跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠倫
研究生(外文):Kwun-lun Huang
論文名稱:以錳離子誘導耐輻射奇異球菌基因表現之研究
論文名稱(外文):The study of gene expression induced by manganese of Deinococcus radiodurans
指導教授:劉仲康劉仲康引用關係
指導教授(外文):Jong-kang Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:134
中文關鍵詞:二維電泳耐輻射奇異球菌蛋白體學
外文關鍵詞:two-dimensional electrophoresisproteomicsDeinococcus radiodurans
相關次數:
  • 被引用被引用:1
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
耐輻射奇異球菌(Deinococcus radiodurans)是一株對輻射及抗紫外光具有高度抗性的細菌。由於二價錳離子(Mn2+)可誘導此菌產生Mn-CD效應,因此本研究是在不同溫度下以Mn2+誘導出各種不同生長期的耐輻射奇異球菌,再利用雙向膠體電泳(Two-dimensional polyacrylamide gel electrophoresis)來分析比對本菌基因表現出蛋白質的種類與數量之不同。結果顯示,錳離子確實會影響本菌整體蛋白的表現,隨著Mn-CD效應時間的增加,蛋白質表現的相似度也愈低,顯示出錳離子對基因的表現確實有所影響。確定有明顯被誘導出現的蛋白質共14個,其中5個與蛋白質和DNA的合成、分解有關,其餘還有ATP-binding cassette(ABC)transporter、superoxide dismutase[Mn]以及功能尚不明確的5個hypothetical proteins。此外,亦發現培養溫度會造成耐輻射奇異球菌的形態與生理的改變,過高溫度(37℃)會造成細胞生長障礙。而錳離子亦可以提高本菌在高溫環境下的生存能力。
Deinococcus radiodurans is a highly UV and radio resistant bacterium. The addition of Mn2+ could induce an Mn-CD effect in this bacterium. In this study, we used two-dimensional polyacrylamide gel electrophoresis to compare and analyze the expressed-proteins under various growth conditions, such as temperature and the presence of Mn2+ or not. The results showed that Mn2+ could affect the similarity proteins expression. As the time of Mn-CD effect elapsed longer, the similarity of the proteins from different growth phages became lower. This indicated that Mn2+ indeed could induce or repress the gene expression. From the 2-D gel analysis, there were fourteen proteins had been induced or overexpressed. Five of them were the proteins with the functions for the synthesis and decomposition of proteins and DNA, others were ATP-binding cassette(ABC)transporter、superoxide dismutase[Mn], and the rest five were the hypothetical proteins with unclear function. In addition, this study also found that the cultivation temperatures caused conformational and physiological modification of the cell. The addition of Mn2+ could enhance the viability of the bacterium at higher temperature.
中文摘要………………………………………………………..I
英文摘要…………………………………………………….…II
圖目錄………………………………………………………...III
表目錄………………………………………………………..VII
前言…………………………………………………………….1
材料與方法…………………………………………………...19
結果…………………………………………………………...26
討論…………………………………………………………...32
參考文獻……………………………………………………...42
圖……………………………………………………………...55
表…………………………………………………………….110
1.李佩怡, 2002. 二價錳離子對耐輻射奇異球菌蛋白體表現的影響。國立中山大學碩士論文。
2.陳麗瑛, 1995. 二價錳離子對耐輻射奇異球菌醣類代謝的影響。國立中山大學碩士論文。
3.陳君麟, 2000. 探討各種單醣與雙醣對耐輻射奇異球菌生長的影響。國立中山大學碩士論文。
4.黃威球, 1998. 耐輻射奇異球菌的醣類代謝。國立中山大學碩士論文。
5.薛雅兆, 2000. 錳離子對耐輻射奇異球菌葡萄糖代謝路徑走向的影響。國立中山大學碩士論文。
6.顏孟畿, 2002. 錳離子對耐輻射奇異球菌DNA修補原料及能量供應的影響。國立中山大學碩士論文。
7.Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to γ–radiation. Food Technol. 10:575-577.
8.Anderson, N. L., and N. G. Anderson. 1998. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19: 1853-1861.
9.Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51: 203-224.
10.Battista, J. R. 2000. Radiation resistance: the fragments that remain. Curr. Biol. 10: R204-205.
11.Battista, J. R., A. M. Eral, and M. J. Park. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation. Trends. Microbiol. 7: 362-365.
12.Battista, J. R., M. M. Cox, M. J. Daly, I. Narumi, M. Radman, and S. Sommer. 2003. The structure of D. radiodurans. Science. 302: 567-568.
13.Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn, and W. O. Saxton. 1986. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 187: 241-250.
14.Bauche, C., and J. Laval. 1999. Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 181: 262-269.
15.Boylan, R. J., and N. H. Mendelson. 1969. Initial characterization of a temperature sensitive rod--mutant of Bacillus subtilis. J. Bacteriol. 100: 1316-1321.
16.Brim, H., A. Venkateswaran, H. M. Kostandarithes, J. K. Fredrickson, and M. J. Daly. 2003. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl. Environ. Microbiol. 69: 4575-4582.
17.Brim, H., S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat. Biotechnol. 18: 85-90.
18.Brooks, B. W., and R. G. E. Murray. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation resistant cocci: Deinococcaceae fam. Nov. and Deinococcus gen. Nov., including five species. Int. J. Syst. Bacteriol. 31: 353-360.
19.Carbonneau, M. A., A. M. Melin, A. Perromat, and M. Clere. 1989. The action of free radicals on Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275: 244-251.
20.Chan, W. F., and D. K. O’Toole. 1999. Isolation of Deinococcus species from commercial oyster extract. Appl. Environ. Microbiol. 65: 846-848.
21.Chapot-Chartier, M. P., M. Nardi, M. C. Chopin, A. Chopin, and J. C. Gripon. 1993. Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis subsp. cremoris AM2. Appl. Environ Microbiol. 59: 330-333.
22.Chou, F. I., and S. T. Tan. 1990. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172: 2029-2035.
23.Chou, F. I., and S. T. Tan. 1991. Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173: 3184-3190.
24.Chung, C. H., S. J. Yoo, J. H. Seol, and M. S. Kang. 1997. Characterization of energy-dependent proteases in bacteria. Biochem. Biophys. Res. Commun. 241: 613-616.
25.Conway, T., and L. O. Ingram. 1989. Similarity of Escherichia coli propanediol oxidoreductase ( fucO product ) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. J. Bacteriol. 171: 3754-3759.
26.Counsell, T. J., and R. G. E. Murray. 1986. Polar lipid profiles of the genus Deinococcus radiodurans. Int. J. Syst. Bacteriol. 36: 202-206.
27.Daly, M. J., K. W. Minton. 1997. Recombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans. Gene. 187: 225-229.
28.Daly, M. J., L. Ouyang, P. Fuchs, and K. W. Wintonm. 1994a. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176: 3508-3517.
29.Daly, M. J., L. Ouyang, and K. W. Wintonm. 1994b. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176: 7506-7515.
30.Davis, N. S., G. J. Silverman, and E. B. Masurovsky. 1963. Radiation resistant, pigmented coccus isolated from haddock tissue. J. Bacterol. 86: 278-294.
31.de Vries, G.E., N. Arfman, P. Terpstra, and L. Dijkhuizen. 1992. Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J. Bacteriol. 174: 5346-5353.
32.Edwards, J. S., and J. R. Battista. 2003. Using DNA microarray data to understand the ionizing radiation resistance of Deinococcus radiodurans. Trends. Biotechnol. 21: 381-382.
33.Evans, D. M., and B. E. B. Moseley. 1983. Roles of uvsC, uvsD, and mtcA genes in two pyrimidine dimmer excision repair pathways of Deinococcus radiodurans. J. Bacteriol. 156: 576-583.
34.Evans, D. M., and B. E. B. Moseley. 1985. Identification and initial characterization of a pyrimidine dimmer UV endonuclease(UV endonuclease β) from Deinococcus radiodurans, a DNA-repair enzyme that require manganese ions. Mutat. Res. 145: 119-128.
35.Fenn, J. B., M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science. 246:64-71.
36.Ferreira, A. C., M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47: 939-947.
37.Fox, C. F., and S. B. Wesis. 1964. Enzymatic synthesis of ribonucleic acid. II. Properties of the DNA-primed reaction with Micrococcus lysodekticus RNA polymerase. J. Biol. Chem. 239: 175-185.
38.Gorg, A., C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber, and W. Weiss. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037-1053.
39.Guilhaus, M., V. Mlynski, and D. Selby. 1997. Perfect Timing: Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 11: 951-962.
40.Gutman, P. D., P. Fuchs, L. Ouyang, and K. W. Minton. 1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J. Bacteriol. 239: 3581-3590.
41.Hillenkamp, F., M. Karas, R. C. Beavis, and B. T. Chait. 1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63: 1193A-1203A.
42.Juan J. Y., S. N. Keeney, and E. M. Gregory. 1991. Reconstitution of the Deinococcus radiodurans aposuperoxide dismutase. Arch. Biochem. Biophys. 286: 257-263.
43.Karas, M., and F. Hillenkamp. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60: 2299-2301.
44.Karas, M., M. Gluckmann, and J. Schafer. 2000. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35: 1-12.
45.Kepkay, P. E., and K. H. Nealson. 1982. Surface enhancement of sporulation and manganese oxidation by a marine bacillus. J. Bacteriol. 151: 1022-1026.
46.Klein, E., J. B. Klein, and V. Thongboonkerd. 2004. Two-dimensional electrophoresis: a fundamental tool for expression proteomics studies. Contrib. Nephrol. 141: 25-34.
47.Klein, J. B., and V. Thongboonkerd. 2004. Overview of proteomics. Contrib. Nephrol. 141: 1-10.
48.Klose, J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 26: 231-43.
49.Kobatake, M., S. Tanabe, and S. Hasegawa. 1973. Nouveau Micrococcus radioresistant a pigment rouge, isolated de Lama glama feces, and its use as microbiological indicator of radio-sterilization. C. R. Seances Soc. Biol. Fil. 167: 1506-1510.
50.Lange, C. C., L. P. Wackett, K. W. Minton, and M. J. Daly. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16: 929-933.
51.Leibowitz, P. J., L. S. Schwartzberg, and A. K. Bruce. 1976. The in vivo association of manganes with the chromosome of Micrococcus radiodurans. Photochem. Photobiol. 23: 45-50.
52.Levin-Zaidman, S., J. Englander, E. Shimoni, A. K. Sharma, K. W. Minton, and A. Minsky. 2003. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science. 299: 254-256.
53.Lewis, N. F. 1973. Radio resistant Micrococcus radiophilus so. nov. isolated for irradiated Bombay duck. Curr. Sci. 42: 45-50.
54.Lipton, M. S., L. Pasa-Tolic'', G. A. Anderson, D. J. Anderson, D. L. Auberry, J. R. Battista, M. J. Daly, J. Fredrickson, K. K. Hixson, H. Kostandarithes, C. Masselon, L. M. Markillie, R. J. Moore, M. F. Romine, Y. Shen, E. Stritmatter, N. Tolic'', H. R. Udseth, A. Venkateswaran, K. K. Wong, R. Zhao, and R. D. Smith. 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci. U S A. 99: 11049-11054.
55.Liu, Y., J. Zhou, M. V. Omelchenko, A. S. Beliaev, A. Venkateswaran, J. Stair, L. Wu, D. K. Thompson, D. Xu, I. B. Rogozin, E. K. Gaidamakova, M. Zhai, K. S. Makarova, E. V. Koonin, and M. J. Daly. 2003. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. U.S.A. 100: 4191-4196.
56.Longtin, R. 2003. Deinoccocus radiodurans: getting a better fix on DNA repair. J. Natl. Cancer. Inst. 95: 1270-1271.
57.Makarova, K. S., L. Aravind, M. J. Daly, and E. V. Koonin. 2000. Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica. 108: 25-34.
58.Makarova, K. S., L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin, and M. J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79.
59.Mann, M., and N. O. Jensen. 2003. Proteomic analysis of post-translational modification. Nat. Biotechnol. 21: 255-261.
60.Masters, C. I., R. G. Murray, B. E. Moseley, and K. W. Minton. 1991. DNA polymorphisms in new isolates of “Deinococcus radiopugnans”. J. Gen. Microbiol. 137: 1459-1469.
61.Mattimore, V., and J. B. Battista. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178: 633-637.
62.Minton, K. W. 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13: 9-15.
63.Mrazek, J. 2002. New technology may reveal mechanisms of radiation resistance in Deinococcus radiodurans. Proc. Natl. Acad. Sci. USA 99: 10943-10944.
64.Muller, D. J., W. Baumeister, and A. Engel. 1996. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030.
65.Murray, R. G. E. 1992. In the Prokaryotes. Vol.4, 2nded. New York: Springer-Verlag. p.3732-3744.
66.Murray, R. G. E., and B. W. Brooks. 1986. Genus 1. Deinococcus. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology. 2: 1035-1043. Williams & Wilkins, Baltimore.
67.O’Farrell, P. H. 1975. High-resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021.
68.Oka, T., K. Udagawa, and S. Kinoshita. 1968. Unbalanced growth death due to depletion of Mn2+ in Brevibacterium ammoniagenes. J. Bacteriol. 96: 1760-1767.
69.Pao, G. M., and M. H. Jr. Saier. 1995. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J. Mol. Evol. 40: 136-154.
70.Peters, J, and W. Baumeister. 1986. Molecular cloning, expression, and characterization of the gene for the surface (HPI)-layer protein of Deinococcus radiodurans in Escherichia coli. J. Bacteriol. 167: 1048-1054.
71.Pierce, W. M., and J. Cai. 2004. Applications of mass spectrometry in proteomics. Contrib. Nephrol. 141: 40-58.
72.Rainey, F. A., M. F. Nobre, P. Shumann, E. Stackebrandt, and M. S. da Costa. 1997. Phylogenetic diversity of the Deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47: 510-514.
73.Raj, H. D., F. L. Duryee, A. M. Deeney, C. H. Wang, A. W. Anderson, and P. R. Elliker. 1960. Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can. J. Microbiol. 6: 289-298.
74.Ramos, J. L., M. T. Gallegos, S. Marques, M. I. Ramos-Gonzalez, M. Espinosa-Urgel, and A. Segura. 2001. Responses of gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol. 4: 166-171.
75.Raymond, S., and L. Weintraub. 1959. Acrylamide gel as a supporting medium for zone electrophoresis. Science 130: 711.
76.Rew, D. A. 2003. Deinococcus radiodurans. Eur. J. Surg. Oncol. 29: 557-558.
77.Robyn Seipp. 2003. Deinococcus radiodurans: Does this Bug Wear a Lead Vest or what? BioTeach Rew. Read. 1: 57-62.
78.Romano, A. H., J. D. Trifone, and M. Brustolon. 1979. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in fermentative bacteria. J. Bacteriol. 139: 93-97.
79.Romano, A. H., S. J. Eberhard, S. L. Dingle, and T. D. McDowell. 1970. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J. Bacteriol. 104: 808-813.
80.Saprio, A., D. Dilello, M. C. Loudis,D. E. Keller, and S. H. Hunter. 1977. Minimal requirement in defined media for improved growth of some radio-resistant pink tetracocci. Appl. Environ. Microbiol. 33: 1129-113.
81.Schmitt, L., and R. Tampe. 2002. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12: 754-760.
82.Schweppe, R. E., C. E. Haydon, T. S. Lewis, K. A. Resing, and N. G. Ahn. 2003. The characterization of protein post-translational modifications by mass spectrometry. Acc. Chem. Res. 36: 453-461.
83.Sechi, S. 2004. Mass spectrometric approaches to quantitative proteomics. Contrib. Nephrol. 141: 59-78.
84.Shi, L. 2004. Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions. Front. Biosci. 9: 1382-1397.
85.Simmer, J. P., R. E. Kelly, A. G. Jr. Rinker, J. L. Scully, D. R. Evans. 1990. Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J. Biol. Chem. 265: 10395-10402.
86.Smith, R. D., G. A. Anderson, M. S. Lipton, L. Pasa-Tolic, Y. Shen, T. P. Conrads, T. D. Veenstra, and H. R. Udseth. 2002. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics. 2: 513-523.
87.Stevens, A., and J. Henry. 1964. Studies on the RNA polymerase from Escherichia coli. I. Purification of the enzyme and studies of ribonucleic acid formation. J. Biol. Chem. 239: 196-203.
88.Svoboda, D.L., C. A. Smith, J. S. Taylor, and A. Sancar. 1993. Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A)BC excinuclease. J. Biol. Chem. 268: 10694-10700.
89.Tanaka, A., H. Hirano, M. Kikuchi, S. Kitayama, and H. Watanabe. 1996. Changes in cellular proteins of Deinococcus radiodurans following gamma-irradiation. Radiat. Environ. Biophys. 35: 95-99.
90.Tavankar, G. R., D. Mossialos, and H. D. Williams. 2003. Mutation or overexpression of a terminal oxidase leads to a cell division defect and multiple antibiotic sensitivity in Pseudomonas aeruginosa. J. Biol. Chem. 278: 4524-4530.
91.Truniger, V., and W. Boos. 1994. Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase. J. Bacteriol. 176: 1796-1800.
92.Van den Eynde, H., Y. Van de Peer, H. Vandenabeele, M. Van Bogaert, and R. De Wachter. 1990. 5S rRNA sequences of Myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int. J. Syst. Bacteriol. 40: 399-404.
93.Venkateswaran, A., S. C. McFarlan, D. Ghosal, K. W. Minton, A. Vasilenko, K. S. Makarova, L. P. Wackett, and M. J. Daly. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66: 2620-2626.
94.Westermeier, R. 1993. Electrophoresis in Practic, 1th ed. VCH.
95.White, O., J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn, W. C. Nelson, D. L. Richardson, K. S. Moffat, H. Q. Lingxia Jiang, W. Pamphile, M. Crosby, M. Shen, J. J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K. S. Makarova, L. Aravind, M. J. Daly, K. W. Minton, R. D. Fleischmann, K. A. Ketchum, K. E. Nelson, S. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 286: 1571-1577.
96.Whitehouse, C. M., R. N. Dreyer, M. Yamashita, and J. B. Fenn. 1985. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57: 675-679.
97.Wierowski, J. V., and A. K. Bruce. 1980. Modification of radiation resistance by manganeses in Micrococcus radiodurans. Radiat. Res. 83: 384-385.
98.Wilkins, M. R., J. C. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-Smith, D. F. Hochstrasser, and K. L. Williams. 1996. Progress with proteome projects: Why all proteins expressed by genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13: 19-50.
99.Woese, C. R., E. Stackebrandt, T. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6: 143-151.
100.Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657.
101.Zhang, Y. M. 1997. Manganese dependent glycolysis of the extremely radioresistant bacterium Deinococcus radiodurans. M. S. Thesis. The University of Memphis. U.S.A.
102.Zhang, Y. M., J. K. Liu, and T. Y. Wong. 2003. The DNA excision repair system of the highly radioresistant bacterium Deinococcus radiodurans is facilitated by the pentose phosphate pathway. Mol. Microbiol. 48: 1317-1323.
103.Zhang, Y. M., T. Y. Wong, L. Y. Chen, C. S. Lin, and J. K. Liu. 2000. Induction of a futile embden-meyerhof-parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Appl. Environ. Microbiol. 66: 105-112.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top