跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃以馨
研究生(外文):Yi-hsin Huang
論文名稱:Daxx的sumoylation位置之判別
論文名稱(外文):Identification of the Sumoylation Sites of Daxx
指導教授:陳和瑟陳和瑟引用關係
指導教授(外文):Angela Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物醫學科學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:145
中文關鍵詞:轉譯後修飾
外文關鍵詞:sumoylationDaxxSUMO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SUMO (small ubiquitin-like modifier) 蛋白質(也稱為Smt3
(suppressor of Mif2 protein 3)) ,它和ubiquitin 作用方式類似,都需要
E1 和E2 酵素的幫忙的後接上它們的目標蛋白(target proteins),使目
標蛋白被修飾。在脊椎動物中有三種SUMO 蛋白:SUMO-1、SUMO-2
和SUMO-3,而無脊椎動物中只有一種SUMO 蛋白。SUMO 和目標蛋
白接上之後就會影響目標蛋白的功能(如在細胞中的位置)、影響一些
基因的表現,或使細胞進入細胞凋亡(apoptosis)。
為了得知SUMO 在細胞中所扮演的角色,我們實驗室在之前以酵
母菌雜交實驗(yeast two hybrid assay) 中發現,SUMO-1/2/3 都會和
Daxx (Fas death domain-associated protein) 的N 端(Daxx1, 1-282 amino
acids) 和C 端(Daxx4, 607-740 amino acids) 有交互作用。為了得知
SUMO-1/2 作用(sumoylation) 在Daxx 的哪一個胺基酸上,我們做出
六種不同的突變:K60R (在Daxx1 上)、K630A、K631A、K634A、
K630,631A 和K630,631,634A (在Daxx4 上),來找出Daxx 的sumoylation
site。
我們試管中sumoylation 實驗的結果顯示Daxx1 的K60 雖然是其中
一個sumoylation site,但是其並不是一個主要和SUMO 結合的地方,
Daxx 和SUMO 結合的地方主要是在Daxx 的C 端(Daxx4)。SUMO-1
和SUMO-2 在K630、K631、K634 的結果並不相同;SUMO-1 對於不
同的Daxx4 突變蛋白的結合能力沒有非常明顯的差異,但SUMO-2 對
於不同的突變卻有明顯的差別。所以我們得到的結論是K631 和K634
是SUMO-1 主要的sumoylation 位置,而K630 和K631 是SUMO-2 主
要的sumoylation 位置。除此之外我們也建議在Daxx 635-740 胺基酸
片段區域可能還有其他的sumoylation sites,除非SUMOs 和Daxx
635-740 胺基酸片段區域之間的sumoylation 為Daxx4 於試管中無法正
確摺疊而產生的假陽性反應(pseudo-positive results)。
SUMO (small ubiquitin-like modifier) protein, also known as Smt3
(suppressor of Mif2 protein 3) of Saccharomyces cerevisiae is an
ubiquitin-like protein due to the similar post-transcriptional modifications
to their substrates. There are three members of SUMO genes (SUMO-1,
SUMO-2 & SUMO-3) in the vertebrate, while only one SUMO gene exists
in the invertebrate. Covalent modification of cellular proteins by the
SUMO regulates various cellular processions, such as nuclear transport,
transcription repression and cellular apoptosis. To investigate the biological
functions of SUMO-1 and SUMO-2, yeast two hybrid assays were applied.
Results showed that N-terminus (Daxx1, 1-282 amino acids) and
C-terminus (Daxx4, 607-740 amino acids) of Daxx were the SUMOs
interacting fragments.
For identification of the sumoylation site on Daxx1 and Daxx4, six
mutants (K60R, K630A, K631A, K634A, K630, 631A and K630, 631,
634A) were constructed. In vitro sumoylation were applied in the Daxx1
fragment and mutated Daxx1 (K60R) as well as the Daxx4 fragment and
mutated Daxx4 (K630A, K631A , K634A, K630, 631A and K630, 631,
634A) to identify the sumoylation sites of Daxx.
Our results showed that Daxx1 K60 was one of the sumoylation sites,
neverthless it was not a major sumoylation site. The major sumoylation
sites were on the C-terminus of Daxx (Daxx4). The major sumoylation sites
of SUMO-1 on Daxx4 seemed different from those of SUMO-2. Mutants
(K631A and K634A) of Daxx4 decreased the yields of sumoylation
complexes of SUMO-1 more than that of Daxx4 K630. However, mutants
(K630A and K631A) of Daxx4 decreased the yields of sumoylation
complexes of SUMO-2 more than that of Daxx4 K634. Thus we propose
that the major sumoylation sites of SUMO-1 on Daxx are K631A and
K634A and that of SUMO-2 are K630A and K631A. Daxx may have other
sumoylation sites on the Daxx C-terminal 635-740 amino acids fragment,
unless the sumoylation reactions of Daxx mutants were pseudo-positive
reactions which might be caused by the improper folding of Daxx4 during
in vitro sumoylation.
中文摘要...............................................I
英文摘要...............................................III
壹、序論...............................................1
1. SUMO ...............................................1
1.1 SUMO-1 ............................................1
1.1.1 SUMO-1 的基因構造(gene structure) ...............2
1.1.2 SUMO-1 的蛋白質構造(protein structure) ..........4
1.1.3 SUMO-1 在細胞內所扮演的功能......................5
(1) SUMO-1 對細胞週期(cell cycle) 及DNA 修補的作用.....5
(2) SUMO-1 對RanGAP1 的作用............................6
(3) SUMO-1 對IκBα 的作用...............................6
(4) SUMO-1 對p53 的作用................................7
(5) SUMO-1 對DNA topoisomerase II 的作用...............8
(6) SUMO-1 對Mdm2 的作用...............................8
(7) SUMO-1 對PML 的作用................................9
1.1.4 SUMO-1 和疾病的關係..............................9
1.2 SUMO-2 和SUMO-3 ...................................10
1.2.1 SUMO-2 和SUMO-3 的基因與蛋白質...................10
1.2.2 SUMO-2 和SUMO-3 在細胞內的功能...................11
(1) SUMO-2、SUMO-3 可對C/EBPβ - 1 進行修飾
(sumoylation) .........................................11
(2) SUMO-3 會影響APP protein 的代謝途徑................11
(3) 在細胞遭受壓力下細胞中SUMOs 複合物的改變的情形.....12
2. Daxx (Fas death domain-associated protein) .........12
2.1 Daxx 的基因與蛋白質................................13
2.2 Daxx 在細胞中的功能................................13
2.2.1 Daxx 對於apoptosis 的影響........................13
2.2.2 Daxx 對於發育的影響..............................14
2.2.3 Daxx 和PML、HDAC的相互作用.......................14
2.2.4 Daxx 和HDAC 抑制劑的反應.........................15
2.2.5 Daxx 和染色體中央節蛋白-C 的相互作用.............15
2.2.6 Daxx 是一種轉錄抑制因子(transcriptional repressor) 15
2.2.7 MSP58 調控Daxx 的transcriptional repression ......16
2.2.8 Daxx 會被HIPK1 磷酸化.............................16
2.2.9 Daxx 和SUMO-1 的作用..............................17
3. SUMO 的修飾過程(sumoylation) ........................17
3.1 SUMO 對目標蛋白的修飾工作(sumoylation) .............18
3.2 目標蛋白上sumoylation 的位置........................19
3.3 SUMOs 的自我修飾(self-sumoylation) .................20
4 . 以酵母菌二次雜交系統探討SUMOs 與Daxx
的關係..................................................21
貳、研究目的............................................23
參、實驗方法和材料......................................24
1. 多株抗體(polyclonal antibodies)的製備................24
1.1 實驗動物、材料與藥品................................24
1.2 多株抗體製備的方法..................................25
1.3 多株抗體濃度和專一性的測試(ELISA) ..................25
1.3.1 ELISA 的藥品......................................25
1.3.2 ELISA 的方法......................................26
1.4 多株抗體專一性之測試(Western Blot) .................27
2. E.coli expression plasmids 及mutants 的製備..........28
2.1 pGEX-KG-p53 和pGEX-KG-PML primers 的設計............28
2.2 pGEX-KG-Daxx1 mutant primers 的設計.................29
2.3 pGEX-KG-Daxx4 mutants primers 的設計................30
2.4 pGEX-KG-Daxx1-ST primers 的設計.....................32
2.5 pGEX-KG -Daxx1-ST* mutant primers 的設計............33
2.6 pET- 2 8 a - SUMO- 1 -GG、pET-28a-SUMO-2-GG、
pET-28a-SUMO-1- GG △ 和pET-28a-SUMO-2- GG primers △
的設計..................................................33
2.7 pET-28a-SUMO-1* K16A 和pET-28a-SUMO-2* K11A
mutants primers 的設計..................................34
2.8 PCR overlap extension mutagenesis ..................36
2.9 PCR 反應的使用試劑量、產物長度和PCR conditions .....38
2.9.1 PCR 反應..........................................38
2.9.2 PCR 產物的長度....................................38
2.9.3 PCR condition ....................................39
2.10 DNA 電泳分析.......................................39
3. DNA cloning .........................................40
3.1 Vectors 及PCR 產物的限制酵素切段及純化..............40
3.1.1 材料及藥品........................................40
3.1.2 Vectors 及inserted DNA 所用的限制酵素.............40
3.1.3 vectors 的restriction enzyme reaction ............40
3.1.4 Inserted DNA的restriction enzyme reaction ........41
3.2 Vectors 與inserted DNA 的ligation ..................41
3.2.1 ligation 的藥品...................................41
3.2.2 Vectors 和inserted DNA 的ligation ................41
3.3 E. coli transformation .............................42
3.3.1 preparation of competent cells ...................42
3.3.2 Cloning vectors 的transformation .................43
3.4 Recombinant vectors 的初步篩選......................43
3.4.1 實驗材料及儀器....................................43
3.4.2 實驗方法..........................................43
3.5 Recombinant vectors 的確認(DNA sequencing) .........44
3.5.1 Preparation of autosequence gel ..................44
3.5.2 DNA sequencing analysis ..........................45
4. Protein expression, purification and storage ........47
4.1 Protein expression .................................47
4.1.1 實驗材料..........................................47
4.1.2 實驗方法..........................................48
4.1.3 IPTG induction times .............................48
4.2 Protein purification ...............................49
4.2.1 純化蛋白質的材料..................................49
4.2.2 純化蛋白質的方法..................................49
5. Sumoylation assay ...................................50
5.1 in vitro sumoylation assay .........................50
5.1.1 實驗材料..........................................50
5.1.2 實驗方法..........................................51
5.2 SDS-PAGE ...........................................51
5.2.1 實驗材料..........................................51
5.2.2 SDS-PAGE 膠片之製備...............................52
5.2.3 Sumoylation products 的電泳方法...................53
6. Western blot ........................................53
6.1 實驗材料............................................53
6.2 實驗方法............................................54
肆、結果................................................55
一. SUMOs 的自我修飾反應(self-sumoylation) .............55
二. SUMOs 對Daxx1 的修飾反應(sumoylation assays) 的
探討....................................................59
2.1 SUMOs 對Daxx1 的修飾反應............................59
2.2 SUMOs 對Daxx1* (K60A 突變蛋白) 的修飾反應...........62
2.3 SUMO-1 對Daxx1 ST (較短片段) 的修飾反應.............65
2.4 SUMOs* 對Daxx1 ST* (K60R 突變蛋白) 的修飾反應.......68
2.5 SUMOs*- Daxx1 ST* 修飾反應產物的定量................71
三. SUMOs 對Daxx4 的修飾反應(sumoylation assays)的探
討......................................................76
3.1 SUMOs 對Daxx4 的修飾反應............................76
3.2 SUMOs 對Daxx4* (K630-634A 單點突變蛋白)
的修飾反應..............................................79
3.3 SUMOs 對Daxx4* (K630-634A 多重突變蛋白)
的修飾反應..............................................81
3.4 SUMOs*-Daxx4*突變蛋白修飾反應產物的定量.............86
伍、討論................................................94
1. SUMO-1 和SUMO-2 self sumoylation ....................94
2. Identification of the sumoylation site in Daxx1 .....96
3. Identification of the sumoylation site in Daxx4 .....97
4. SUMO 對於Daxx 的影響.................................100
5. 未來的研究方向.......................................100
陸、參考文獻............................................101
柒、附錄................................................111
(一) 突變DNA 的定序結果.................................111
(二) pGEX-KG 載體的map .................................123
(三) pET-28a 載體的map .................................124
(四) 蛋白質的胺基酸序列.................................125
(五) 多株抗體(Polyclonal antibody) ELISA 反應及western blot
測試....................................................127
(六) 蛋白質的純化.......................................142
表目錄
Table 1:不同物種間SUMO-1/2/3 蛋白質的相似度和相同度....3
Table 2:Expression vectors 的fusion proteins 之長度....46
Table 3:Expression vectors 的fusion proteins 之預估的分子量......................................................47
Table 4:Daxx1 ST、Daxx1 ST*、p53 和SUMO-1* 形成sumoylated
products 的定量.........................................72
Table 5:Daxx1 ST、Daxx1 ST*、p53 和SUMO-2* 形成sumoylated
products 的定量.........................................74
Table 6 (A):Daxx4 wild type、Daxx4 mutants 和SUMO-1* 形成
sumoylated products 的定量..............................88
Table 6 (B):Daxx4 wild type、Daxx4 mutants 和SUMO-1* 形成
sumoylated products 的定量..............................89
Table 7 (A):Daxx4 wild type、Daxx4 mutants 和SUMO-2* 形成
sumoylated products 的定量..............................91
Table 7 (B):Daxx4 wild type、Daxx4 mutants 和SUMO-2* 形成
sumoylated products 的定量..............................92
圖目錄
Fig 1. 不同物種的SUMO 胺基酸序列相關性..................3
Fig 2. SUMO-1 的結構圖..................................4
Fig 3. Conjugation pathway of ubiquitin and SUMO .......18
Fig 4. PCR overlap extension mutagenesis ...............37
Fig 5 (A):Western blot of self sumoylation assay ......57
Fig 5 (B):Western blot of self sumoylation assay ......58
Fig 6 (A):Western blot of Daxx1、p53 和PML sumoylation assay ..................................................60
Fig 6 (B):Western blot of Daxx1、p53 和PML sumoylation assay ..................................................61
Fig 7 (A):Western blot of Daxx1、Daxx1*K60R 和p53 sumoylation assay.......................................63
Fig 7 (B):Western blot of Daxx1、Daxx1*K60R 和p53 sumoylation assay.......................................64
Fig 8 (A):Western blot of Daxx1 ST、p53 和PML sumoylation assay ..................................................66
Fig 8 (B):Western blot of Daxx1 ST、p53 和PML sumoylation assay ..................................................67
Fig 9 (A):Western blot of Daxx1 ST、Daxx1 ST* K60R 和p53 sumoylation assay.......................................69
Fig 9 (B):Western blot of Daxx1 ST、Daxx1 ST* K60R 和p53 sumoylation assay ......................................70
Fig 10:Daxx1 ST、Daxx1 ST* K60R、p53 和SUMO-1* K16A sumoylation assay 產物的定量結果........................73
Fig 11:Daxx1 ST、Daxx1 ST* K60R、p53 和SUMO-2* K11A sumoylation assay 產物的定量結果........................75
Fig 12 (A):Western blot of Daxx4 sumoylation assay ....77
Fig 12 (B):Western blot of Daxx4 sumoylation assay ....78
Fig 13:Mono-sumoylation assay of Daxx4 mutant proteins 80
Fig 14 (A):Mono-sumoylation assay of Daxx4 wild type and Daxx4 mutants ..........................................82
Fig 14 (B):Mono-sumoylation assay of Daxx4 wild type and Daxx4 mutants ..........................................83
Fig 15 (A):Mono-sumoylation assay of Daxx4 wild type and Daxx4 mutants ..........................................84
Fig 15 (B):Mono-sumoylation assay of Daxx4 wild type and Daxx4 mutants ..........................................85
Fig 16:Daxx4 wild type、Daxx4 mutants 和SUMO-1* K16A sumoylation assay 產物的定量結果........................90
Fig 17:Daxx4 wild type、Daxx4 mutants 和SUMO-2* K11A sumoylation assay 產物的定量結果........................93
1. Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors
induce caspase-dependent apoptosis and downregulation of daxx in
acute promyelocytic leukaemia with t(15;17). Br J Haematol
115:287-297.
2. Austin CA, Marsh KL (1998) Eukaryotic DNA topoisomerase II beta.
Bioessays 20:215-226.
3. Baldwin AS, Jr. (1996) The NF-kappa B and I kappa B proteins: new
discoveries and insights. Annu Rev Immunol 14:649-683.
4. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R,
Becker J (1998) Structure determination of the small
ubiquitin-related modifier SUMO-1. J Mol Biol 280:275-286.
5. Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS (1996) PIC
1, a novel ubiquitin-like protein which interacts with the PML
component of a multiprotein complex that is disrupted in acute
promyelocytic leukaemia. Oncogene 13:971-982.
6. Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP (1997)
Design of a synthetic Mdm2-binding mini protein that activates the
p53 response in vivo. Curr Biol 7:860-869.
7. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (1998)
Activation of apoptosis signal-regulating kinase 1 (ASK1) by the
adapter protein Daxx. Science 281:1860-1863.
8. Chang HY, Yang X, Baltimore D (1999) Dissecting Fas signaling with
an altered-specificity death-domain mutant: requirement of FADD
binding for apoptosis but not Jun N-terminal kinase activation. Proc
Natl Acad Sci U S A 96:1252-1256.
9. Charette SJ, Lambert H, Landry J (2001) A kinase-independent
function of Ask1 in caspase-independent cell death. J Biol Chem
276:36071-36074.
10. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A
(1991) The PML-RAR alpha fusion mRNA generated by the t(15;17)
translocation in acute promyelocytic leukemia encodes a functionally
altered RAR. Cell 66:675-684.
11. Descombes P, Schibler U (1991) A liver-enriched transcriptional
activator protein, LAP, and a transcriptional inhibitory protein, LIP,
are translated from the same mRNA. Cell 67:569-579.
12. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification
of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233-239.
13. Desterro JM, Rodriguez MS, Kemp GD, Hay RT (1999)
Identification of the enzyme required for activation of the small
ubiquitin-like protein SUMO-1. J Biol Chem 274:10618-10624.
14. Desterro JM, Thomson J, Hay RT (1997) Ubch9 conjugates SUMO
but not ubiquitin. FEBS Lett 417:297-300.
15. D''Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S,
Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli
M, Appella E, Soddu S (2002) Homeodomain-interacting protein
kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat
Cell Biol 4:11-19.
16. Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V,
Howe K, Boddy MN, Solomon E, de The H, Hay RT, Freemont
PS (1999) SUMO-1 modification of the acute promyelocytic
leukaemia protein PML: implications for nuclear localisation. J Cell
Sci 112 ( Pt 3):381-393.
17. Eaton EM, Sealy L (2003) Modification of CCAAT/enhancer-binding
protein-beta by the small ubiquitin-like modifier (SUMO) family
members, SUMO-2 and SUMO-3. J Biol Chem 278:33416-33421.
18. Ecsedy JA, Michaelson JS, Leder P (2003) Homeodomain-interacting
protein kinase 1 modulates Daxx localization, phosphorylation, and
transcriptional activity. Mol Cell Biol 23:950-960.
19. Gong L, Kamitani T, Fujise K, Caskey LS, Yeh ET (1997)
Preferential interaction of sentrin with a ubiquitin-conjugating
enzyme, Ubc9. J Biol Chem 272:28198-28201.
20. Gong L, Li B, Millas S, Yeh ET (1999) Molecular cloning and
characterization of human AOS1 and UBA2, components of the
sentrin-activating enzyme complex. FEBS Lett 448:185-189.
21. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE,
Scheffner M, Del Sal G (1999) Activation of p53 by conjugation to
the ubiquitin-like protein SUMO-1. Embo J 18:6462-6471.
22. Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H,
Fukagawa T, Yagi H, Enomoto T (2002) Ubc9 is essential for
viability of higher eukaryotic cells. Exp Cell Res 280:212-221.
23. Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS (1998)
Structure, organization, and dynamics of promyelocytic leukemia
protein nuclear bodies. Am J Hum Genet 63:297-304.
24. Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G (1999) The
Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated
repressor hDaxx. Embo J 18:3702-3711.
25. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a
ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25-27.
26. Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2
inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
Embo J 18:22-27.
27. Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N,
Kamitani T, Yeh ET, Strauss JF, 3rd, Maul GG (1999) PML is
critical for ND10 formation and recruits the PML-interacting protein
daxx to this nuclear structure when modified by SUMO-1. J Cell
Biol 147:221-234.
28. Isik S, Sano K, Tsutsui K, Seki M, Enomoto T, Saitoh H (2003) The
SUMO pathway is required for selective degradation of DNA
topoisomerase IIbeta induced by a catalytic inhibitor ICRF-193(1).
FEBS Lett 546:374-378.
29. Jang MS, Ryu SW, Kim E (2002) Modification of Daxx by small
ubiquitin-related modifier-1. Biochem Biophys Res Commun
295:495-500.
30. Jentsch S, Pyrowolakis G (2000) Ubiquitin and its kin: how close are
the family ties? Trends Cell Biol 10:335-342.
31. Johnson ES, Blobel G (1997a) Ubc9p is the conjugating enzyme for
the ubiquitin-like protein Smt3p. J Biol Chem 272:26799-26802.
32. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997b) The
ubiquitin-like protein Smt3p is activated for conjugation to other
proteins by an Aos1p/Uba2p heterodimer. Embo J 16:5509-5519.
33. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET
(1998a) Characterization of a second member of the sentrin family of
105
ubiquitin-like proteins. J Biol Chem 273:11349-11353.
34. Kamitani T, Nguyen HP, Kito K, Fukuda-Kamitani T, Yeh ET
(1998b) Covalent modification of PML by the sentrin family of
ubiquitin-like proteins. J Biol Chem 273:3117-3120.
35. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW
(1991) Participation of p53 protein in the cellular response to DNA
damage. Cancer Res 51:6304-6311.
36. Kiriakidou M, Driscoll DA, Lopez-Guisa JM, Strauss JF, 3rd (1997)
Cloning and expression of primate Daxx cDNAs and mapping of the
human gene to chromosome 6p21.3 in the MHC region. DNA Cell
Biol 16:1289-1298.
37. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev
10:1054-1072.
38. Ko YG, Kang YS, Park H, Seol W, Kim J, Kim T, Park HS, Choi EJ,
Kim S (2001) Apoptosis signal-regulating kinase 1 controls the
proapoptotic function of death-associated protein (Daxx) in the
cytoplasm. J Biol Chem 276:39103-39106.
39. Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) The nuclear
receptor interaction domain of GRIP1 is modulated by covalent
attachment of SUMO-1. J Biol Chem 277:30283-30288.
40. Lapenta V, Chiurazzi P, van der Spek P, Pizzuti A, Hanaoka F,
Brahe C (1997) SMT3A, a human homologue of the S. cerevisiae
SMT3 gene, maps to chromosome 21qter and defines a novel gene
family. Genomics 40:362-366.
41. Larson RA, Kondo K, Vardiman JW, Butler AE, Golomb HM,
Rowley JD (1984) Evidence for a 15;17 translocation in every
patient with acute promyelocytic leukemia. Am J Med 76:827-841.
42. Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, Anderson P
(1998) Modification of Ran GTPase-activating protein by the small
ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type
ubiquitin-conjugating enzyme homologue. J Biol Chem
273:6503-6507.
43. Li H, Leo C, Zhu J, Wu X, O''Neil J, Park EJ, Chen JD (2000)
Sequestration and inhibition of Daxx-mediated transcriptional
repression by PML. Mol Cell Biol 20:1784-1796.
44. Li Y, Wang H, Wang S, Quon D, Liu YW, Cordell B (2003) Positive
and negative regulation of APP amyloidogenesis by sumoylation.
Proc Natl Acad Sci U S A 100:259-264.
45. Lin DY, Shih HM (2002) Essential role of the 58-kDa microspherule
protein in the modulation of Daxx-dependent transcriptional
repression as revealed by nucleolar sequestration. J Biol Chem
277:25446-25456.
46. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A
small ubiquitin-related polypeptide involved in targeting RanGAP1
to nuclear pore complex protein RanBP2. Cell 88:97-107.
47. Mahajan R, Gerace L, Melchior F (1998) Molecular characterization
of the SUMO-1 modification of RanGAP1 and its role in nuclear
envelope association. J Cell Biol 140:259-270.
48. Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53
cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol
4:1689-1694.
49. Mao Y, Desai SD, Liu LF (2000) SUMO-1 conjugation to human DNA
topoisomerase II isozymes. J Biol Chem 275:26066-26073.
50. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like
modification modulates the partitioning of the
Ran-GTPase-activating protein RanGAP1 between the cytosol and
the nuclear pore complex. J Cell Biol 135:1457-1470.
51. Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its
role in targeting the Ran GTPase-activating protein, RanGAP1, to
the nuclear pore complex. J Cell Biol 140:499-509.
52. Michaelson JS, Bader D, Kuo F, Kozak C, Leder P (1999) Loss of
Daxx, a promiscuously interacting protein, results in extensive
apoptosis in early mouse development. Genes Dev 13:1918-1923.
53. Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO,
ubiquitin''s mysterious cousin. Nat Rev Mol Cell Biol 2:202-210.
54. Muller S, Matunis MJ, Dejean A (1998) Conjugation with the
ubiquitin-related modifier SUMO-1 regulates the partitioning of
PML within the nucleus. Embo J 17:61-70.
55. Muromoto R, Yamamoto T, Yumioka T, Sekine Y, Sugiyama K,
Shimoda K, Oritani K, Matsuda T (2003) Daxx enhances
Fas-mediated apoptosis in a murine pro-B cell line, BAF3. FEBS
Lett 540:223-228.
56. Nagata S (1997) Apoptosis by death factor. Cell 88:355-365.
57. Nakagawa K, Yokosawa H (2002) PIAS3 induces SUMO-1
modification and transcriptional repression of IRF-1. FEBS Lett
530:204-208.
58. Netzer C, Bohlander SK, Rieger L, Muller S, Kohlhase J (2002)
Interaction of the developmental regulator SALL1 with UBE2I and
SUMO-1. Biochem Biophys Res Commun 296:870-876.
59. Nishida T, Yasuda H (2002) PIAS1 and PIASxalpha function as
SUMO-E3 ligases toward androgen receptor and repress androgen
receptor-dependent transcription. J Biol Chem 277:41311-41317.
60. Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In
vitro SUMO-1 modification requires two enzymatic steps, E1 and E2.
Biochem Biophys Res Commun 254:693-698.
61. Pazin MJ, Kadonaga JT (1997) What''s up and down with histone
deacetylation and transcription? Cell 89:325-328.
62. Pluta AF, Earnshaw WC, Goldberg IG (1998) Interphase-specific
association of intrinsic centromere protein CENP-C with HDaxx, a
death domain-binding protein implicated in Fas-mediated cell death.
J Cell Sci 111 ( Pt 14):2029-2041.
63. Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation
in vivo requires both a consensus modification motif and nuclear
targeting. J Biol Chem 276:12654-12659.
64. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay
RT (1999) SUMO-1 modification activates the transcriptional
response of p53. Embo J 18:6455-6461.
65. Ross CA (1995) When more is less: pathogenesis of glutamine repeat
neurodegenerative diseases. Neuron 15:493-496.
66. Ryu SW, Chae SK, Kim E (2000) Interaction of Daxx, a Fas binding
protein, with sentrin and Ubc9. Biochem Biophys Res Commun
279:6-10.
67. Saitoh H, Hinchey J (2000) Functional heterogeneity of small
ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J
Biol Chem 275:6252-6258.
68. Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, Mohun TJ,
109
Dasso M (1998) Ubc9p and the conjugation of SUMO-1 to
RanGAP1 and RanBP2. Curr Biol 8:121-124.
69. Saitoh H, Tomkiel J, Cooke CA, Ratrie H, 3rd, Maurer M,
Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in
scleroderma, is a component of the human inner kinetochore plate.
Cell 70:115-125.
70. Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M,
Jentsch S (1998) The ubiquitin-like proteins SMT3 and SUMO-1
are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci U S A
95:560-564.
71. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen
DJ (1996a) Associations of UBE2I with RAD52, UBL1, p53, and
RAD51 proteins in a yeast two-hybrid system. Genomics
37:183-186.
72. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen
DJ (1996b) UBL1, a human ubiquitin-like protein associating with
human RAD51/RAD52 proteins. Genomics 36:271-279.
73. Su HL, Li SS (2002) Molecular features of human ubiquitin-like
SUMO genes and their encoded proteins. Gene 296:65-73.
74. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH,
Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and
SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and
Ubc9. J Biol Chem 276:35368-35374.
75. Terashima T, Kawai H, Fujitani M, Maeda K, Yasuda H (2002)
SUMO-1 co-localized with mutant atrophin-1 with expanded
polyglutamines accelerates intranuclear aggregation and cell death.
Neuroreport 13:2359-2364.
76. Verma IM, Stevenson J (1997) IkappaB kinase: beginning, not the end.
Proc Natl Acad Sci U S A 94:11758-11760.
77. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995)
Nup358, a cytoplasmically exposed nucleoporin with peptide repeats,
Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous
domain, and a leucine-rich region. J Biol Chem 270:14209-14213.
78. Xirodimas DP, Chisholm J, Desterro JM, Lane DP, Hay RT (2002)
P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2.
FEBS Lett 528:207-211.
79. Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a
novel Fas-binding protein that activates JNK and apoptosis. Cell
89:1067-1076.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊