跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱盈達
研究生(外文):Ying-Ta Chiu
論文名稱:人工濕地在集水區上游水質改善之應用-以牡丹水庫為例
論文名稱(外文):Application of Constructed Wetland in Watershed Water Quality Improvement-A case study of Mu-Tan Reservoir
指導教授:郭文健郭文健引用關係
指導教授(外文):Wen-Chien Kuo
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:151
中文關鍵詞:集水區點源污染非點源污染人工濕地生物濾床多重處理系統滯留池
外文關鍵詞:WatershedPoint-source pollutionNon-point source pollutionConstructed WetlandBiofilterTreatment TrainDetention Pond
相關次數:
  • 被引用被引用:7
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:2
本研究內容主要是在牡丹水庫集水區內設計規劃一人工濕地,削減其集水區內點源及非點源污染,藉以改善水庫內水質優養化之情況。
在調查點源污染期間,研究樣區以牡丹水庫集水區上游之牡丹村、
東源村為主,在非點源污染方面,則針對牡丹水庫兩大集水區(牡丹溪及汝仍溪)內,選擇2處於降雨期間調查水質濃度及流量與污染量,以瞭解各土地利用型態之單位污染負荷量及非點源污染量,在經過一年半的調查,水庫全年承受總氮86,853 kg/yr。其中點源23.7 kg/yr(佔0.03%),非點源83,829.3 kg/yr(佔99.97%)。水庫全年承受總磷1,806.3 kg/yr。其中
點源10.2 kg/yr(佔0.56%),非點源佔1,796.1 kg/yr(99.44%)。
根據污染源之污染量大小、污染控制、成本效益與執行之難易,擬定各污染源污染控制計劃。在點源污染部分,本研究分別規劃一段式、二段式人工濕地作為點源污染削減之處理方式,在設計一段式人工濕地方面,以龍頸排水之實驗結果之BOD5負荷量( )與去除量( )之關係為設計依據,並做一迴歸方程式(y=0.4827x+0.1675,R=0.9197),本文並舉一實例,以牡丹村為例,Q=180 CMD生活污水,進流BOD5濃度=100mg/L,處理之目標為BOD5濃度=20mg/L,若把上述欲達成目標去除率代入此方程式中可求得一段式人工面積為1.1ha。在設計二段式人工濕地方面,第一段生物濾床以千禧公園生物濾床之實驗處理結果為設計依據,污染物去除模式亦參照洞澤經驗模式進行複迴歸分析,可得經驗式:
BOD5模式 R2=0.96
若考慮濾材BOD5負荷,引用康之修正洞澤經驗式,其經驗式:
BOD5模式 =0.687 R2=0.86
生物濾床若欲達到上述之目標去除率,則需接觸濾材總表面積為2089 m2,第二段人工濕地以千禧公園之實驗結果之人工濕地BOD5負荷量( )與去除量( )之關係為設計依據,做一迴歸方程式為(y=0.7191x-37.138,R2=0.97;n=9),若欲達到目標去除率,則需二段式人工濕地面積為204.6 m2。
在非點源污染部分,本研究將規劃滯留池和濕地等多重處理系統,處理非點源之污染物,欲規劃滯留池所需之入流量須根據暴雨資料推求。由於本研究無實測資料,將採用水土保持技術規範,所推估出降雨強度公式、集流時間,並利用所估算出來的結果,再運用合理化公式求出所需之體積,如以汝仍溪為例,蓄水體積估算為201,693m3,並參考前人以SWMM模式下針對滯留池所作之去除摸式,以汝仍溪集水區而言,年輸出量SS、TN、TP分別為7427.2 (kg/yr)、1298 (kg/yr)、20.9 (kg/yr),如採用此一模式,則其預估削減去除量則為3342.2 (kg/yr)、726.9 (kg/yr)、7.1 (kg/yr),去除率分別是:45%、56%、34%。
Objective of this study is to reduce the point and non-point sources pollution to improve the eutrophication of Mu-Tan Reservoir through planning of constructed wetlands in the watershed. Investigation of the point-source pollutants was conducted in the Mu-Tan Village and Dong-Yan Village within the watershed of Mu-Tan Reservoir. Non-point source pollutants were conducted in Mu-Tan River and Ru-Ren River, the two major rivers that bring pollutants into the Reservoir. Two sites were chosen to investigate the flowrate and pollution loading of non-point source in order to estimate the unit loading factor and pollution loading regarding to various land use patterns. For more than 18 months’ investigation, it was found that the reservoir received a Total Nitrogen (TN) of 86,853 kg/yr, among which the point-source pollutants contributed 23.7 kg/yr (0.03%) and non-point source contributed 83,829.3 kg/yr (99.97%). The Total Phosphorus (TP) input was found to reach 1,806.3 kg/yr, with contributions from point- and non-point sources pollutants were 10.2kg/yr (0.56%) and 1796.1 kg/yr
(99.44%), respectively.
A pollution control plan was proposed according to the pollutant loading, cost-effectiveness analysis, and engineering practice. In the aspect of point-source pollutants, both the one-stage and two-stage constructed wetlands were proposed for pollution control. In the one-stage proposal, an empirical formula derived from a previous study (Long-Ging Creek) of this group basing on BOD5 loading ( ) and removal ( ) was used, and calculation was made using this regression equation :y=0.4827x + 0.1675, R=0.9197. An example was demonstrated using this formula to design a constructed wetland treating a flowrate of 180 CMD domestic wastewater from Mu-Tan Village. With a BOD5 influent concentration of 100 mg/L, it is calculated that an area of 1.1 ha of constructed wetland is required to reduce the BOD5 concentration to less than 20 mg/L. In the design of a two-stage constructed wetland, the first stage biofilter was designed using an empirical formula derived from another previous study (Millennium Park of Pingtung City) of this group:
BOD5 modeling R2=0.96
When the BOD5 loading of the media was considered, another empirical equation was used:
BOD5 modeling =0.687 R2=0.86
In order to reach the same degree of removal efficiency, a total media area of 2089 m2 will be required in the first stage of biofilter. As to the second stage of constructed wetland, based on the same study (Millennium Park of Pingtung City) of this group from BOD5 loading ( ) and removal ( ) and the derived regression equation :y=0.4827x + 0.1675, R=0.9197, it is calculated that an area of 204.6 m2 of constructed wetland is required.
In the pollution control plan of non-point source, we proposed a treatment train with combination of detention pond and constructed wetland. Due to the lack of long-term precipitation data, we adopted the codes from soil and water conservation to estimate the rainfall intensity and time of concentration. These results were then applied in the rational formula to determine the volume required for the detention pond and the constructed wetland. Results showed that, in the case of Ru-Ren River watershed, a total retention volume of 201,693m3 is required. Based on the SWMM model from the literature, in the case of Ru-Ren River Watershed, the output quantities of SS, TN, and TP are calculated to be 7427.2 kg/yr, 726.9 kg/yr, and 20.9 kg/yr, respectively. Based on the same model, the amounts removed for SS, TN, and TP are 3342.2 kg/yr, 726.9 kg/yr, and 7.1 kg/yr, respectively. These correspond to the removal efficiencies for SS, TN, and TP to be 45%, 56%, and 34%, respectively.
中文摘要 ...…..….……I
英文摘要 ……………………………………………………………....……IV
誌謝 ………………………………………………………………………VII
目錄 ……………………………………………………………………….VIII
表目錄 XII
圖目錄 XVI
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 台灣集水區之現況 3
2.2 水庫集水區非點源污染相關研究 7
2.2.1 暴雨初期沖刷相關研究 8
2.2.2 林地非點源污染相關研究 9
2.2.3 非點源單位污染負荷相關研究 10
2.3 非點源污染控制方法 12
2.3.1 最佳管理作業(BMP)對傳統污染物之去除效率 14
2.4 濕地概述 15
2.4.1 濕地的定義 15
2.4.2 濕地的功能 16
2.4.3 濕地的分類 19
2.5 人工濕地概述 21
2.5.1 人工濕地之沿革 21
2.5.2 人工濕地之型態 23
2.5.3 人工濕地處理污水之機制 26
2.5.4 人工濕地水生植物之根區效應 29
2.5.5 人工濕地目前在各類型廢水之應用 30
2.5.6 人工濕地之設計建造 33
2.5.7 人工濕地在實地操作需考量因素 34
2.5.8 人工濕地在實際操作案例之介紹 35
2.5.9 人工濕地預期效益評析 37
第三章 研究樣區介紹與污染負荷調查 40
3.1 研究流程 40
3.2 研究樣區介紹 42
3.2.1 地理位置 42
3.2.2 氣侯條件 42
3.2.3 土地利用 46
3.2.4 人口分佈 46
3.3 點源污染負荷調查 49
3.3.1 點源污染現場調查 49
3.3.2 調查地點 49
3.3.3 調查方法 53
3.4 非點源污染負荷調查 55
3.4.1 非點源污染現場調查 55
3.4.2 調查地點 56
3.4.3 調查方法 56
第四章 結果與討論 65
4.1 點源污染調查結果與推估 65
4.1.1 點源污染調查結果 65
4.1.2 流達污染量推估 66
4.1.3 點源污染負荷量之推估 68
4.2 非點源污染負荷調查結果與推估 70
4.2.1 降雨事件介紹 70
4.2.2 降雨事件之結果與討論 85
4.2.3 單位污染負荷推估 86
4.2.4 單位污染負荷推估結果 86
4.2.5 迴歸方式推算 90
4.2.6 年污染輸出量之估算 95
4.3 牡丹水庫污染來源分析 96
第五章 人工濕地之規劃設計 99
5.1 點源污染的削減策略 99
5.1.1 削減點源污染建議方案 108
5.1.2 評估一段式或二段式人工濕地削減點污染源之
可行性…………………………………………………...102
5.1.3 目標區內設置人工濕地用地之說明……………….…..103
5.1.4 目標區之水質資料建立………………………………...103
5.1.5 目標區家庭污水基本水質之推估………………….…..104
5.2 人工濕地設計實例……………………………………………..104
5.2.1 以放流水標準設計一段式人工濕地……………….…..104
5.2.2 以放流水標準設計二段式人工濕地…………………...105
5.3 非點源污染方面…………………………………………..……108
5.3.1 規劃原則…………………………………………….…..108
5.3.2 多重處理系列概念…………………………..……….…109
5.3.3 多重處理之規劃設計……………………..………….…109
5.3.4 多重處理設計準則………………………………….…..111
5.3.5 集水區逕流量計算………………………………….…..113
5.3.6 實際案例之演算…………………………………….…..117
5.4 最佳管理作業成本估算………………………………………118
5.4.1 多重處理初期建照成本之規劃…………………….…..118
5.5 預估削減去除量………………………………………………120
第六章 結論與建議………………………………………………….121
6.1 結論…………………………………………………….…121
6.2 建議…………………………………………………….…123
參考文獻……………………………………………………………...125
附錄…………………………………………………………………...131
作者簡介……………………………………………………………...151
1.于立平,1997,「濕地公園規劃策略之研究-以高雄縣鳥松濕地公園為例」,中山大學海洋環境工程研究所碩士論文。
2.王姿文,林瑩鋒,荊樹人,1998,「種植不同本土型植物之小型人工濕地淨化污水之效能」,第二十三屆廢水處理技術研討會。
3.台北市建設局,網站資料http://www.dortp.gov.tw.
4.行政院農委會,2000,水土保持技術規範,中華水土保持學會。
5.行政院環境保護署,網站資料 http://www.epa.gov.tw.
6.何茂賢,2003,「以人工濕地系統處理受污染河水中營養鹽之探討」,嘉南藥理科技大學環境工程衛生系碩士論文。
7.李珮璇,林鎮洋,2002,「暴雨初期沖刷對水源水質衝擊之評估」,第十五屆環境規劃與管理研討會論文。
8.李錦育,2001,「台灣森林試驗集水區之經營」,海峽兩岸森林水文學與集水區永續經營學術論文集,頁 1-11。
9.李駿智,1996,「人工濕地承受高強度廢水之操作表現」,屏東科技大學環境工程與科學系碩士論文。
10.林瑩鋒,荊樹人,2000,「水產養殖廢水之人工濕地處理及循環再利用之研究(Ⅱ)」,國科會專題研究計劃成果報告書,計劃編號 : NSC 89-2621-Z-041-001。
11.林鎮洋,邱逸文, 2002,「可具體實現生態工法」,生態工法概論,pp. 189-230。
12.屏東縣政府,網站資料 http://www.pthg.gov.tw.
13.施珮瑜,2000,「以模廠型人工濕地處理煉油廢水之研究」,中山大學海洋環境及工程學系碩士論文。
14.胡志清,2003,「以模廠型人工濕地處理煉油及煉鋼廠廢水之研究」,中山大學海洋環境及工程學系碩士論文。
15.張立弘,2001,「生活污水之濕地處理及再利用研究」,屏東科技大學環境工程與科學系碩士論文。
16.張延光,2001,「台灣重要水源保護區問題分析與經營管理策略之探討」,中興大學水土保持研究所博士論文。
17.許文明,2000,「以現地及小型人工濕地探討數種水生植物淨化養豬廢水之效能比較」,屏東科技大學環境工程與科學系碩士論文。
18.郭文健,張立弘,2001,「生活污水之濕地處理及再利用研究」,第六屆水再生及再利用研討會,頁 84-91。
19.郭文健,陳宜檉,蔡佳書,1999,「人工濕地在河川水質改善之應用:以東港溪為例」,屏東科技大學學報,第11卷,第2期,頁 113-122。
20.郭文健,陳盈利,邱盈達,2003,「影響人工濕地對污染物去除效率因素之探討」,人工濕地水質淨化系統研討會論文集,頁 1-12。
21.郭振泰,余嘯雷,駱尚廉,林鎮洋,1996,「水庫集水區非點源污染控制最佳管理作業之研究(一) 」,經濟部水利司委託,台灣大學土木系執行。
22.郭振泰,郭文健,黃益助,吳俊宗,張穗蘋,2003,「牡丹水庫水質調查與改善計劃」,水利署南區水資源局委託,財團法人新環境基金會執行。
23.陳俊勳,2004,「好氧性氧化塘處理受污染排水之模式」,成功大學環境工程學系碩士論文。
24.陳彥甫,2003,「茶園及林地非點源單位污染之研究」,台北科技大學環境規劃與管理研究所碩士論文。
25.黃示益,袁菁,連興隆,葉琮裕,2003,「國立高雄大學人工濕地計劃對校園整體發展之效益評析」,人工濕地水質淨化系統研討會論文集,頁 103-112。
26.黃家勤,溫清光,余嘯雷,1999,「社區非點源污染最佳管理作業規劃」,行政院環保署委託,義守大學土木工程學系執行。
27.楊易霖,張鎮南,2002,「利用成本效益探討中水回收再利用之可行性」,第二十七屆廢水處理技術研討會。
28.楊磊,1996,「濕地形成與定義」,科學月刊,第27卷,第3期,頁 32-37。
29.溫清光,張智華,1998,「台灣非點源污染管理及控制現況-社區、工業區、遊憩區及營建工地」,中美非點源污染控制管理與技術合作研討會,行政院環保署、成功大學環工系主辦。
30.經濟部水利署,網站資料 http://www.wra.gov.tw/index.asp.
31.葉擴林,2000,「工業區滯留池處理非點源之研究」,成功大學環境工程學系碩士論文。
32.劉靜靜,邱文彥,1996,「濕地形成與定義」,科學月刊,第27卷,第3期,頁 10-14。
33.歐陽嶠暉,2000,下水道工程學,頁 240-241。
34.駱尚廉,余嘯雷,1994,「環境敏感地帶調查-水源水質保護區不同土地使用型態對水體水質影響」,行政院環保署委託,台灣大學環工所執行。
35.Al-Omari, A., and Fayyad, M., 2003, “Treatment of domestic wastewater by subsurface flow constructed wetlands in Jordan,” Desalination, Vol. 155, pp. 27-39.
36.Billore, S. K., Singh, N., Sharma, J. K., Dass, P., and Nelson, R. M., 1999, “Horizontal Subsurface Flow Gravel Bed Constructed Wetland with Phragmites Karkain Central India,” Wat. Sci. Tech., Vol. 40, No. 3, pp. 163-171.
37.Daukas, P., Lowry, D., and Walker, W. W., 1989, “Design of wet dention basins and constructed wetlands for treatment stormwater runoff from a regional shopping mall in massachusetts,” Constructed Wetlands for Wastewater Treatment-Municipal , Industrical and Agricultural, pp. 686-694.
38.Donal, D. H., 1993, “Wetlands : History, Current Status, and Future,” Environmental Toxicology and Chemistry, Vol. 12, pp. 2157-2165.
39.Duda, A. M., 1993, “Addressing Nonpoint sources of water pollution must Became An lnternational Priority,” Wat. Sci. Tech., Vol. 28, No. 5, pp. 256-270.
40.Faulkner, S. P., and Richardson, C. J., 1989, “Physical and chemical characteristics of freshwater wetland soils,” Constructed Wetlands foeWastewater Treatment-Municipal , Industrical and Agricultural, pp. 73-88 and pp. 41-72.
41.Green, M. B., and Opton, J., 1995, “Appropriate technology for small communities,” Wat. Sci. Tech., Vol. 32, No. 3, pp. 339-348.
42.Grisham, D. M., 1995, “Designing for the ‘first flush,” Civil Engineering, Vol. 65, No. 11, pp. 67-69.
43.Hammer, D. A., and Bastian, R. K., 1989, “Wetlands ecosystems : Natural water purifiers?,” Constructed Wetlands for Wastewater Treatment-Municipal , Industrical and Agricultural, pp. 73-88.
44.Hammer, D. A., 1996, Creating freshwater wetlands, Second Edition, pp. 36-38.
45.IWA., 2000, “Special Group on Use of Macrophytes in Water Pollution Control,” Constructed Wetlands for Pollution Control-Performance, Design and Operation, pp. 17-22.
46.Jing, S. R., Lin, Y. F., Wang, T. W. and Lee, D. Y., 2002, “Microcosm Wetlands for Wastewater Treatment with Different Hydraulic Loading Rates and Macrophytes,” J. Environ. Qual., Vol. 31, No. 2, pp. 690-696.
47.Kadlec, R. H., 1996, “Introduction to Wetlands for Treatment,” Treatment Wetlands, pp. 7-8 and pp. 42-43.
48.Kadlec, R. H., 1996, “Natural System for Treatment,” Treatment Wetlands, pp. 42-45.
49.Kadlec, R. H., 1996, “An autobiotic wetland phosphorus model,” Ecological Engineering 8, pp. 145-172.
50.Line, D. M., Osmond, D. L., Coffey, S. W., McLaughlin, R. A., Jennings, G. D., Gale, J. A., and Spooner, J., 1997, “Nonpoint sources,” Wat. Res., Vol. 69, No. 4, pp. 844-860.
51.Lopez, E., Sotob, B., Rubinosb, D., and Diaz-Fierrosb, F., 2000, “Flow-variation-paced sampling : a method for automatic sampling of streamflow during peak runoff periods,” Journal of Hydrology, Vol. 229, pp. 225-264.
52.Metcalf and Eddy, 1991, “Natural treatment systems,” Wastewater Engineering : Treatment, Disposal and Reuse, pp. 927-1002.
53.Mehlum, T., 1995, “Treatment of landfill leachate in on-site loogon and constructed wetland,” Wat. Sci. Tech., Vol. 32, No. 3, pp. 129-236.
54.Mitsch, W. J., and Gosselink, J. G., 2000, “Wetland Biogeochemistry,” Wetlands, p. 185.
55.Morris, M., and Herbert, R., 1997, “The design and performance of a verticalflow reed bed for the treatment of high ammonia, low suspended solidsorganic effluent,” Wat. Sci. Tech., Vol. 35, No. 5, pp. 197-204.
56.North Central Council of Government, 2000, Deparment of Environment Resources, Texas Nonpoint Source Book, http://www.txnpsbook.org.
57.Philippe, V., Adiklson, P., Andre, F., Gills, P., and Elianem, F., 1999, “Spatial Changes in the modalities of N and P inputs in a rural river network,” Wat. Res., Vol. 33, No. 1, pp. 95-104.
58.Price, T., and Probert, D., 1997, “Role of Constructed Wetlands in Environmentally-sustainable Developments,” Applied Energy, Vol. 57, No. 2-3, pp. 129-174.
59.Saget, A., and Chebbo, G., 1995, “The First Flush in Sewer System,” Wat. Sci. Tech., Vol. 33, No. 2, pp. 195-206.
60.Shutes, R. B. E., Revitt, D. M., Mungur, A. S., and Scholes, L. N. L., 1997, “The design of wetland systems for the treatment of urban runoff,” Wat. Sci. Tech., Vol. 35, No. 5, pp. 19-25.
61.Sikora, F. J., Tong, Z., Behrends, L. L., Steinberg, S. L., and Coonrod, H. S., 1995, “Ammonium removal in constructed wetlands with recirculating subsurface flow : removal rates and mechanisms,” Wat. Sci. Tech., Vol. 32, No. 3, pp. 193-202.
62.Tchobanoglous, G., 1993, “Constructed wetlands and aquatic plant systems : research, design, operational, and monitoring issues,” Constructed Wetlands for Water Quality Improvement, pp. 29-35.
63.Van Oostorm, A. J., 1995, “Nitrogen removal in constructed wetlands treating nitrified meat processing effluent,” Wat. Sci. Tech., Vol. 32, No. 3, pp. 137-147.
64. Vrhovsek, D., Kukanja, V., and Bulk, T., 1996, “Constructed wetland for industrial waste water treatment,” Wat. Res., Vol. 30, No. 10, pp. 2287-2292.
65.Wake County, 2001, http://projects.ch2m.com/wakecounty.
66.Zhu, T., and Sikora, F. J., 1995, “Ammonium and nitrate emoval in vegetated and unvegetated gravel bed microcosm wetlands,” Wat. Sci. Tech., Vol. 32, No. 3, pp. 219-228.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top