跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家銘
研究生(外文):Chia-Ming Liu
論文名稱:Urethan對於內毒素引發大鼠小腸血漿滲漏與黏液分泌影響之研究
論文名稱(外文):Effect of urethan on endotoxin-induced plasma leakage and mucus secretion in the rat small intestine
指導教授:黃宏圖黃宏圖引用關係
指導教授(外文):Hung-Tu Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:72
中文關鍵詞:內毒素發炎反應血漿滲漏杯狀細胞腎上腺素受器
外文關鍵詞:goblet cellurethanLPSadrenergic receptorinflammtion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
內毒素為一種脂多醣(lipopolysaccharide,簡稱為LPS),來自革蘭氏陰性菌細胞壁的毒性化學物質,可活化NF-κB,並刺激免疫細胞釋放細胞介素(cytokine)。這些前發炎媒介物進而引起全身性急性發炎反應、個體多重器官衰竭與敗血性休克症狀。內毒素可以增加微血管通透性並誘發小靜脈內皮層形成內皮隙,並造成血漿外洩,蓄積在結締組織而形成水腫。而在發炎反應的過程中,血管系統的血漿滲漏是一個重要的指標。哺乳類的消化系統的上皮組織存在大量的杯狀細胞,其分泌的黏液除了浸潤食糜之外,亦可形成一道屏障,保護消化道的上皮組織免於受到物理及化學性的傷害。杯狀細胞排放黏液反應受到許多的因素所調節,包含了:刺激性氣體、神經活化、氧化自由基與發炎媒介因子。

本實驗的重點在於:(1) 研究靜脈注射高劑量LPS (15 mg/kg ) 對
於小腸血漿滲漏程度及杯狀細胞分泌作用的影響。(2) α2-腎上腺素受器之拮抗劑 urethan 是否對於 LPS 所引起的血漿滲漏及黏液分泌發揮抑制作用。本實驗利用靜脈注射發炎追蹤劑印地安墨汁來標定血漿滲漏的血管,將小腸組織以 3μm 厚度的切片及 Alcian blue-PAS 染色法來呈現黏液中的醣蛋白,用以觀察杯狀細胞的分泌作用。實驗結果顯示,靜脈注射 LPS 不僅引起小腸組織的血漿滲漏並且伴隨著高比率的杯狀細胞分泌作用,相較於注射生理食鹽水之對照組皆高出約三倍的量,而分泌之黏液會大量的堆積在絨毛間隙中。以 α2-腎上腺素受器之拮抗劑 urethan 前處理,可明顯的抑制 LPS 所引起的血漿滲漏與黏液分泌之現象,相較於單獨施予靜脈注射 LPS 之組別,可抑制血漿滲漏達 45-50%,黏液分泌達 25-30% 之程度。由實驗結果推論,靜脈注射高劑量的內毒素所引起的敗血性休克中,小腸會發生血漿滲漏及杯狀細胞的過度分泌的反應,並且伴隨著 α2-腎上腺素受器的活化。
Lipopolysaccharide (LPS) is the toxic chemical component of the cell wall in all gram-negative bacteria which can activate NF-κB, also stimulate immune cells to release cytokines. These pro-inflammatory mediators induce systemic acute inflammation, multiple organs dysfunction syndrome(MODS)and sepsis. LPS could increase the permeability of capillary, and cause the acute formation of numerous endothelial gaps among venular endothelial cells that result in extensive plasma leakage in the inflammatory tissues. Plasma leakage from microvasculature is a hallmark of inflammation. Mammalian intestines have many goblet cells that synthesize mucus and discharge it into the intestinal lumen. The mucus film that covers the surface epithelium facing the lumen of digestive system, is an immune defense that can prevent gastrointestinal epithelium from chemical and physical damage and act as a lubricant. Goblet cells can discharge mucins in response to a wide variety of stimuli, including irritant gases, nerve activation, reactive oxygen species, inflammatory mediators.
This study was aimed to investigate : (1) The degree of plasma leakage and goblet cell secretion in the small intestine of rats after an intravenous injection of a high dose of LPS (15 mg/kg), (2) The effect of α2-adrenergic receptors antagonist, urethan, on endotoxin-induced plasma leakage and goblet cell secretion. For the study of plasma extravasation in small intestine during endotoxemia, India ink was used as the tracer to mark the inflamed leaky microvessels. The sections of the small intestine 3μm in thickness were stained with Alcian blue and periodic acid-Schiff reagent to detect glycoproteins of goblet cells. Our results showed that LPS not only caused an increase in plasma leakage but also triggered degranulation of many goblet cells in the small intestine. LPS augment the expression of plasma leakage and mucus secretion for three times. A large amount of extracellular mucus was accumulated between intestinal villi after LPS stimulation. Pretreatment with urethan, the α2-adrenergic receptor antagonist, significantly inhibited plasma leakage by 40-50% and goblet cell secretion by 25-30% induced by endotoxin. It is concluded that the plasma leakage and goblet cell hypersecretion induced by endotoxin shock was outstanding and associated with activation of α2-adrenergic receptors.
【中文摘要】…………………………………………………..i
【Abstract】……………………………………………………iii
【目錄】………………………………………………………...v
【諸論】……………………………………………………….1
【研究目的】…………………………………………………17
【材料與方法】………………………………………………18
【實驗結果】…………………………………………………24
【討論】………………………………………………………30
【參考文獻】…………………………………………………38
【圖表】………………………………………………………51
Antunes, F., Han, D. Cadenas, E. (2002). Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in vivo conditions. Free Radi. Biol. Med. 9 :1260–1267

Armstrong J.M., Lefevre-Borg B.S., Cavero I. (1982). Urethane
inhibits cardiovascular responses mediated by the stimulation of alpha-2 adrenoceptors in the rat. J. Pharmacol. Exp. Ther. 223: 524–535

Astiz M.E., Rackow E.C. (1998) . Septic shock. Lancet. 351: 1501-5

Auphan N., DiDonato J.A., Rosette C., Helmberg A., Karin M. (1995). Immunosuppression by glucocorticoids: inhibition of NF-κ B activity through induction of Iκ B synthesis. Science 270: 286–290

Baluk P., Fine N.W., Thomas H.A., Wei E.T., McDonald D.M. (1998). Anti-inflammatory mystixin peptides inhibit plasma leakage without blocking endothelial gap formation. J. Pharmacol. Exp. Ther. 284: 693-699

Basbaum J.H. (1986). Regulation of airway secretory cells. Clinic. Chest Med. 7: 231-237

Blackwell S.T., Yull E.F., Chen C.L., Hicks D.J., Lancaster L.H., Christman J.W., Kerr L.D. (2000). Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation.
Am J Respir Crit Care Med 162:1095–1101

Bone R.C., Grodzin C.J., Balk R.A. (1997). Sepsis: a new hypothesis for pathogenesis of the disease process. Chest. 112:235-243

Braun J.S., Novak R., Herzog K.H., Bodner S.M., Cleveland J.L., Tuomanen E.I. (1999). Neuroprotection by a caspase inhibitor in acute
bacterial meningitis. Nature Med. 5 :298-273

Brown G.C., Borutaite V. (2002). Nitric oxide inhibition of mitochondrial
respiration and its role in cell death. Free Radi. Biol. Med. 11 : 1440–1450

Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462

Chan S.H.H., Wang L.L., Ou C.C. Chan J.Y.H. (2002). Contribution of peroxynitrite to fatal cardiovascular depression induced by overproduction of nitric oxide in rostral ventrolateral medulla of the rat. Neuropharmacology 43 :889-898

De Laurentiis A., Pisera D., Caruso C., Candolfi M., Mohn C.,
Rettori V., Seilicovich A. (2002). Lipopolysaccharide - and tumor necrosis factor - alpha - induced changes in prolactin secretion and dopaminergic activity in the hypothalamic-pituitary axis.
Neuroimmunomodulation 10 :30-39

De Zutter G.S., Davis R.J. (2001). Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc. Natl. Acad. Sci. 11 :6168-6173

Deitch E. (1990). Bacterial translocation of the gut flora. J. Trauma. 30: 184-189

Farmer P., Pugin J. (2000). β-Adrenergic agonists exert their
“anti-inflammatory” effects in monocytic cells through the IκB/NF-κB pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 279: 675–682


Finck B.N., Dantzer R., Kelley K.W., Woods J.A., Johnson R.W.
(1997). Central lipopolysaccharide elevates plasma IL-6 concentration by an alpha-adrenoreceptor-mediated mechanism. Am. J. Physiol. 272: 1880-1887


Fujii E., Trie K., Ogawa A., Ohba K., Muraki T. (1996). Role of nitric oxide and prostaglandins in lipopolysaccharide-induced increase in vascular permeability in mouse skin. Am. Respir. Dis. 22 : 257-263

Furuya S., Naruse S., Hayakawa T. (1998). Intravenous injection of guanylin induces mucs secretion from goblet cells in rat duodenal crypts. Anat. Embryol. 197: 359-367

Gabaldon M. (1987). Methodological approaches for the study of aortic endothelium of the rat. Atherosclerosis 65: 139-149

Gail D.B., Lenfant C.J.M. (1983). Cell of the lung: biology and implication. Am. Respir. Dis. 34: 366-387

Gaykema R.P., Goehler L.E., Tilders F.J., Bol J.G., McGorry M., Fleshner M., Maier S.F., Watkins L.R. (1998). Bacterial endotoxin induces fos immunoreactivity in primary afferent neurons of the vagus nerve. Neuroimmunomodulation 5: 234–240

Goehler L.E., Gaykema R.P., Hammack S.E., Maier S.F., Watkins L.R. (1998). Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 804: 306-310

Guo J.J., Huang H.T., Wang D.S. (2003). Spontaneous remission of edema and regranulation of goblet cells in rat tracheae after capsaicin-induced acute inflammation. Anat. Embryol. 206: 301-309


Hansen M.K., Taishi P., Chen Z., Krueger J.M. (1998). Vagotomy blocks the induction of interleukin-1 β (IL-1β) mRNA in the brain of rats in response to systemic IL-1β. J. Neurosci. 18: 2247–2253

Huang H.T. (1989). Changes in epithelial secretory cells and potentation of neurogenic inflammation in the trachea of rats with respiratory tract infections. Anat. Embryol. 180: 325-341

Huang H.T., Huang S.H., Luor Y.G. (1995). Postvagotomy changes in neurogenic plasma extravasation in rat bronchi. J. Auton. Nerv. Syst. 55: 9-17

Hunter J.C., Hannah P.A., Maggio J.E. (1985) The regional
distribution of kassinin-like immunoreactivity in central and peripheral tissues of the cat. Brain Res. 341:228–232

Hwang T., Huang H.T., Tsao C.F. (1999). Thocacic vagus section distal to the recurrent laryngeal nerve reduces substance P-immunoractive innervation in the rat bronchial tree. Anat. Embryol. 200: 153-160

Joshi M.S., Crouser E.D., Julian M.W., Schanbacher B.L., Bauer J.A. (2000). Digital imaging analysis for the study of endotoxin-induced mitochondrial ultrastructure injury. Anal. Cell Pathol. 21:41-48

Kapcala L.P., Chautard T. (1995). The protective role of the hypothalamic–pituitary–adrenal axis against lethality produced by immune, infectious, and inflammatory stress. Ann. NY Acad. Sci. 771: 419–437

Katchanov J., Harms C., Gertz K., Hauck L., Waeber C., Hirt L., Priller J., Harsdorf R.V., Bruck W., Hortnagl H., Dirnagl U., Bhide P.G., Endres M. (2001). Mild cerebral ischemia induces loss of cyclin- dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J. Neurosci. 14: 5045–5053

Knuefermann P., Nemoto S., Arunima Misra A., Nozaki N., Defreitas
G., Goyert S.N., Carabello B.A., Mann D.L., Vallejo J.D.
(2002). CD14-deficient mice are protected against lipopolysaccharide–
induced cardiac inflammation and left ventricular dysfunction.
Circulation 106:2608-2615

Kotanidou A., Augustine M.K., Choi R.A., Winchurch L.O., Henry
E.F. (1996). Urethan anesthesia protects rats against lethal endotoxemia and reduces TNF-a release. J. Appl. Physiol. 81: 2304 –2311

Lazarus L.H., Di Augustine R.P. (1980). Radioimmunoassay for the tachykinins peptide physalaemin: detection of a physalaemin-like substance in rabbit stomach. Anal. Biochem. 107 : 350–357

Lei Y.H., Barnes P.J., Rogers D.F. (1992). Inhibition of neurogenic plasma exudation in guinea pig airways by CP-96,345, a new
non -peptide NK1 receptor antagonist. Br. J. Pharmacol. 105:261–262


Lou Y.P., Lee L.Y., Satoh H., Lundberg J.M. (1993). Postjunctional inhibitory effect of the NK2 antagonist, SR 48968, on sensory NANC
bronchoconstriction in the guinea pig. Br. J. Pharmacol. 109:765–773

Lundberg J.M., Saria A. (1982). Capsaicin-sensitive vagal neurons involved in control of vascular permeability in rat trachea. Acta. Physiol. Scand. 115: 521-523

Lundblad L., Saria A., Lundberg J.M., Anggard A. (1983). Increased vascular permeability in rat nasal mucosa induced by substance P and stimulation of capsaicin-sensitive trigeminal neurons. Acta. Otolaryngol. 96: 479-484

Lundin E., Zhang J.X., Huang C.B., Reutervig C.O., Hallmans G., Nyren C., Nygren C., Stenling R. (1993). Oat bran, rye bran, and soybean hullincrease goblet cell volume density in the small intestine of the golden hamster. A histochemical and stereologic light-microscorp study. Scand. J. Gastroenterol. 28: 15-22

Majno G., Palade G.E., Schoefl G. (1961). Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J. BioPhys. Biochem. Cytol. 11: 607-626

Marshall J.C. (2001). Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit. Care Med. 29:99-106

Mastrangelo D., Mathison R., Huggel H.J., Dion S., D’Orle´ans-Juste P., Rhaleb N.E., Drapeau G., Rovero P. Regoli D. (1987). The rat
isolated portal vein: a preparation sensitive to neurokinins, particularly
neurokinin B. Eur. J. Pharmacol. 134:321–326

McCuskey R., Urbaschek R., Urbaschek B. (1996). The microcirculation during endotoxemia. Cardiovasc. Res. 32: 752-763

McDonald D.M. (1988). Neurogenic inflammation in the rat trachea. I. Changes in venules, leukocytes, and epithelial cells. J. Neurocytol. 17: 583-603

McDonald D.M., Schoeb T.R., Lindsey J.R. (1991). Mycoplasma pulmonis infections cause long-lasting potentiation of neurogenic inflammation in the respiratory tract of the rat. J. Clin. Invest. 87: 787-799

McDonald D.M. (1994). Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am. J. Physiol. 266: 61-83

Morris E.J., Keramaris E., Rideout H.J., Slack R.S., Dyson N.J., Stefanis L., Park D.S. (2001). Cyclin-dependent kinases and p53 pathways are activated independently and mediate Bax activation in neurons after DNA damage. J. Neurosci. 21 :5017–5026

Ouyang Y.B., Zhang X.U., Liu C.L., Csiszar K., Li P.A., Hu B.R. (1997). Mitochondrial protecting agents inhibit t- butyl hydro-peroxide -induced and caspase-mediated neuronal death in cultured cerebellar neurons. Neurosci. Res. Commun. 3 :181-188

Phillips T.E. (1992). Both crypt and villus intestinal goblet cells secrete mucin in reponse to cholinergic stimulation. Am. J. Physiol. 262 :327-331

Piedimonte G., McDonald D.M., Nadel J.A. (1990). Glucocorticoids inhibit neurogenic plasma extravasation and prevent virus-potentiated extravasation in the rat trachea. J. Clin. Invest. 86: 1409-1415

Plaisancie P., Barcelo A., Moro F., Claustre J., Chayvialle J.A., Cuber J.C. (1998). Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am. J. Physiol. 275: 1073–1084


Pleiner J., Elisabeth H.S., Langenberger H., Sieder A.E.,
Bayerle -Eder M., Mittermayer F., Fuchsjäger-Mayrl G., Böhm J., Jansen B., Wolzt M. (2002). Adrenoceptor hyporeactivityis responsible for Escherichia coli endotoxin–induced acute vascular dysfunction in humans. Arterioscler. Thromb.Vasc. Biol. 22:95-100

Radi R., Cassina R., Hodara R., Quijano R. Castro L. (2002). Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 11 :1451–1464

Ramachandran A., Levonen A.L. Usmar V.D. (2003). Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic. Biol. Med. 11 :1465–1474.

Rangel-Frausto M., Pittet D., Costigan M., Hwang T., Davis C., Wenzel R. (1995). The natural history of the systemic inflammatory response syndrome (SIRS). JAMA. 273: 117-123

Rietschel E., Holst O., Brade L., Muller-Loennies S., Mamat U., Zahringer U., Beckmann F. (1996). Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr. Top Microbiol. Immunol. 216: 39-81

Roger D.F. (1994). Airway goblet cells: Responsive and adaptable front-line defender. Eur. Respir. J. 7: 1960-1976


Romanovsky A.A., Simons C.T., Szekely M., Kulchitsky V.A. (1997). The vagus nerve in the thermoregulatory response to systemic inflammation. Am. J. Physiol. 273: R407-R413

Sargent C.A., Dzwonczyk S., Grover G.J. (1994). The effect of alpha
2- adrenoceptor antagonists in isolated globally ischemic rat hearts.
Eur. J. Pharmacol. 261:25-32

Saria A., Lundberg J.M., Hua X., Lembeck F. (1983). Capsaicin-induced substance P release and sensory control of vascular permeability in the guinea-pig ureter. Neurosci. Lett. 41: 167-172

Schierle G.S., Hansson O., Leist M., Nicotera P., Winder H., Brundin H. (1999). Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nature Med. 5 :97-101

Severini C., Giovanna I., Salvadori S., Erspamer V. (2002). The
tachykinin peptide family. Pharma. Reviews 54:285-321

Singer M., Brealey D. (1999). Mitochondrial dysfunction in sepsis.
Biochem. Soc. Symp. 66: 149-166

Specian R.D., Neutra M.R. (1982). Regulation of intestinal goblet celll secretion. I. Role parasympathetic stimulation. Am. J. Physiol. 242: 370-379

Steiger D.J., Hotchkiss J., Bajaj L., Harkema J., Basbaum C. (1995). Concurrent increases in the storage and release of mucin-like molecules by rat airway epithelial cells in response to bacterial endotoxin. Am. J. Respir. Cell Mol. Biol. 12: 307-314

Stewart V.C., Heales S.J.R. (2003). Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radic. Biol. Med. 3 :287–303

Szelenyi J, Kiss JP, Vizi ES. (2000). Differential involvement of
sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice.
J. Neuroimmunol. 103:34-40

Takeyama K., Tamaoki J., Nakata J., Konno K. (1996). Effect of oxitropium bromide on histamine-induced airway goblet cell secretion. Am. J. Respir. Crit. Care Med. 154: 231-236

Tjardes T., Neugebaure E. (2002). Sepsis research in the next millennium: concentrate on the software rather than the hardware. Shock. 17:1-8

Troy C.M., Chelanski M.L. (1994). Down-regulationof copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells.
Proc. Natl. Acad. Sci. 91:6384-6387

Tseng W.Y., Tsao C.F., Ko C.C., Huang H.T. (2001). Local capsaicin application to the stellate ganglion and satellatectomy attenuate neurogenic inflammation in rat bronchi. Auton. Neurosci. 94: 25-33

Volicer L. & Loew C.G. (1971). The effect of urethane anesthesia
on the cardiovascular action of angiotensin II. Pharmacology 6:193–201
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top