跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建民
研究生(外文):Chien-min Chen
論文名稱:人類乳癌中14-3-3gamma蛋白過量表現的研究
論文名稱(外文):Overexpression of 14-3-3 gamma protein in human breast carcinoma
指導教授:卓忠隆
指導教授(外文):Chung-lung Cho
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:58
中文關鍵詞:乳癌14-3-3 gamma蛋白
外文關鍵詞:breast cancer14-3-3 gamma protein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
14-3-3蛋白是一種molecular chaperones。它們幫助調控有關細胞繁殖、分化,以及存活的訊息傳遞途徑。它們直接或間接與繁殖訊號傳遞蛋白,如PKC,MEK kinases,PI3-K和Raf有關連。在人類,有七個不同的14-3-3基因:β(beta)、γ(gamma)、ε(epsilon)、η(eta)、σ(sigma)、τ/θ(tau/theta)、ζ(zeta)以及一些可能的假基因,而酵母菌有2個和植物有15個14-3-3基因。雖然有基因歧異性,但是所有14-3-3 isotypes有很多相同且保守之序列。
在現有的研究顯示,在所有14-3-3的家族當中,14-3-3 sigma被認為和癌症的發生有最直接的關係,因為目前它的功能被認為是抑制細胞週期之細胞增生的腫瘤抑制者。而在許多腫瘤的發生中,14-3-3 sigma有很高的比率是不活化的;更重要者,在大多乳癌細胞中14-3-3 sigma不表現。因為14-3-3 sigma藉由在細胞質中,結合上cyclin E-CDK2複合物與cyclin B-CDC2複合物使之不活化並留在細胞質中,所以使細胞週期分別停留在G1與G2。而其餘14-3-3 isotypes在乳癌形成的角色亦無定論。
本實驗的目的是要在人類非腫瘤的乳房組織與乳房腫瘤組織之中,尋找14-3-3 gamma表現量的差異。經由反轉錄聚合酶連鎖反應、蛋白質西方墨漬法分析、免疫組織染色與即時定量聚合酶連鎖反應等實驗初步發現14-3-3 gamma在乳房腫瘤組織中DNA、RNA及蛋白質的層面上有過量表現,至於14-3-3 gamma可能在乳房腫瘤發生中所扮演的角色,則有待後續之研究。
The chaperone proteins designated 14-3-3 are expressed in all eukaryotic cells; they help to regulate signal transduction pathways controlling proliferation, differentiation, and survival. They associated directly or indirectly with proliferative signal-transducing proteins such as PKC, MEK kinases, PI3-kinase and Raf. In human, there are seven isotypes of 14-3-3 genes: β(beta)、γ(gamma)、ε(epsilon)、η(eta)、σ(sigma)、τ/θ(tau/theta) andζ(zeta), some of which would be pseudogenes, and yeast and plant each have two and fifteen genes. Althought these genes are diverse, all 14-3-3 isotypes share many conservation domains in amino acid sequences.
The previous studies have suggested that 14-3-3 sigma is most directly linked to cancer because it is thought to function as a tumor suppressor by inhibiting cell-cycle progression. In tumor formation, inactivation of 14-3-3 sigma occurs with high frequency. More importantly, expression of 14-3-3 sigma is silenced in most breast cancer cells. The 14-3-3 sigma protein is associated with cyclin E-CDK2 complex as well as cyclin B-CDC2 complex and mediated their inactivation by cytoplasmic localization and causing cell-cycle arrest in G2 and G1. However, the roles of other 14-3-3 isotypes in the formation of breast cancer are controversial in published reference.
The aim of this study was to determine the differential expressions of 14-3-3 gamma in non-tumor tissues and corresponding tumor tissues. Amplification and overexpression of 14-3-3 gamma in DNA, RNA, and protein of breast tumor tissues were found by experiments of RT-PCR, Western blot analysis, immunohistochemistry and Real-time PCR. However, the role of 14-3-3 gamma in the formation of breast cancer requires further study.
中文摘要------------------------------------------1
英文摘要------------------------------------------3
緒 論------------------------------------------5
乳癌--------------------------------------------5
近年來乳癌分子生物學的研究----------------------------7
14-3-3 Protein--------------------------------------10
14-3-3 Protein theta/tau subtype---------------------------14
14-3-3 Protein eta subtype------------------------------14
14-3-3 Protein epsilon subtype----------------------------15
14-3-3 Protein beta subtype------------------------------15
14-3-3 Protein zeta subtype------------------------------16
14-3-3 Protein sigma subtype-----------------------------16
14-3-3 Protein gamma subtype----------------------------17
實驗目的-----------------------------------------19
材料與方法---------------------------------------21
檢體與玻片--------------------------------------21
Total RNA萃取------------------------------------21
RT-PCR----------------------------------------22
定序與序列比對-----------------------------------23
Western blot analysis---------------------------------23
免疫組織化學染色----------------------------------25
Genomic DNA的純化--------------------------------26
Real-time quantitative PCR-----------------------------27
實驗結果-----------------------------------------29
RT-PCR檢測臨床乳癌成對檢體間基因表現------------------29
PCR產物定序結果與生物資訊資料庫基因比對----------------29
臨床乳癌成對檢體間蛋白質表現-------------------------29
免疫組織化學染色分析-------------------------------30
乳癌成對檢體基因組DNA 14-3-3 gamma基因之copy number-------30
討 論-----------------------------------------31
參考資料-----------------------------------------36
表格與附圖---------------------------------------43




圖表目錄

圖一:人類14-3-3七種 isotypes的胺基酸序列----------------43
圖二:14-3-3蛋白調節基因表現--------------------------44
圖三:14-3-3蛋白調節細胞週期--------------------------45
圖四:14-3-3蛋白homodimers結構------------------------46
圖五:14-3-3蛋白參與細胞Apoptosis的過程-----------------47
圖六:Real-time quantitative PCR所設計的primer-------------48
圖七:臨床乳癌成對檢體之mRNA表現--------------------49
圖八:自動基因定序結果圖形----------------------------50
圖九:臨床乳癌成對檢體之蛋白質表現---------------------51
圖十:免疫組織染色結果-------------------------------52
圖十一:免疫組織染色結果-----------------------------53
圖十二:Real-time quantitative PCR作腫瘤與非腫瘤乳房組織
Genomic DNA copy number的比較-----------------54
表一:乳癌檢體分類及免疫組織染色之結果-----------------55
表二:14-3-3 gamma表現與病人乳房腫瘤病理關連性----------56
圖十三:Real-time quantitative PCR原理--------------------57
Aitken, A., Collinge, D.B., van Heusden, B.P., Isobe T., Roseboom, P.H., Rosenfeld, G. & Soll, J. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci. 17, 498-501, (1992).

Aitken, A. 14-3-3 and its possible role in coordinating multiple signalling pathways. Trends Cell Biol. 6, 341-347, (1996).

Autieri, M.V., & Carbone, C.J. 14-3-3Gamma interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells.
DNA Cell Biol. 18, 555-564, (1999).

Barbacid, M. Ras genes. Annu. Rev. Biochem. 56, 779-827, (1987).

Basu, S., Totty, N.F., Irwin, M.S., Sudol, M., & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11-23, (2003).

Braselmann, S. & McCormick, F. Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 14, 4839-4848, (1995).

Bulavin, D.V., Higashimoto, Y., Demidenko, Z.N., Meek, S., Graves, P., Phillips, C., Zhao, H., Moody, S.A., Appella, E., Piwnica-Worms, H., & Fornace, A.J. Jr. Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nature Cell Biol. 5, 545-551, (2003).

Chan, T.A., Hermeking, H., Lengauer, C., Kinzler, K.W., & Vogelstein, B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 7, 616-620, (1999).

Chaudhary, J. & Skinner, M.K. Characterization of a novel transcript of 14-3-3 theta in Sertoli cells. J Androl. 21, 730-738, (2000).

Chen, M. S., Ryan, C. E. & Piwnica-Worms, H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol. Cell. Biol. 23, 7488-7497, (2003).

Chiang, C.W., Kanies, C., Kim, K.W., Fang, W.B., Parkhurst, C., Xie, M., Henry, T., & Yang E. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97, 1289-1297, (2001).

Craparo, A., Freund, R., & Gustafson, T.A. 14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner.
J Biol Chem. 272, 11663-11669, (1997).

Dalal, S.N., Yaffe, M.B., & DeCaprio, J.A. 14-3-3 family members act coordinately to regulate mitotic progression. Cell Cycle 5, 672-677, (2004).

Dania Alarcon-Vargas & Ze''ev Ronai. p53-Mdm2--the affair that never ends. Carcinogenesis 23, 541-547, (2002).

Dong, Y., Hakimi, M.A., Chen, X., Kumaraswamy, E., Cooch, N.S., Godwin, A.K., & Shiekhattar, R. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087-1099, (2003).

Ferguson, A.T., Evron, E., Umbricht, C.B., Pandita, T.K., Chan, T.A., Hermeking, H., Marks, J.R., Lambers, A.R., Futreal, P.A., Stampfer, M.R., & Sukumar, S. High frequency of hypermethylation at the 14-3-3σ locus leads to gene silencing in breast cancer. Proc. Natl Acad. Sci. USA 97, 6049-6054, (2000).

Ferguson, A.T., Evron, E., Umbricht, C.B., Pandita, T.K., Chan, T.A., Hermeking, H., Marks, J.R., Lambers, A.R., Futreal, P.A., Stampfer, M.R., & Sukumar, S. Hypermethylation of 14-3-3σ (stratifin) is an early event in breast cancer. Oncogene 20, 3348-3353, (2001).

Forrest, A. & Gabrielli, B. Cdc25B activity is regulated by 14-3-3. Oncogene 20, 4393-4401, (2001).

Fountoulakis, M., Cairns, N., & Lubec, G. Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer''s disease and Down syndrome. J Neural Transm Suppl. 57, 323-335, (1999).

Fu, H., Xia, K., Pallas, D.C., Cui, C., Conroy, K., Narsimhan, R.P., Mamon, H., Collier, R.J., & Roberts, T.M. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266, 126-129, (1994).

Gannon-Murakami, L. & Murakami, K. Selective association of protein kinase C with 14-3-3 zeta in neuronally differentiated PC12 Cells. Stimulatory and inhibitory effect of 14-3-3 zeta in vivo. J Biol Chem. 277, 23116-23122, (2002).

Graves, P. R., Lovly, C. M., Uy, G. L. & Piwnica-Worms. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20, 1839-1851, (2001).

Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W., & Vogelstein, B. 14-3-3σ is a p53-regulated inhibitor G2/M progression. Mol. Cell 1, 3-11, (1997).

Hermeking, H. The 14-3-3 Cancer Connection. Nat. Rev. Cancer. 3, 931-943, (2003).

Horie, M., Suzuki, M., Takahashi, E., & Tanigami, A. Cloning, expression, and chromosomal mapping of the human 14-3-3gamma gene (YWHAG) to 7q11.23. Genomics 60, 241-243, (1999).

Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R., & Takahashi, Y. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci U S A. 85, 7084-1088, (1988).

Inano, K., Ishida, T., Omata, S., & Horigome, T. In vitro formation of estrogen receptor-heat shock protein 90 complexes. J. Biochem. 112, 535-540, (1992).

Jiang K, Pereira E, Maxfield M, Russell B, Goudelock DM, Sanchez Y. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser345. J. Biol. Chem. 278, 25207-25217, (2003).

Konishi, Y., Lehtinen, M., Donovan, N. & Bonni, A. Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol. Cell 9, 1005-1016, (2002).

Lee, J., Kumagai, A. & Dunphy, W. G. Positive regulation Wee1 by Chk1 and 14-3-3 proteins. Mol. Biol. Cell 12, 551-563, (2001).

Leffers, H., Madsen, P., Rasmussen, H.H., Honore, B., Andersen, A.H., Walbum, E., Vandekerckhove, J., & Celis, J.E. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway. J. Mol. Biol. 231, 982-998, (1993).

Li, Y., Inoki, K., Yeung, R., & Guan, K-L. Regulation of TSC2 by 14-3-3 binding. J. Biol. Chem. 277, 44593-44596, (2002).

Liu, M.Y., Cai, S., Espejo, A., Bedford, M.T., & Walker, C.L. 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s). Cancer Res. 62, 6475-6480, (2002).

Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172-175, (1999).

Luo, Z. J., Zhang, X. F., Rapp, U., & Avruch, J. Identification of the 14.3.3 domains important for self-association and Raf binding. J. Biol. Chem. 270, 23681- 23687, (1995).

Masters, S.C., Subramanian, R.R., Truong, A., Yang, H., Fujii, K., Zhang, H., & Fu, H.. Survival-promoting functions of 14-3-3 proteins. Biochem. Soc. Trans. 30, 360-365, (2002).

McConnell, J.E., Armstrong, J.F., Hodges, P.E., & Bard, J.B. The mouse 14-3-3 epsilon isoform, a kinase regulator whose expression pattern is modulated in mesenchyme and neuronal differentiation.Dev. Biol. 1, 218-228, (1995).

Meller, N., Liu, Y.C., Collins, T.L., Bonnefoy-Berard, N., Baier, G., Isakov, N., & Altman, A. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function.
Mol. Cell Biol. 10, 5782-5791, (1996).

Michaud, N. R., Fabian, J. R., Mathes, K. D., & Morrison, D. K. 14-3-3 is not activated in a 14-3-3 and Ras-independent manner. Mol. Cell Biol. 15, 3390-3397, (1995).

Moore, B. & Oerez, V.J. Physiological and BiochemicalbAspects of Nervous Integration. Prentice-Hall, Englewood Cliffs, NJ. 343-359, (1967).

Moreira, J.M., Gromov, P., & Celis, J.E. Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Mol. Cell Proteomics 4, 410-419, (2004).

Morrison, D. 14-3-3: modulators of signaling proteins? Science 266, 56-57, (1994).

Motoi, N., Sakamoto, A., Yamochi, T., Horiuchi, H., Motoi, T., & Machinami, R. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 1, 1-7, (2000).

Muslin, A. J., Tanner, J. W., Allen, P. M., & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897, (1996).

Nellist, M., Goedbloed, M. A., deWinter, C., Verhaaf, B., Jankie, A., Reuser, A. J. J., van den Ouweland, A. M. W., van der Sluijs, P., & Halley, D. J. J. Identification and characterization of the interaction between tuberin and 14-3-3γ. J. Biol. Chem. 277, 39417-39424, (2002).

Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S., Piwnica-Worms, H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501-1505, (1997).

Philip L. Grover1 and Francis L. Martin. The initiation of breast and prostate cancer. Carcinogenesis, Vol. 23, No. 7, 1095-1102, July 2002

Powell, D.W., Rane, M.J., Chen, Q., Singh, S., & McLeish, K.R. Identification of 14-3-3ζ as a protein kinase B/Akt substrate. J. Biol. Chem. 277, 21639-21642, (2002).

Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L.C., Smerdon, S.J., Gamblin, S.J., & Yaffe, M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4, 153-166, (1999).

Rosenquist, M., Alsterfjord, M., Larsson, C., & Sommarin, M. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 1, 142-149, (2001).

Rosenquist, M. 14-3-3 proteins in apoptosis. Braz. J. Med. Biol. Res. 4, 403-408, (2003).

Rothblum-Oviatt, C. J., Ryan, C. E. & Piwnica-Worms, H. 14-3-3 binding regulates catalytic activity of human Wee1 kinase. Cell Growth Differ. 12, 581-589, (2001).

Shen, Y.H., Godlewski, J., Bronisz, A., Zhu, J., Comb, M.J., Avruch, J., & Tzivion, G. Significance of 14-3-3 self-dimerization phosphorylation-dependent target binding. Mol. Biol. Cell 14, 4721-4733, (2003).

Smith, C.L. Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol. Reprod. 3, 627-632, (1998).

Stavridi, E. S., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. Substitutions that compromise the ionizing radiationinduced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res. 61, 7030-7033, (2001).

Toker, A., Ellis, C.A., Sellers, L.A., & Aitken, A. Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein.
Eur. J. Biochem. 2, 421-429, (1990).

Tommerup, N. & Leffers, H. Assignment of the human genes encoding 14,3-3 Eta (YWHAH) to 22q12, 14-3-3 zeta (YWHAZ) to 2p25.1-p25.2, and 14-3-3 beta (YWHAB) to 20q13.1 by in situ hybridization. Genomics 1, 149-150, (1996).

Tzivion, G., a& Avruch, J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem. 277, 3061-3064, (2002).

van Hemert, M. J., Steensma, H. Y. & van Heusden, G. P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23, 936-946, (2001).

Vercoutter-Edouart, A.S., Lemoine, J., Le Bourhis, X., Louis, H., Boilly, B., Nurcombe, V., Revillion, F., Peyrat, J.P., & Hondermarck, H. Proteomic analysis reveals that 14-3-3σis down-regulated in human breast cancer cell. Cancer Res. 61, 76-80, (2001).

Wakabayashi, H., Yano, M., Tachikawa, N., Oka, S., Maeda, M., & Kido, H. Increased concentrations of 14-3-3 epsilon, gamma and zeta isoforms in cerebrospinal fluid of AIDS patients with neuronal destruction. Clin Chim Acta. 312, 97-105, (2001).

Wang, W. & Shakes, D. C. Molecular evolution of the 14-3-3 protein family. J. Mol. Evol. 43, 384-398, (1996).

Watanabe, M., Isobe, T., Ichimura, T., Kuwano, R., Takahashi, Y., Kondo, H., & Inoue, Y. Molecular cloning of rat cDNAs for the zeta and theta subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain.
Brain Res Mol Brain Res. 25, 113-121, (1994).

Waterman, M. J., Stavridi, E. S., Waterman, J. L., & Halazonetis, T. D. ATM-dependent
activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat. Genet. 19, 175-178, (1998).

Won, J., Kim, D.Y., La, M., Kim, D., Meadows, G.G., & Joe, C.O. Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J. Biol. Chem. 21, 19347-19351, (2003).

Xing, H., Zhang, S., Weinheimer, C., Kovacs, A., & Muslin, A.J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J. 19, 349-358, (2000).

Yaffe, M. B. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53-57, (2002).

Zheng, W.Q., Lu, J., Zheng, J.M., Hu, F.X., & Ni, C.R. Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression. Steroids. 12, 905-910, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top