跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝昶毅
研究生(外文):Chang-Yi Hsieh
論文名稱:以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相
論文名稱(外文):Use of PCR-DGGE Technique to Analyze the Dynamic Microbial Community in Groundwater Contaminated with Petroleum-hydrocarbons
指導教授:劉仲康劉仲康引用關係
指導教授(外文):Jong-Kang Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:169
中文關鍵詞:地下水石油碳氫化合物
外文關鍵詞:PCR16S rDNADGGE
相關次數:
  • 被引用被引用:26
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究係利用polymerase chain reaction (PCR) 及denaturing gradient gel electrophoresis (DGGE) 兩項分子生物學技術,以微生物的16S rDNA為標的來探討在石油碳氫化合物污染之地下水中微生物族群的分布與生物多樣性。經由PCR-DGGE所獲得DNA序列,進一步與16S rDNA資料庫進行比對,鑑定出各菌種,建構微生物的親緣演化樹,來瞭解石油碳氫化合物污染地區地下水微生物相之組成及變化。本實驗以中國石油公司高雄煉油廠,中國石油公司橋頭油庫及中國石油化學工業開發股份有限公司高雄廠為研究場址,進行石油碳氫化合物污染地區地下水微生物相分析。高雄煉油廠與橋頭油庫兩個廠址是以自然衰減污染為主要整治方法,而中國石油化學高雄廠則是以空氣注入 (air sparging) 方式配合生物性降解進行污染場址之整治。由實驗結果得知,高雄煉油廠之低度污染區地下水中有最豐富的細菌群聚,無污染區域次之,而高度污染區域則最少。中國石油橋頭油庫中高度污染區域的細菌群聚較無污染區域少。中國石油化學高雄廠在整治過程中,高度、低度及無污染區域的地下水微生物菌相皆有明顯的改變,三處的微生物多樣性有隨整治時間增長而增加的趨勢。在序列定序與比對的結果中,三處皆可能含有降解石油碳氫化合物的微生物存在。高雄煉油廠的高度污染地下水樣本中為Methylobacterium, Xanthobacter, Xanthomonas與Pseudomonas菌屬菌種。橋頭油庫的高度污染地下水樣本中為Flavobacterium菌屬菌種。中國石油化學高雄廠的高度污染地下水樣本中為Nocardia, Pseudomonas, Rubrivivax, Methylobacterium, 與Candida菌屬菌種,在低度污染地下水樣本中為Candida菌屬菌種。本實驗亦證實,利用地下水來進行石油碳氫化合物污染地區的生物復育的污染整治評估,相較於土壤樣本更為便利,比較不受腐質酸等物質干擾反應等因素的影響,而且菌相分析所需時間更為縮短。
Abstract

This research used molecular biological techniques such as polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to analyze the dynamic microbial community and biodiversity in the groundwater contaminated with petroleum-hydrocarbons. The 16S rDNA sequences from all water samples were compared with the sequences of relative bacteria in the Ribosomal Database Project Bank to construct a phylogenetic tree. The results allowed us to understand the composition of the microbial communities in the petroleum-hydrocarbon contaminated groundwater. In this study, groundwater samples taken from the Chinese Petroleum Corporation Kaohsiung Refinery (CPCKR), Chinese Petroleum Corporation at Ciaotou fuel Tank Farm (CPCCTF) and China Petrochemical Development Corporation at Kaohsiung Factory (CPDCKF) were analyzed. The contaminated sites at CPDCKR and CPCCTF are remeated by natural attenuation. While the CPDCKF site is remeated by an enhanced air sparging bioremediation. In CPDCKR, we found that the low polluted area contained the richest microbial community, followed by the non-polluted area, and the high polluted area. At the CPCCTF site, the microbial community in the non-polluted area was richer than the high-polluted area. Increased microbial populations and variation in microbial community have beenobserved in non-polluted, less polluted, and highly polluted areas. The microbial community showed a dynamic succession of complexity during the bioremediation process at the CPDCKF site. From the 16S rDNA sequence analysis, it is possible that all samples contained petroleum-hydrocarbon degrading bacteria. These petroleum-hydrocarbon degrading bacteria include Methylobacterium, Xanthobacter, Xanthomonas and Pseudomonas at CPCKR site, Flavobacterium at CPCCTF site, Nocardia, Pseudomonas, Rubrivivax, Methylobacterium, and Candida at CPDCKF site. This study also demonstrates that it is more economic and reliable of using molecular techuiques to analyze the groundwater. Thus, groundwater samples can be used to replace soil samples for future work.
目錄
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅲ
第一章 前言………………………………………………………1
1. 石油碳氫化合物污染對環境的衝擊……………………………1
2. 石油碳氫化合物污染地下水整治方式…………………………3
3. 分子生物技術在污染整治上的重要性與應用…………………4
4. 利用PCR-DGGE技術應用於環境微生物菌群結構的探討………6
5. 16S rDNA在細菌演化分類與鑑定上的獨特性及應用…………9
6. 分子生物技術應用於環境微生物研究的難題…………………11
7. 石油碳氫化合物降解微生物簡介………………………………12
8. 石油碳氫化合物污染廠址簡介…………………………………14
8.1中國石油公司高雄煉油廠……………………………………15
8.2中國石油公司橋頭油庫………………………………………17
8.3中國石油化學工業開發股份有限公司高雄廠………………17
9. 研究目的……………………………………………………………19
第二章 驗材料與方法……………………………………………22
1. 地下水之採樣………………………………………………22
2. 地下水中石油碳氫化合物污染指標分析…………………23
3. 地下水樣總生菌數量計數…………………………………24
4. 微生物genomic DNA萃取…………………………………24
4.1 Genomic DNA瓊脂膠體電泳檢視………………………26
4.2 Genomic DNA濃度與純度測定…………………………27
5. 地下水微生物Genomic DNA的純化………………………28
6. 聚合酶連鎖反應…………………………………………30
6.1 引子 (primer)………………………………………33
6.2 PCR-16S rDNA片段瓊脂膠體電泳檢視………………35
7. PCR-16S rDNA片段純化與濃縮…………………………36
8. 變性梯度膠體電泳………………………………………37
8.1 變性梯度膠體30﹪∼70﹪製作………………………38
8.2 進行變性梯度膠體電泳………………………………39
8.3 SYBR greenⅠ螢光染色……………………………40
9. DGGE Fimgerprinting pattern 統計分析…………40
10. PCR-16S rDNA定序與序列比對……………………41
11. 親緣演化樹 (Phylogeny tree)……………………43
第三章 結果…………………………………………………44
1. 地下水基本水質測定結果……………………………45
2. 地下水石油碳氫化合物污染指標分析監測結果………46
3. 地下水總生菌數量計數結果……………………………48
4. 微生物genomic DNA萃取結果……………………………49
5. PCR抑制物的去除…………………………………………51
6. 16S rDNA聚合酶連鎖反應結果…………………………52
7. DGGE電泳圖譜分析與比對結果…………………………53
8. DGGE電泳圖譜Fimgerprinting pattern統計分析結果……55
9. 16S rDNA V3 region 序列比對與分析結果………………57
10. 親緣演化樹的建構結果……………………………………60
第四章 討論………………………………………………………64
1. 石油碳氫化合物污染地下水環境中微生物活動狀態探討…64
2. 石油碳氫化合物污染地下水總生菌數變化分析……………66
3. 石油碳氫化合物污染地下水微生物菌相分析探討…………69
4 地下水取代土壤作為評估生物整治成效之可行性.………74
5. 分子生物技術尚須克服的問題……………………………75
6. PCR-DGGE菌相分析於生物復育研究的運用……………77
第五章 結論………………………………………………………79
參考文獻……………………………………………………82
圖表………………………………………………………98
附錄…………………………………………………………149
參考文獻

張鎮南等人,氧化還原電位 (ORP) 於廢水處理系統之運用,工業污染防治第53期 (Jan. 1995). pp. 130。

盧志人,1998. 地下水的污染整治,國立編譯館。

Admon, S., Green, M., Avnimelech. Y., 2001. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Bioremediat. J. 5: 193-209.

AFCEE (Air Force Center for Environmental Excellence). 1994. Armstrong Laboratory, and Air Force Institute of Technology, Use of risk-based standards for cleanup of petroleum contaminated soil. Brooks Air Force Base, Texas, U.S.A., pp. 340.

Alexander, M., 2000. Bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34(20): 4259-4265.

Amann, R. I., Ludwig, W., Schliefer, K. H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 22(1): 143-169.

Bano, N., Hollibaugh, J. T., 2000. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivion of the class Proteobacteria in the arctic ocean. Appl. Environ. Microbiol. 66(5): 1960-1969.


Bano, N., Hollibaugh, J. T., 2002. Phylogenetic Composition of Bacterioplankt on Assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68(2): 505-518.

Bano, N., Ruffin, S., Ransom, B., Hollibaugh, J. T., 2004. Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages. Appl. Environ. Microbiol. 70(2): 781-789.

Barbara, T., Wonerow, K., Paschke, K., 1999. DGGE is more sensitive for the detection of somatic point mutations than direct sequencing. BioTech. 27: 266-268.

Bedient, P. B., Rifai, H. S., Newell, C. J., 1999. Ground Water Contamination – Transport and Remediation. PTR Prentice-Hall, Inc., New Jersey, pp. 604.

Benson, H. J., 1985. Bacterial population counts. Microbiological Applications fourth edition. Wm. C. Brown. pp. 94-99

Bürgmann, H., Pesaro, M., Widmer, F., Zeyer, J., 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol Methods. 45: 7-20.

Blears, M. J., Grandis, S. D., Lee H., Trevors, J. T., 1998. Amplified fragment length polymorphism (AFLP) : a review of the procedure and its applications. J. Ind. Microbiol. Biotech. 21: 99-331.




Boon, N., Windt, W. D., Verstraete, W.,Top, E. M., 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-speci¢c 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiology Ecology 39: 101-112.

Boulding, J. R., 1996. EPA Environmental Assessment Sourcebook. Ann Arbor Press, Inc., Chelsea, MI.

Borden, R. C., Gomez, A. C., Becker, T. M., 1995. Geochemical indicator of natural bioremediation. Groud Water. 33: 180-189.

Botstein, D., White, R. L., Skolnick, M., Davis, R. W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. hum. Genet. 32: 314-331.

Braid, M. D., Daniel, L. M., Kitts, C. L., 2003. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol Methods. 52: 389-393.

Briglia, M., Eggen, R. I. L., de Vos, W. M., Van Elsas, J. D., 1996. Rapid and sensitive method for the detection of Mycrobacterium chlorophenolicum PCP-1 in soil based on 16S rRNA gene targeted PCR. Appl. Environ. Microbiol. 62(4): 1478-1480.

Britton, R. S., Videla, L. A., Rachamin, G., Okuno, F., Israel, Y., 1984. Effect of age on metabolic tolerance and hepatomegaly following chronic ethanol administration. Alcohol Clin Exp Res. 8(6): 528-34.

Calvo-Bado, L. A., Pettitt, T. R., Parsons, N., Petch, G. M., Morgan, J. A. W., Whipps, J. M., 2003. Spatial and Temporal Analysis of the Microbial Community in Slow Sand Filters Used for Treating Horticultural Irrigation Water. Appl. Environ. Microbiol. 69(4): 2116-2115.

Carvalho, M. F., Alves, C. C. T., Ferreira, M. I. M., De Marco, P., Castro, P. M. L., 2002. Isolation and initial characterization of a bacterial consortiumable to mineralize fluorobenzene. Appl. Environ. Microbiol. 68(1): 102-105.

Cassidy, D. P., Hudak, A. J., 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J Hazard Mater. 84(2-3): 253-64.

Cavalca, L., Di Gennaro, P., Colombo, M., Andreoni, A., Bernasconi, S., Bestetti, G., 2000. Distribution of catabolic pathways in some degrading bacteria of a subsurface polluted soil. Res. Microbiol 151: 877-887.

Cavalca, L., Dell’Amico, E., Andreoni, V., 2004. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater : diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64(4): 576-587.

Chang, Y. J., Stephen, J. R., Richter, A. P., Venosa, A. D., Bruggemann, J., Macnaughton, S. J., Kowalchuk, G. A., Haines, J. R., Kline, E., White, D. C., 2000. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation : effect of profiling method. J. Microbiol. Methods. 40: 19-31.


Chakrabarty, A. M., Chou, G., Gunsalus, I. C., 1973. Genetic regulation of octane dissimulation plasmids in Pseudomonas. Proc. Natl. Acad. Sci. USA 70: 1137-1140.

Chaudhry, G. R., Huang. G. H., 1988. Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J. Bacteriol. 170(9): 3897-3902.

Crump, B. C., Bahr, G. W., Michele, B., Hobbie, J. E., 2003. Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source. Appl. Environ. Microbiol. 69(4): 2253-2268.

Deeb, R. A., 1999. Aeronic biotransformation of BTEX compounds and MTBX in contaminant mixtures by enriched and pure cultures. PhD Thesis. University of Califormia at Berkeley, Berkeley, CA.

Deeb, R. A., Scow, K. M., Lisa, A. C., 2000. Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation 11: 171-186.

de Souza, F. A., Kowalchuk, G. A., Leeflang, P., van Veen, J. A., Smit, E., 2004. PCR-Denaturing Gradient Gel Electrophoresis Profiling of Inter- and Intraspecies 18S rRNA Gene Sequence Heterogeneity Is an Accurate and Sensitive Method To Assess Species Diversity of Arbuscular Mycorrhizal Fungi of the Genus Gigaspora. Appl. Environ. Microbiol 70(3): 1413-1424.



Duarte, G. F., Rosado, A. S., Seldin, L., Keijzer-Wolters, A. C., van Elsas, J. D., 1998. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacteria community. J. Microbiol. Methods. 32: 21-29.

Duarte, G. F., Rosado, A. S., Seldin, L., de Araujo, W., van Elsas, J. D., 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization(dsz) gene. Appl. Environ. Microbiol. 67(3): 1052-1062.

Duineveld, B. M., Rosado, A. S., van Elsas, J. D., van Veen, J. A., 1998. Analysis of the Dynamics of Bacterial Communities in the Rhizosphere of the Chrysanthemum via Denaturing Gradient Gel Electrophoresis and Substrate Utilization Patterns. Appl. Environ. Microbio 64(12): 4950-4957.

Duineveld, B. M., Kowalchuk, G. A., Keijzer, A., van Elsas, J. D., van Veen, J. A., 2001. Analysis of Bacterial Communities in the Rhizosphere of Chrysanthemum via Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16S rRNA as Well as DNA Fragments Coding for 16S rRNA. Appl. Environ. Microbiol 67(1): 172-178.

Ellis, R. J., Morgan, P., Weightman, A. J., Fry, J. C., 2003. Cultivation-Dependent and -Independent Approaches for Determining Bacterial Diversity in Heavy-Metal-Contaminated Soil. Appl. Environ. Microbiol 69(6): 3223-3230.

Esteve-Nunez, A., Caballero, A., Ramos, J. L., 2001. Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65(3): 335-352.

Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package), version 3.5c. Distributed by the author. Department of Genetic, University of washing ton, Seattle, U.S.A.

Ferris, M. J. , Muyzer, G., Ward, D. M., 1996. Denaturing Gradient Gel Electrophoresis Profiles of 16S rRNA-Defined Populations Inhabiting a Hot Spring Microbial Mat Community Appl. Environ. Microbiol. 62(2): 340-346.

Fiorenza, S., Rifai, H. S., 2003. Rewiew of MTBE Biodegradation and Bioremediation. Bioremediation J. 7(1): 1-35.

Frostegard, A., Courtois, S., Ramisse, V., Clerc, S., Bernillon, D., Le Gall, F., Jeannin, P., Nesme, X., Simonet, P., 1999. Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65(12): 5409-5420.

Gich, F., Garcia, G. J., Overmann, J., 2001. Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol 177(1): 1-10.

Greene, E. A., Kay, J. G., Jaber, K., Stehmeier, L. G., Voodouw. G., 2000. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66(12): 5282-5289.

Holben, W. E., 1994. Isolation and purification of bacterial DNA from soil. In: Mickelson, S.H (Ed.), Methods of Soil Analysis, Part 2, Soil Society of America, Madison, WI, pp. 727-751.


Hollibaugh, J. T., Bano, N., Ducklow, H.W., 2002. Widespread distribution in Polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl. Environ. Microbiol 68(3): 1478-1484.

Huesemann, M. H., Truex. M. J., 1996. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J. Hazard. Mater. 51: 93-113.

Hunt, M. J., Shafer, M. B., Barlaz, M. A., Borden, R. C., 1997. Anaerobic biodegradation of alkylbenzenes in aquifer material under methanogenic and iron-reducing conditions. Bioremediation J. 1: 53-64.

Hyman, M., Kwon, P., Williamson, K., O''Reilly, K., 1998. Cometabolism of MTBE by alkane-utilizing microorganisms. In: Wickramanayake GB & Hinchee, RE (Eds). Proceedings of the First Intermational Conference on Remediation of Chlorinated and Recalernational Compounds, 18-21 May, Monterey, CA Vol. 3 pp. 321-326.

Jukes, T. H., Cantor, C. R., 1969. Evolution of protein molecules. In Mammalian Protein Metablism, Edited by H. N. Munro. New York: Academic Press. Vol. 3 pp. 21-132.

Kao, C. M., Borden, R. C., 1997. Site specific variability in BTEX biodegradation under denitrifying conditions. Ground Water. 35: 305-311.

Kao, C. M., Prosser. R. N., 1999. Influence of aquifer bioecochemical distribution on BTEX biodegradation under aerobic/anaerobic conditions. J. of Chinese Institute of Environment Engineering. 9: 187-197.

Kaplan, C. W., Kitts, L. C., 2004. Bacterial Succession in a Petroleum Land Treatment Unit. Appl. Environ. Microbiol. 70(3): 1777-1786.

Kleikemper, J., Schroth, M. H., Sigler, W. V., Schmucki, M., Bernasconi, S. M., Zeyer, J., 2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol. 68(4):1516-1523.

Kisand, V., Wikner, J., 2003. Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J. Microbiol. Methods. 54: 183-191.

Krsek, M., Wellington, E. M. H., 1999. Comparison of different methods for the isolation and purificationof total community DNA from soil. J. Microbiol. Methods. 39: 1–16.

Kota, S., 1998. Biodegradation in contaminated aquifers: influence of microbial ecology and iron bioavailability. Ph.D. Dissertation, North Carolina State University, NC, U.S.A.

MacNaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y. J., White, D. C., 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol. 65(8): 3566-3574.

Malone, D. R., Kao, C. M., Borden, R. C., 1993. Dissolution and biorestoration of non-aqueous phase hydrocarbons: model development and laboratory evaluation. Water Resources Research. 29(7): 2203-2213.



Mannisto, M. K., Tiirola, M. A., Salkinoja-Salonen, M. S., Kulomaa, M. S., Puhakka. J. A., 1999. Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch. Microbiol. 171(3): 189-197.

Martin, L. F., Philippot, L., Hallet, S., Chaussod, R., Germon, J. C., Soulas, G., Catroux, G., 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol. 67:2354-2359.

Mo, K., Lora, C. O., Wanken, A. E., Javanmardian M.,Yang, X., Kulpa C. F., 1997. Biodergradation of methyl t-butyl ether by pure bacterial cultures Appl. Microbial. Biotechnol. 47: 69-72.

Muyzer, G., De Waal, E. C., Uitterlinden, A. G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59(3): 695-700.

Muyzer, G., Ramsing, N. B., 1995. Molecular methods to study the organization of microbial communities. Wat. Sci. Teeh. 32(8): 1-9

Muyzer, G., 1999. DGGE/TGGE a method for identifying genes form natural ecosystems Current Opinion in Microbiology 2: 317-322.

Nyer, E.K., 1996. In Situ Treatment Technology. Geraghty & Miller Environmental Science and Engineering Series, Lewis Pub.


Polz, M. F., Cavanaugh, C. M., 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724–3730.

Prince, R.C., 2000. Biodegradation of Methyl tertiary-Butyl Ether (MTBE) and Other Fuel Oxygenares. Critical Reviews Microbiolog. 26(3): 163-178.

Rabus, R., Kube, M., Beck, A., Widdel, F., Reinhardt, R., 2002 Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol. 178(6): 506-16.

Ritz, K., Griffiths, B. S., 1994. Potential application of a community hybridazation technique for assessing change in the population structure of soil microbial communities. Soil Biol. Biochem. 26: 963-971.

Rojas-Avelizapa, N. G., Rodriguez-Vazquez, R., Enriquez-Villanueva, R., Martinez-Cruz, J., Poggi-Varaldo, H. M., 1999. Transformer oil degradation by an indigenous microflora isolated from a contaminated soil. Resour. Conserv. Recycl. 27: 15-26.

Rollins, B. D., Colwell, R. R., 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52(2): 531-538.

Rosado, A. S., Seldin, L., Wolters, A. C., van Elsas, D. J., 1996. Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere. FEMS Microbiol. Ecol. 19: 153-164.
Rozsak, D. B., Colwell, R. R., 1987. Survival strategies of bactera in the natural environment. Microbiol Rev. 51(3): 365-379.

Röing, W. F. M., van Breukelen, B. M., Braster, M., Lin, B., van Verseveld, H. W., 2001. Relationships between Microbial Community Structure and Hydrochemistry in a Landfill Leachate-Polluted Aquifer. Appl. Environ. Microbiol. 67(10): 4619-4629.

Schmalenberger, A., Schweiger, F., Tebbe, C. C., 2001. Effect of primers hybridising to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic pro-filing. Appl. Environ. Microbiol. 67:3557–3563.

Seghers, D., Wittebolle, L., Top, E. M., Verstraete,W., Siciliano, S. D., 2004. Impact of Agricultural Practices on the Zea mays L. Endophytic Community. Appl. Environ. Microbiol. 70(3): 1475-1482.

Sekiguchi, H., Watanabe, M., Nakahara, T., Xu, B., Uchiyama, H., 2002. Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis. Appl. Environ. Microbiol. 68(10): 5142-5150.

Selenska, S., Klingmüller, W., 1991. DNA recovery and direct detection of Tn5 sequences from soil. Lett. Appl. Microb. 13(1): 21-24.



Shin, W. S., Park, J. C., Pardue, J. H., 2003. Oxygen dynamics in petroleum hydrocarbon contaminated salt marsh soils : III. A rate model. Environ Technol. 24(7): 831-43.

Sievert, S. M., Brinkhoff, T., Muyzer, G., Ziebis, W., Kuever, J., 1999. Spatial Heterogeneity of Bacterial Populations along an Environmental Gradient at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece). Appl. Environ. Microbiol. 65(9): 3834-3842.

Spormann, A. M., Widdel, F., 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation. 11(2-3): 85-105.

Steffan, J. R., GoksØyr, J., Bej, K. A., Atlas, M. R., 1988. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54(5): 2908-2915.

Suthersan, S. S., 1996. Remediation engineering design concepts. CRC Press, Inc.

Tebbe, C. C., Vahjen. W., 1993. Interference of humic acid and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59(8): 2657-2665.

Torsvik, V., Salte, K., SØrheim, R., GoksØyr, J., 1990a. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56(3): 776-781.

Torsvik, V., GoksØyr, J., Daae, F. L., 1990b. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56(3): 782-787.

Torsvik, V., GoksØyr, J., Daae, F. L., SØrheim, R., Michalsen, J., Salte, K., 1994. Use of DNA analysis to determine the diversity of microbial communities. Beyond the Biomass, Wiley. 39-48.

Torsvik, V., Daae, F. L., Sandaa, R. A., Ovreas, L., 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol. 64(1): 53-62.

Tsai, Y. L., Olson, B. H., 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57(4): 1070-1074.

Tsai, Y., Olson, H. B., 1992. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl. Environ. Microbiol. 58(3): 754-757.

van de Peer, Y., van den Broeck, I., de Dijk, P., de Wachter. R., 1994. Database on the structure of small ribosomal subunit RNA. Nucleic Acid Research. 22(17): 3488-3493.

van Elsas, J. D., Mäntynen, V., Wolters. A. C., 1997a. Soil DNA extraction and assessment of the fate of Mycrobacterium chlorophenolicum strain PCR-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils 24(2): 188-195.

van Elsas, J. D., Trevors, J. T., Wellington. M. H. E., 1997b. Modern Soil Microbiology, Marcel Dekker, New York.



van Elsas, J. D., Duarte, G. F., Rosado, A. S., Smalla, K., 1998. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J. Microbiol. Methods. 32: 133-154.

Volossiouk, T., Robb, E. J., Nazar, R. N., 1995. Direct DNA Extraction for PCR-Mediated Assays of Soil Organisms. Appl. Environ. Microbiol. 61(11): 3972-3976.

Voordouw, G., Armstrong, S. M., Reimer, M. F., Fouts, B., Telang, A. J., Shen, Y., Gevertz, D., 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfatereducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62(5): 1623-1629.

Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K., Harayma, S., 2000. Molecular Characterization of Bacterial Populations in Petroleum-Contaminated Groundwater Dischargedfrom Underground Crude Oil Storage Cavities. Appl. Environ. Microbiol. 66(11): 4803-4809.

Whiteley, A. S., Bailey, M. J., 2000. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66(6): 2400-2407.

Widada, J., Nojiri, H., Omori. T., 2002. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and ther catabolic genes in bioremediation Appl Microbiol Biotechnol 60(1-2): 45-59.


Wiedemeier, T. H., Rifai, H. S., Newell, C. J., Wilson, J. T., 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, John Wiley & Sons, New York.

Wilkinson, S. G., 1988. Gram-negative bacteria. In C. Ratledge and S. G. Wilkinson (ed.), Microbial lipids. Academic Press, London, England, pp. 299-488.

Will1ams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalshi, J. A., Tingey, S. V., 1990. DNA polymorphism amplified by arbitrary primer are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.

Woese, C. R., 1987. Bacterial evolution, Microbiol. Rev. 51: 221-271.

Zhou, J., Bruns, M. A., Tiedje, M. J., 1996. DNA Recovery from Soils of Diverse Composition. Appl. Environ. Microbiol. 62(2): 316-322.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王沂釗(1995)。家庭結構、家庭關係與青少年生活適應之分析研究。學生輔導,36,108-118。
2. 朱森楠(2001)。一位國中中輟復學生的復原力及相關因素之探討研究。新竹縣教育研究集刊,1,171-202。
3. 江素芬、劉慈惠(2004)。單親媽媽與她的孩子之間--失去膀臂之後的日子與教養想法。新竹師院學報,19,113-136。
4. 利翠珊(2006)。華人婚姻韌性的形成與變化:概念釐清與理論建構。本土心理學研究,25,101-137。
5. 吳明燁(1998)青少年初期父親與母親管教行為之比較。東吳社會學報,7,39-79。
6. 吳麗琴(2003)。性侵害受害者之復原力探討與建構。輔導季刊,39(1),57-63。
7. 呂民璿、莊耀嘉(1992)。單親家庭與青少年違規犯罪行為,東海社會科學學報,11期,247-284。
8. 李慧強(1989)。家庭結構、母子關係和諧性對子女生活適應及友伴關係影響之比較研究。中華家政,18,47-57。
9. 李俊原(2000)。復原力對諮商的啟示。輔導季刊,36(3),32-36。
10. 林杏足(1996)。死亡事件對家庭系統的影響--家庭悲傷反應與任務。輔導季刊,32(4),50-57。
11. 張金圓(1990)。國小單親兒童的行為困擾、生活適應與成就動機之調查研究。輔導月刊,26(7)(8),34-54。
12. 張英陣、彭淑華(1996)。從優勢的觀點論單親家庭。東吳社會工作學報,2,227-271。
13. 郭靜晃、吳幸玲(2003)。台灣社會變遷下之單親家庭困境。社區發展季刊,102,144-161。
14. 郭珮婷(2005)。復原力理論的介紹與應用。諮商與輔導,231,45-50。
15. 陳怡冰(1992)。親子關係與兒童社會技巧之相關---單雙親家庭之比較研究。學生輔導通訊,23,45-53。