysine and methionine in lactating dairy cow nutrition. Rhone-Poulenc Animal Nutrition Symposium, Guelph, Ontario, Mississauga, Ontario, pp. 3-28.
Scott, D. 1975. Changes in mineral, water and acid-base balance associated with feeding and diet. In: I. W. McDonald, and A. C. I. Warner (ed.) Digestion and Metabolism in the Ruminant. pp. 205-215. University of New England Printing Unit, Armidale, N. S. W., Australia.
Scott, T. A., D. K. Combs, and R. R. Grummer. 1991. Effects of roasting, extrusion, and particle size on the feeding value of soybeans for dairy cows. J. Dairy Sci. 74: 2555.
Shaver, R. D. 1990. Forage particle length in dairy rations. Proc. Dairy Feeding Systems Symp. pp. 58-64. Northeast Reg. Agric. Eng. Serv., Harrisburg, PA.
Shaver, R. D., A, J. Nytes, L. D. Satter, and N. A. Jorgensen. 1986. Influence of amount of feed and forage physical form on digestion and passage of prebloom alfalfa hay in dairy cows. J. Dairy Sci. 69: 1545-1559.
Shaver, R. D. 1997. Nutritional risk factors in the etiology of left displaced abomasums in dairy cows: a review. J. Dairy Sci. 80: 2449-2453.
Siddons, R. C., J. Paradine, D. L. Gale, and R. T. Evans. 1985. Estimation of the degradability of dietary protein in the sheep rumen by in vivo and in vitro procedures. Br. J. Nutr. 54: 545-561.
Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold, and P. J. Buttery. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. (Camb.) 120: 251.
Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43: 910-929.
Slyter, L. L. and T. S. Rumsey. 1991. Effect of coliform bacteria, feed deprivation, and pH on ruminal D-lactic acid production by steer or continuous-culture microbial populations changed from forage to concentrates. J. Anim. Sci. 69: 3055-3066.
Sniffen, C. J. and P. H. Robinson. 1984. Nutritional strategy. Can. J. Anim. Sci. 64: 529-542.
Sniffen, C. J. and P. H. Robinson. 1987. Microbial growth and flow as influenced by dietary manipulations. J. Dairy Sci. 70: 425-441.
Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox, and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: Ⅱ. Carbohydrate and protein availability. J. Anim. Sci. 70: 3562-3577.
Sporndly, E. 1989. Effects of diet on milk composition and yield of dairy cows with special emphasis on milk protein content. Swedish J. Agric. Res. 19: 99-106.
Steele, W. and J. H. Moore. 1968. The effects of dietary tallow and cottonseed seedoil on milk fat secretion in the cow. J. Dairy Research. 35: 223-235.
Stern, M. D., W. H. Hoover, C. T. Sniften, B. A. Crooker, and D. H. Knowlton. 1978. Effect of nonstructure carbohydrate, urea and soluble protein levels on microbial protein synthesis in continuous culture of rumen contents. J. anim. Sci. 47: 944-956.
Stern, M. D., K. A. Santos, and L. D. Satter. 1985. Protein degradation in the rumen and amino acid absorption in the small intestine of lactating dairy cattle fed heat-treated whole soybeans. J. Dairy Sci. 68: 45.
Stern, M. D., G. A. Varga, J. H. Clark, J. L. Furkins, J. T. Huber, and D. L. Palmquist. 1994. Evaluation of chemical and physical properties of feeds that affect protein metabolism in the rumen. J. Dairy Sci. 77: 2762.
Stewart, C. S. 1979. Problems in the assessment of fiber digestion in the rumen. In: E. Grossbard (ed.) Straw Decay and Its Effect on Disposal and Utilistion. pp. 315-319. John Wiley and Sons, UK.
Stock, R. J. and M. A. Cotta. 1986. Effect of 3-phenylpropionic acid on growth of, and cellulose utilization by, cellulolytic ruminal bacteria. Appl. Environ. Microbiol. 52: 518-528.
Stock, R., T. Klopfenstenin, D. Shain, and C. Krehbiel. 1995. Lactobacillus acidophilus strain NCS*82 and soluble carbohydrate source for feedlot cattle. Nebr. Cattle Feeders Day. pp. 36-37. University of Nebraska, Lincoln.
Stokes, S. R., W. H. Hoover. T. K. Miller, and R. P. Manski. 1991a. Impact of carbohydrate and protein levels on bacterial metabolism in continuous culture. J. Dairy Sci. 74: 860-870.
Stokes, S. R., W. H. Hoover. T. K. Miller, and R. Blauweikel. 1991b. Ruminal digestion and microbial utilization of diets varying in type of carbohydrate and protein. J. Dairy Sci. 74: 871-881.
Storm, E. and E. R. Orskov. 1983. The nutritive value of rumen micro-organisms in ruminants. 1. Large scale isolation and chemical composition of rumen micro-organisms. Br. J. Nutr. 50: 463-470.
Storm, E., D. S. Brown, and E. R. Orskov. 1983. The nutritive value of rumen micro-organisms in ruminants. 3. The digestion of microbial amino and nucleic acids in, and losses of endogenous from, the small intestine of sheep. Br. J. Nutr. 50: 479-485.
Strobel, H. J. and J. B. Russell. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 69: 2941-2947.
Sudweeks, E. M., L. O. Ely, D. R. Mertens, and L. R. Sisk. 1981. Assessing minimum amounts and form of roughages in ruminant diets: Roughage value index system. J. Anim. Sci. 53: 1406-1411.
Sutton, J. D., J. D. Oldham, and I. C. Hart. 1980. Products of digestion: Hormones and energy utilization in milking cows given concentrates containing varying proportions of barley or maize. In: L. C. Mount (ed.) Energy metabolism. Butterworths, London.
Sutton, J. D. 1985. Digestional absorbtion of energy substrates in the lactating cow. J. Dairy Sci. 68: 3376.
Sutton, J. D., R. Knight, A. B. McAllan, and R. H. Smith. 1983 Digestion and synthesis in the rumen of sheep given diets supplemented with free and protected oils. Br. J. Nutr. 49: 419-432.
Syntex. 1994. Cattlyst Technical Manual. Syntex Animal Health, West Des Moines, IA.
Tabaru, H., K. Ikeda, E. Kadota, Y. Murakami, H. Yamada, N. Sasski, and A. Takeuchi. 1990. Effects of osmolality on water, electrolytes and VAF absorption from the isolated ruminoreticulum in the cow. Jpn. J. Vet. Sci. 52: 91.
Tagari, H., A. Arieli, S. Mabjeesh, I. Bruckental, S. Zamwell, and Y. Aharoni. 1995. Assessment of duodenal amino acid profile in dairy cows by in situ method. Livest. Prod. Sci. 42: 13.
Tamminga, S. 1992. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75: 345-357.
Taylor. R. B., J. T. Huber, R. A. Gomez-Alarcon, F. Wiersma, and X. Pang. 1991. Influence of protein degradability and evaporative cooling on performance of dairy cows during hot environmental temperatures. J. Dairy Sci. 74: 243.
Theuer, C. B. 1986. Grain processing effects on starch utilization by ruminants. J. Anim. Sci. 63: 1649-1662.
Theodorou, M. K., R. S. Lowman, Z. S. Davies, D. Cuddeford, and E. Owen. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. In: In Vitro Techniques for Measuring Nutrient Supply to Ruminants. British Society of Animal Science Occassional Publication No. 22. Reading. pp. 55-63.
Thomas, P. C. and P. A. Martin. 1988. The influence of nutrient balance on milk yield and composition. In: p. C. Garnsworthy (ed.) Nutrition and Lactation in the Dairy Cow. Butterworths, London.
Thorley, C. M., M. E. Sharpe, and M. P. Bryant. 1968. Modification of the rumen bacterial flora by feeding cattle ground and pelleted roughage as determined with culture media with or without rumen fluid. J. Dairy Sci. 51: 1811-1816.
Tice, E. M., M. L. Eastridge, and J. L. Firkins. 1993. Raw soybeans and roasted soybeans of different particle sizes. 1. Digestibility and utilization by lactating cows. J. Dairy Sci. 76: 224.
Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the digestion of forage crops. J. Br. Grassl. Soc. 18: 104-111.
Titgemeyer, E. C., N. R. Merchen, and L. L. Berger. 1989. Evaluation of soybean meal, corn gluten meal, blood meal and fish meal as sources of nitrogen and amino acids disappearing from the small intestine of steers. J. Anim. Sci. 67: 262-275.
Tung, R. S. and L. Kung, Jr. 1993. In vitro effects of thiopeptide and monensin on ruminal fermentation of soluble carbohydrate. J. Dairy Sci. 76: 1083-1090.
Uden, P. 1987. The effect of grinding and pelleting hay on digestibility, fermentation rate, digesta passage and rumen and faecal particle size in cows. Anim. Feed Sci. Technol. 19: 145-157.
Van Amburgh, M., T. Perry, D. Fox, and G. Ducharme. 1993. Growth response of Holstein steers supplemented with rumen protected lysine and methionine. J. Anim. Sci. 71(Suppl. 1): 260(Abstr.).
Vanbelle, M. and B. Allart. 1979. The effect of processing dehydrated forages on dietary value of value and ruminating behavior in sheep. In: C. Thomas (ed.) Forage Conservation in the 80’s. Occas. Symp. No. 11. p. 356 Eur. Grassl. Fed., Janssen Serv., London, England.
Van Gylswyk, N. O., K. Wejdemar, and K. Kulander. 1992. Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. Appl. Environ. Microbiol. 58: 99-1
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊