跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭真秀
研究生(外文):Chen-Hsiu Kuo
論文名稱:一氧化氮與一氧化碳於PC12細胞存活之角色研究
論文名稱(外文):The Roles of Nitric Oxide and Carbon Monoxide in the Survival of PC12 Cells
指導教授:張雅雯張雅雯引用關係
指導教授(外文):Alice Y.W. Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:83
中文關鍵詞:PC12細胞一氧化碳一氧化氮
外文關鍵詞:PC12 CellsCarbon MonoxideNitric Oxide
相關次數:
  • 被引用被引用:4
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
許多研究顯示一氧化碳 (carbon monoxide, CO) 與一氧化氮 (nitric oxide, NO) 為具有類似生物功能的氣體分子。本實驗探討一氧化氮和一氧化碳對 naïve rat pheochromocytoma (PC12) 細胞存活之相關性。
西方墨點法分析結果得知 PC12 細胞中,三種一氧化氮合成酶之蛋白質表現量低,而原血紅素氧化酶的蛋白質表現量高,尤其 heme oxygenase-1 (HO-1) 蛋白質表現量更高。投予 PC12 細胞一氧化氮清除劑 (carboxy-2-phenyl-4,4,5,5,-tetramethyl-imidazoline- 1-oxy-1-3-oxide, carboxy-PTIO,2 μmol) 或原血紅素氧化酶拮抗劑 (zinc protoporphyrinIX, ZnPP,25 nmol) 24 小時,藉由 WST-1 (4-[3-(4-lodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) 測試分析粒線體中去氫酶的活性,進而反映出細胞逐漸死亡。另一方面,一氧化氮供給劑 (amino-3-morpholinyl-1,2,3- oxadiazolium chloride, SIN-1,1 μmol) 或 (S-Nitroso-N-acetylpenicill- amine, SNAP,1 μmol) 或一氧化碳前驅物 (hematin,500 nmol) 會增加 PC12 細胞的存活率。同時投予 SIN-1 (1 μmol) 和 carboxy-PTIO (2 μmol) 或 SIN-1 (1 μmol) 和 ZnPP (25 nmol) 各 24 小時,SIN-1 可以削減 carboxy-PTIO 或 ZnPP 對細胞造成的死亡。然而 nNOS 拮抗劑 (Nω-propyl-L-arginine, NPLA,100 pmol)、iNOS 拮抗劑 (S-methylisothiourea, SMT,10 nmol)、eNOS 拮抗劑 (N5-1-Iminoethyl-L-ornithine dihydrochlorid, L-NIO,4 nmol) 和一氧化氮前驅物 (L-arginine, L-Arg,2 μmol) 對 PC12 細胞存活之影響無顯著差異,且 L-Arg 和 carboxy-PTIO 同時投予,也不能改變 carboxy-PTIO 對細胞所造成的死亡。
綜合以上實驗結果得到結論是:內生性一氧化氮和一氧化碳貢獻於 naïve PC12 細胞中維持其生存。
Recent studies suggest that carbon monoxide (CO) is another gas molecule that has similar biological actions as nitric oxide (NO). The purpose of this study is to investigate the relationship between NO and CO in the survival of naïve rat pheochromocytoma PC12 cells.
Western blot analysis revealed that all three isoforms of nitric oxide synthase (NOS) exhibited low expression and two isoforms of heme oxygenase (HO), especially HO-1, exhibited higher expression in PC12 cells under basal condition. Exposure of PC12 cells for 24 h to the NO scavenger, carboxy-2-phenyl-4,4,5,5,- tetramethylimidazoline-1-oxy-1-3-oxide (carboxy-PTIO, 2 μmol) or HO inhibitor, zinc protoporphyrinIX (ZnPP, 25 nmol) resulted in a progressive reduction in mitochondria dehydrogenase activity reflected cell viability as determined by the WST-1 (4-[3-(4-lodophenyl)- 2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) assay. On the other hand, incubation with NO donors, amino-3-morpholinyl- 1,2,3-oxadiazolium chloride (SIN-1, 1 μmol) or S-Nitroso-N-acetyl- penicillamine (SNAP, 1 μmol), or the CO precursor, hematin (500 nmol), resulted in an elevation in cell viability. The progressive reduction in cell viability induced by carboxy-PTIO (2 μmol) or ZnPP (25 nmol) was significantly blunted by co-treatment with SIN-1 (1 μmol). However, incubation with the NO precursor, L-arginine (L-Arg, 2 μmol), or the selective inhibitors for nNOS, iNOS or eNOS, Nω-propyl-L-arginine (NPLA, 100 pmol), S-methylisothiourea (SMT, 10 nmol) or N5-1-Iminoethyl-L-ornithine dihydrochloride (L-NIO, 4 nmol) did not significantly alter cell viability. Co-treatment with carboxy-PTIO (2 μmol) and L-Arg (2 μmol) was also ineffective.
These results suggest that NO or CO contributes to the survival of naïve PC12 cells.
中文摘要………………………………………………………………..1

英文摘要………………………………………………………………..2

緒 論………………………………………………………………..3

研究目的……………………………………………………………….15

材料和方法…………………………………………………………….16

實驗結果………………………………………………………………..33

討 論………………………………………………………………..39

結 語………………………………………………………………..50

參考文獻………………………………………………………………..51

附 圖………………………………………………………………..59
Amano F, Noda T. Improved detection of nitric oxide radical production in an activated macrophage culture with a radical scavenger, carboxy-PTIO, and Griess reagent. FEBS Lett. 1995; 368: 425-8.

Akaike T, Yoshida M, Miyamoto Y, Sato K, Kohno M, Sasamoto K, Miyazaki K, Ueda S, Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/•NO through a radical reaction. Biochemistry. 1993; 32: 827-32.

Beck KF, Eberhardt W, Frank S, Huwiler A, Messmer UK, Muhl H, Pfeilschifter J. Inducible NO synthase: role in cellular signalling. J Exp Biol. 1999; 202: 645-53.

Bohn H, Schönafinger K. Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol. 1989; 14: 6-12.

Bouton C, Demple B. Nitric oxide-inducible expression of heme oxygenases-1 in human cells. J Biol Chem. 2000; 275: 32688-93.

Bredt DS, Snyder SH. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA. 1990; 87: 682-5.

Bucher M, Hobbhahn J, Kurtz A. Nitric oxide-dependent down- regulation of angiotensin II type 2 receptors during experimental sepsis. Crit Care Med. 2001; 29: 1750-5.

Chan SHH, Wang LL, Wang SH. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br J Pharmacol. 2001; 133: 606-14.

Chan JYH, Wang SH, Chan SHH. Differential roles of iNOS and nNOS at rostral ventrolateral medulla during experimental endotoxemia in the rat. Shock. 2001; 15: 65-72.

Chang AYW, Chan JYH, Kao FJ, Huang CM, Chan SHH. Engagement of inducible nitric oxide synthase at rostral ventrolateral medulla during Mevinphos intoxication in the rat. J Biomed Sci. 2001; 8: 475-83.

Christoduolides N, Durante W, Kroll M, Schafer A. Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase- stimulatory carbon monoxide. Circulation. 1995; 9: 2306-9.

Christopherson KS, Bredt DS. Perspectives series: nitric oxide and nitric oxide synthases. nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest. 1997; 100: 2424-9.

Deves R, Boyd CA. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev. 1998; 78: 487-545.

Durante W, Kroll MH, Christodoulides N, Peyton KJ, Schafer AI. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooyh muscle cells. Circ Res. 1997; 80: 557-64.

Ewing JF, Maines MD. Rapid induction of heme oxygenase-1 mRNA and protein by hyperthermia in rat brain. Heme oxygenase-2 is not a heat shock protein. Proc Natl Acad Sci USA. 1991; 88: 5364-458.

Forstermann U, Mulsch A, Bohme E, Busse R. Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium- derived factor from rabbit and canine arteries. Circ Res. 1986; 58: 531-8.

Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288: 373-6.
Gotoh T, Mori M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 Cells. J Cell Biol. 1999; 144: 427-34.

Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 1976; 73: 2424-8.

Grugleweki RJ, Palmer PMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986; 320: 454-6.

Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci USA. 1990; 87: 8612-6.

Heneka MT, Löschmann PA, Gleichmann M, Weller M, Schulz JB, Wullner U, Klockgether T. Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-α / lipopolysaccharide. J Neurochem. 1998; 71: 88-94.

Huang YH, Chang AYW, Huang CM, Huang SW, Chan SHH. Proteomic analysis of lipopolysaccharide-induced apoptosis in PC12 cells. Proteomics. 2002; 2: 1220-8.

Ignarro LJ, Burns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 1987; 61: 866-79.

Iwaki T, Iwaki A, Fukumaki Y, Tateishi J. αB-Crystallin in C6 glioma cells supports their survival in elevated extracellular K+: the implication of a protective role of αB-crystallin accumulation in reactive glia. Brain Res. 1995; 673: 47-52.
Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA. 1989; 86: 99-103.

Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999; 84: 253-6.

Kitamura Y, Matsuoka Y, Nomura Y, Taniguchi T. Induction of inducible nitric oxide synthase and heme oxygenase-1 in rat glial cells. Life Sci. 1998; 62: 1717-21.

Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature. 1994; 372: 546-8.

Kutty RK, Maines MD. Selective induction of heme oxygenase-1 isoenzyme in rat testis by human chorionic gonadotropin. Arch Biochem Biophys. 1989; 268: 100-7.

Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988; 2: 2557-68.

Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997; 37: 517-54.

Maines MD, Chung A-S, Kutty RK. Inhibition of testicular HO activity by cadmium: a novel cellular response. J Biol Chem. 1982; 257: 14116-21.

Maines MD, Mark JA, Ewing JF. Heme oxygenase, a likely regulator of cGMP production in the brain: induction in vivo of HO-1 compensates for depression in NO synthase activity. Mol Cell Neurosci. 1993; 4: 398-405.

Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. J Biol Chem. 1986; 261: 411-9.

Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993; 268: 12231-4.

McCoubrey WKJ, Eke B, Maines MD. Multiple transcripts encoding heme oxygenase-2 in rat testis: developmental and cell-specific regulation of transcripts and protein. Biol Reprod. 1995; 53: 1330-8.

McMillan K, Bredt DS, Hirsch DJ, Snyder SH, Clark JE, Masters BSS. Cloned, expressed rat cerebellar NOS containing stoichiometric amounts of heme which binds CO. Proc Natl Acad Sci USA. 1992; 89: 11141-5.

Middendorff R, Kumm M, Davidoff MS, Holstein AF, Muller D. Generation of cyclic guanosine monophosphate by heme oxygenases in the human testis–a regulatory role for carbon monoxide in sertoli cells? Bio Reprod. 2000; 63: 651-7.

Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA. 2000; 98: 8798-803.

Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43: 109-42.

Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophy Res Com. 2000; 275: 715-9.

Morse D, Choi AMK. Heme oxygenase-1: the “emerging molecule” has arrived. Am J Respir Cell Mol Biol. 2002; 27: 8-16.

Muriel P, Castaneda G, Ortega M, Noel F. Insights into the mechanism of erythrocyte Na+/K+-ATPase inhibition by nitric oxide and peroxynitrite anion. J Appl Toxicol. 2003; 23: 275-8.

Nakane M, Schmidt HH, Pollock JS, Forstermann U, Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993; 316: 175-80.

Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992; 6: 3051-64.

Nathan C, Xie Q. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994; 269: 13725-8.

Otterbein LE, Bach FH, Alam J, Soares M, Tao-Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti- inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000; 6: 422-8.

Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AM. Heme oxygenase-1 inhibits TNF-α-induced apoptosis in cultured fibroblasts. Am J Physiol. 2000; 278: L312-9.

Plumb JA, Milroy GC, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989; 49: 4435-40.

Rand MJ, Li CG. Discrimination by the NO-trapping agent, carboxy-PTIO, between NO and the nitrergic transmitter but not between NO and EDRF. Br J Pharmacol. 1995; 116: 1906-10.

Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA. 1989; 86: 3375-8.

Rublevskaya IN, Maines MD. Interaction of Fe-protoporphyrin IX and heme analogues with purified recombinant heme oxygenase-2, the constitutive isoenzyme of the brain and testes. J Biol Chem. 1994; 269: 26390-5.

Salinas M, Diaz R, Abraham NG, Ruizde GCM, Cuadrado A. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem. 2003; 278: 13898-904.

Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke. 1997; 28: 1283-8.

Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, Nick HS, Agarwal A. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol. 2000; 278: F726-36.

Simard JM, Tewari K, Kaul A, Nowicki B, Chin LS, Singh SK, Perez-Polo JR. Early signaling events by endotoxin in PC12 cells: involvement of tyrosine kinase, constitutive nitric oxide synthase, cGMP-dependent protein kinase, and Ca2+ channels. J Neurosci Res. 1996; 45: 216-25.

Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994; 78: 931-6.

Stocker P, Yamamoto Y, McDonach AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987; 235: 1043-7.

Stocker R. Induction of heme oxygenase as a defense against oxidative stress. Free Rad Res Commun. 1990; 9: 101-12.

Tichenor SD, Malmquist NA, Buxton IL. Dissociation of cGMP accumulation and relaxation in myometrial smooth muscle: effects of S-nitroso-N-acetylpenicillamine and 3-morpholinosyndonimine. Cell Signal. 2003; 15: 763-72.

Turcanu V, Dhouib M, Poindron P. Nitric oxide synthase inhibition by haem oxygenase decreases macrophage nitric oxide dependent cytotoxicity: a negative feedback mechanism for the regulation of nitric oxide production. Res Immunol. 1998; 149: 741-4.

Vile GF, Tyrell RM. Oxidative stress resulting from UVA irradiation of human skin fibroblasts leads to heme oxygenase dependent increase in ferritin. J Biol Chem. 1993; 268: 14678-81.

Wakabayashi Y, Takamiya R, Mizuki A, Kyokane T, Goda N, Yamaguchi T, Takeoka S, Tsuchida E, Suematsu M, Ishimura Y. Carbon monoxide overproduced by heme oxygenase-1 causes a reduction of vascular resistance in perfused rat liver. Am J Physiol. 1999; 277: G1088-96.

Weiss G, Werner-Felmeyer G, Werner ER, Grünewald K, Wachter H, Hentze MW. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994; 180: 969–76.

Wu G, Morris SMJ. Arginine metabolism: nitric oxide and beyond. Biochem J.1998; 336: 1-17.

Wu GY, Brosnan JT. Macrophages can convert citrulline into arginine. Biochem J. 1992; 281: 45-8.

Zhang WY, Gotoh T, Oyadomari S, Mori M. Coinduction of inducible nitric oxide synthase and arginine recycling enzymes in cytokine- stimulated PC12 cells and high output production of nitric oxide. Mol Brain Res. 2000; 83: 1-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊