跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃瓊葵
研究生(外文):Chiung-kuei Huang
論文名稱:多元胺,吲哚乙酸和激勃素對蘿蔔(RaphanussativusL.)根生長之影響
論文名稱(外文):Polyamines, indole-3-acetic acid and gibberellic acid affect root elongation in Chinese radish ( Raphanus sativus L.)
指導教授:劉景煌劉景煌引用關係
指導教授(外文):Zin-huang Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:48
中文關鍵詞:多元胺乙酸激勃素蘿蔔
外文關鍵詞:polyamineindole-3-acetic acidgibberellic acidrootradish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是要探討多元胺 ,吲哚乙酸和激勃素對蘿蔔( Raphanus sativus L. cv. Luh Chin) 根伸長生長之效應。將蘿蔔的種苗外加spermidine 或spermine 0.01 mM培養一小時後,再加清水培養24小時,其根部的伸長量比外加0.1、1 或2 mM的結果較長。當以1 mM的spermidine 或spermine 處理5分鐘時,其結果則比對照組長,但是隨著處理時間增加,根伸長量卻減少了。putrescine以相同的處理條件卻沒有得到明顯效果。利用0.01、0.1、1、2 mM的spermidine抑制劑 ( cyclohexylamine ) 外加處理則都會抑制蘿蔔根之生長,抑制的效果和cyclohexylamine的劑量成正比。當同時外加1 mM spermine及IAA時,是在IAA10¯¹ × 6 nM的根伸長較佳,相對於spermine 加 IAA 10¯² × 6 nM或 1× 6 nM,但是皆比外加1mM spermine效果好,另外同時外加1 mM spermidine及IAA則是10¯² × 6 nM比IAA 10¯¹× 6 nM 或 1× 6 nM根之伸長還多,而同時外加spermidine或spermine及GA3均是在GA3 10¯²× 3 μM有最佳根伸長生長之效果,然而此處的任何處理還是都比對照組根之長度短,因此,不管是IAA或GA3均無法恢復根被spermine或spermidine抑制的結果。內生性游離態spermidine和spermine的分析結果,同時外加spermine和GA3的內生性spermidine和spermine含量則是隨著GA3濃度升高,有上升趨勢。同時加spermine及IAA則是在IAA10¯¹ × 6 nM得到最少的內生性spermine和spermidine。同時外加spermidine及IAA或GA3所得到的內生性spermidine並沒有明顯差異,僅在GA3 10¯²×3 μM有較高的spermidine,但是和外加1mM spermidine的內生性spermidine含量比較,則均為較低之結果。然而同時外加spermidine及IAA或GA3所得到的spermine則無明顯差異。
The effects of polyamines, indole-3-acetic acid ( IAA ) and gibberellic acid ( GA3 ) on root elongation in radish ( Raphanus sativus L. cv. Luh Chin ) were studied. Incubation of radish seedlings in spermine or spermidine at 0.01 mM for 1hour, and then transferred to deionized water for 24 hours at 25℃ in the dark promoted root elongation as compared with concentration at 0.1 or 2 mM. When roots were treated with spermine or spermidine at 1 mM for 5 minutes, and then transferred to deionized water for 24 hours, root length increased significantly compared with controls. However, root length reduced gradually with increasing treatment times. Putrescine did not affect root elongation when treated in the same manner as spermine or spermidine. Exogenous spermidine synthesis inhibitor ( cyclohexylamine ) at 0.01, 0.1, 1 or 2 mM to the roots inhibited root elongation. The inhibition of root elongation was parallel to cyclohexylamine doses. Root length increased when spermine at 1 mM plus IAA at 10¯¹ × 6 nM was applied for 1 hour, and then transferred to deionized water for 24 hours compared with spermine at 1 mM plus IAA 10¯² or 1× 6 nM. Root length was longer when treated with spermidine at 1 mM plus IAA at 10¯²× 6 nM than at 10¯¹ or 1× 6 nM. Root treated with spermine at 1 mM plus GA3 at 10¯²×3 μM Resulted in a longer root than treated with spermine at 1 mM plus GA3 at 10¯¹ or 1× 3 μM. Roots treated with spermidine at 1 mM plus GA3 at 10¯²×3 μM promoted root elongation. However, any treatments of spermine or spermidine in combination with IAA or GA3 significantly reduced the root length when compared with controls. Furthermore, either IAA or GA3 could not restore the inhibitory effects of root elongation caused by spermine or spermidine treatment at 1 mM for 1 hour and then transferred to deionized water for 24 hours. Endogenous spermidine and spermine contents after exogenous spermine plus GA3 treatment increased by increasing GA3 concentrations. But endogenous spermidine and spermine contents was the least in spermine 1 mM plus IAA 10¯¹ × 6 nM treatment. However, endogenous spermidine contents after exogenous spermidine plus IAA or GA3 application reduced significantly when compared with controls. But there is no significant difference of spermidine content between different exogenous IAA doses. In contrast, spermidine content maintained at a high level in spermidine at 1 mM plus GA3 at 10¯²×3 μM as compared with other spermidine plus GA3 combinations. However, endogenous spermine contents were not affected by exogenous spermidine plus IAA or GA3.
縮寫表………………………………………………………………3
中文摘要……………………………………………………………4
英文摘要……………………………………………………………6
前言…………………………………………………………………8
材料方法……………………………………………………………12
結果…………………………………………………………………19
討論…………………………………………………………………23
圖表…………………………………………………………………29
參考文獻……………………………………………………………42
高景輝 ( 1998 ) 植物荷爾蒙生理. pp: 151-165, 415-432
王國正 ( 2002 ) Polyamines 在朵麗蘭及蝴蝶蘭花芽分化過程之生理意義. 國立中山大學生物科學研究所碩士論文
張寶樹 ( 2003 ) 多元胺對於夜來香花芽分化及開花的影響. 國立中山大學生物科學研究所碩士論文
Akiva A., Alan C. B., James D. A. and Morris L. ( 1981 ) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol. 68: 453-456
Andrea G. and Rosalia B. F. ( 1991 ) Cadaverine, an essential diamine for the normal root development of germinating soybean ( Glycine max ) seeds. Plant Physiol. 97: 778-785
Arie A., Ravindar K. S. and Galston A. W. ( 1997 ) Stabilization of oat leaf protoplasts through polyamine-meditated inhibition of senescence. Plant physiol. 60: 570-574
Caffaro S. V. and Vicente C. ( 1994 ) Polyamine implication during soybean flowering induction and early reproductive transition of vegetative bud. Plant Physiol. Biochem. 32: 391-397
Cohen S. S. ( 1971 ) Introduction to Polyamines. Prentice-Hall, Englewood Cliffs, New Jersey.
Dai Y. R., Ravindar K. S. and Galston A. W. ( 1982 ) Promotion by gibberellic acid of polyamine biosynthesis in internodes of light-grown dwar peas. Plant Physiol. 69: 103-105
Dai Y. R. and Wamg J. ( 1987 ) Relation of polyamine titer to photoperiodic induction of flowering in Pharbitis ni. Plant Sci. 51: 135-139
Evans P. T. and Malmberg R. L. ( 1989 ) Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Mol. Biol. 40: 235-269
Fienberg A. A., Cohi J. H., Lubich W. P. and Sung Z. R. ( 1984 ) Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162: 532-539
Flores H. E. and Galston A. W. ( 1982 ) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701-706
Galston A. W. and Kaur-Sawhney R. ( 1990 ) Polyamines in plant physiology. Plant Physiol. 94: 406-410
Galston A. W. and Kaur-Sawhney R. ( 1987 ) In: Plant hormones and their role in plant growth and development ( ed by Davies P. J. ) , pp 280. Martinus Nijhoff Pub., Boston
Galston A. W., Kaur-Sawhney R., tiburcio a. F., Hamasaki N., Oshima T. and Furuya M. ( 1990 ) The control of morphogenesis by polyamines. IN: Flores H, Arteca RN, Shannen JC (eds) Polyamines and Ethylene. Biochemistry, Physiology and Interations pp: 224-234
Galston A. W. and Sawhney K. S. ( 1990 ) Polyamines in plant physiology. Plant Physiol. 94: 406-410
Harkess A. L., Lyons R. E. and Kushad M. M. ( 1992 ) Floral morphogenesis in Rudbeckia hirta in relation to polyamine concentration. Physiol. Plant. 67: 695-701
Hausman J. F., Kevers C. and Gaspar T. ( 1995 ) Auxin-polyamine interaction in the control of the rooting induction phase of poplar shoots in vitro. Plant Sci. 110: 63-71
Helena B., Tamara E. D., William B. M. and Michael W. F. ( 1984 ) Polyamies and leaf senescence in pyrrolizidine alkaloid-bearing Heliotropium plants. Phytochem. 23: 991-997
Inada S. and Shimmen T. ( 2000 ) Regulation of elongation growth by gibberellin in root segments of lemna minor. Plant Cell Physiol. 41: 932-939
Inada S. and Shimmen T. ( 2001 ) Involvement of cortical microtubules in plastic extension regulated by gibberellin in Lemna minor root. Plant Cell Physiol. 42: 395-403
Inada S., Tominaga M. and Shimmen T. ( 2000 ) Regulation of root growth by gibberellin in Lemna minor. Plant Cell Physiol. 41: 657-665
Jarvis B. C., Shannon P. R. M. and Yasmin S. ( 1983 ) Plant cell physiol. 24: 677
Jarvis B. C., Yasmin S. and Coleman M. T. ( 1985 ) RNA and protein metabolism during adventitious root formation in stem cuttings of phaseolus cultivars berkin. Physiol. Plant. 64: 53-59
Lee T. S. ( 1997 ) Polyamine regulation of growth and chilling tolerance of rice ( Oryza sativa L. ) roots cultured in vitro. Plant Sci. 122: 111-117
Lee T. S., Lur H. S. and Chu C. ( 1997 ) Role of abscusuc acud in chilling tolerance of rice ( Oryza Sativa L. ) seedlings ⅡModulation of free polyamine levels. Plant Sci. 126: 1-10
Liu K., Fu H., Bei Q. and Luan S. ( 2000 ) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 84: 692-695
Mosbah M. K. and George Y. ( 1987 ) Evaluation of polyamines and proline levels during low temperature acclimation of citrus. Plant Physiol. 84: 692-695
Nishujima T., Katsura N., Koshioka M., Yamazaki H., Nakayama M., Yamane H., Yamaguchi I., Yokota T., Murofushi N., Takahashi N. Nonaka M. and Mander L. N. ( 1998 ) Role of endogenous gibberellins in cold-induced stem elongation and flowering of Japanese radish ( Raphanus sativus L.) . J. Japan. Soc. Hort. Sci. 67: 319-324
Raj K. K. and Vinay K. R. ( 1993 ) Plant polyamines in flowering and fruit ripening. Photychem. 33: 1281-1288
Rahman A., Tsurumi S., Amakawa T., Soga K., Hoson T. Goto N., and Kamisaka S. ( 2000 ) Involvement of ethylene and gibberellin signalings in chromosaponin I-induced cell division and cell elongation in the roots of Arabidopsis seedlings. Plant Cell Physiol. 41: 1-9
Ravindar K. S., Liu-mei S., Hector E. F. and Arthur W. G. ( 1982 ) Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiol. 69: 405-410
Remo R., Alejandro H. and Alcide B. ( 1989 ) Polyamine in rice seedlings under oxygen-deficit strees. Plant Physiol. 91: 1197-1201
Robert A. S. and Bruce G. B. ( 1990 ) Polyamine level and tomato fruit development: possible interaction with ethylene. Plant Physiol. 92: 547-550
Roussos P. A., Pontikis C. A. and Tsantili E. ( 2002 ) Root promoting compounds detected in olive knot extract in high quantities as a response to infection by the bacterium Pseudomonas savastanoi pv. Savastanoi. Plant Sci. 163: 533-541
Shen H. J. and Galston A. W. ( 1985 ) Plant Growth Regual. 3: 353
Shen W., Kazuyishi N. and Shoji T. ( 2000 ) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol. 124: 431-439
Smith M. A., Davies P. J. and Reid J. B. ( 1985 ) Role of polyamines in gibberellin-induced internode growth in peas. Plant Physiol. 78: 92-99
Tadeo R. R., Gomez-Cadenas, Ben-Cheikh W., Primo-Millo E. and Talon M. ( 1997 ) Gibberellin-ethylene interaction controls radial expansion in citrus roots. Planta 202: 370-378
Theiss C., Bohley P. and Voigt J. ( 2002 ) Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 128: 1470-1479
Tonon G., Kevers C. and Gaspar T. ( 2001 ) Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model. Tree Physiol. 21: 655-663
Wada N., Shinozaki M. and Iwamura H. ( 1994 ) Flower induction by polyamines and related compounds in seedlings of morning glory ( Pharbitis nil cv. Kidachi ) Plant Cell Physiol. 35: 469-472
Yaxley J. R., Ross J. J., Sherriff L. J. and Reid J. B. ( 2001 ) Gibberellin biosynthesis mutaions and root development in pea. Plant Physiol. 125: 627-633
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊