跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信宏
研究生(外文):Hsin-Hung Chen
論文名稱:投資組合決策最佳化與績效指標之研究
論文名稱(外文):A Study of Optimal Portfolio Decision and Performance Measures
指導教授:蔡憲唐蔡憲唐引用關係韋伯韜韋伯韜引用關係
指導教授(外文):Hsien-Tang TsaiDuan Wei
學位類別:博士
校院名稱:國立中山大學
系所名稱:企業管理學系研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:效用函數Cauchy-Schwarz 極大值定理Sharpe指標平均值-變異數投資模型損失函數
外文關鍵詞:Mean-Variance portfolio modelLoss functionSharpe RatioUtility functionCauchy-Schwarz maximization
相關次數:
  • 被引用被引用:51
  • 點閱點閱:2174
  • 評分評分:
  • 下載下載:338
  • 收藏至我的研究室書目清單書目收藏:12
一般基金管理單位經常採用Sharpe指標作為基金操作績效之評估指標,因此基金經理人的主要目標通常為建立能夠獲得最大Sharpe指標之投資組合。過去的方法通常以修改Markowitz平均值-變異數投資組合模型(MV模型)之目標函數,並求解非線性規劃問題,以得到最大Sharpe指標之最佳投資組合。在允許買空賣空(投資權重允許為負值)的情況下,本研究將利用柯西-史瓦茲極大值定理(Cauchy-Schwarz maximization)提出一個可以直接獲得最大Sharpe指標投資組合之公式解(closed-form solution),這個方法不需要利用非線性規劃方式求解,不但較傳統方法更容易使用,且可以節省運算時間與成本,同時方便未來推估最佳投資權重之信賴區間。在不允許買空賣空(投資權重不得為負值)環境與條件下,我們則進一步利用Kuhn-Tucker 條件的觀念求解最大Sharpe指標之最佳投資組合。
另外,Markowitz的MV投資模型所產生的效率前緣會有高報酬伴隨高風險的現象,因而造成投資者在高風險高報酬與低風險低報酬之間取捨的決策兩難。本研究應用品質工程損失函數的概念,提出一個可以適當反映期望報酬率與風險間均衡關係的投資組合績效指標(簡稱IRp績效指標),並比較各種投資組合指標(包括Sharpe指標與效用函數投資組合指標)以確認其適合用來評估效率前緣中投資組合之績效。實證分析中將採用國內外金融市場歷史資料,來測試及確認新的運算方法及IRp指標之可行性與適用性。本研究將多變量分析中之Cauchy-Schwarz極大值定理與作業研究之Kuhn-Tucker條件及品質工程中的損失函數應用於投資組合決策領域,使其理論更加完整,對實務界與學術界均具有重大的意義。
Since most financial institutions use the Sharpe Ratio to evaluate the performance of mutual funds, the objective of most fund managers is to select the portfolio that can generate the highest Sharpe Ratio. Traditionally, they can revise the objective function of the Markowitz mean-variance portfolio model and resolve non-linear programming to obtain the maximum Sharpe Ratio portfolio. In the scenario with short sales allowed, this project will propose a closed-form solution for the optimal Sharpe Ratio portfolio by applying Cauchy-Schwarz maximization. This method without using a non-linear programming computer program is easier than traditional method to implement and can save computing time and costs. Furthermore, in the scenarios with short sales disallowed, we will use Kuhn-Tucker conditions to find the optimal Sharpe Ratio portfolio.
On the other hand, an efficient frontier generated by Markowitz mean-variance portfolio model normally has higher risk higher return characteristic, which often causes dilemma for decision maker. This research applies generalized loss function to create a family of decision-aid performance measures called IRp which can well tradeoff return with risk. We compare IRp with Sharpe Ratio and utility functions to confirm that IRp measures are approapriate to evaluate portfolio performance on efficient frontier and to improve asset allocation decisions.
In addition, empirical data of domestic and international investment instruments will be used to examine the feasibility and fitness of the new proposed method and IRp measures. This study applies the methods of Cauchy-Schwarz maximization in multivariate statistical analysis and loss function in quality engineering to portfolio decisions. We believe these new applications will complete portfolio model theory and will be meaningful for academic and business fields.
目 錄
誌謝詞----------------------------------------------------------------------------------------- I
論文提要-------------------------------------------------------------------------------------- II
中文摘要-------------------------------------------------------------------------------------- III
Abstract--------------------------------------------------------------------------------------- Ⅳ
第一章 緒論--------------------------------------------------------------------------------- 1
第一節 研究背景與動機---------------------------------------------------------- 1
第二節 研究目的------------------------------------------------------------------- 3
第三節 研究流程------------------------------------------------------------------- 4
第四節 論文架構------------------------------------------------------------------- 7
第二章 文獻探討--------------------------------------------------------------------------- 8
第一節 投資組合理論------------------------------------------------------------- 8
第二節 Sharpe指標---------------------------------------------------------------- 15
第三節 柯西-史瓦茲極大值定理(Cauchy-Schwarz Maximization)-------- 17
第四節 效用函數------------------------------------------------------------------- 18
第五節 損失函數------------------------------------------------------------------- 18
第三章 研究設計--------------------------------------------------------------------------- 21
第一節 研究架構------------------------------------------------------------------- 21
第二節 研究方法------------------------------------------------------------------- 22
第四章 以Sharpe指標建立最佳化投資組合模型---------------------------------- 24
第一節 Markowitz的MV投資組合模型-------------------------------------- 24
第二節 最大Sharpe指標之投資組合模型------------------------------------ 26
第五章 應用Cauchy-Schwarz極大值定理於最佳化Sharpe指標投資組合之運算
第一節 允許賣空條件--------------------------------------------------------------- 29
第二節 不允許賣空條件----------------------------------------------------------- 38
第三節 兩種運算方法複雜度(complexity)之比較---------------------------- 47
第六章 應用損失函數於投資組合決策------------------------------------------------- 49
第一節 應用損失函數建立IRp投資組合績效指標------------------------- 49
第二節 IRp指標與夏普(Sharpe)指標之比較分析---------------------------- 51
第三節 IRp指標與效用函數之比較分析-------------------------------------- 62
第四節 小结-------------------------------------------------------------------------- 70
第七章 基金管理之應用------------------------------------------------------------------- 72
第一節 前言-------------------------------------------------------------------------- 72
第二節 MV模型建立-------------------------------------------------------------- 74
第三節 郵政儲金模型A-限制不得投資海外市場-------------------------- 75
第四節 郵政儲金模型B-開放投資海外市場-------------------------------- 78
第五節 郵政儲金模型A與模型B之分析比較------------------------------ 79
第六節 最佳資產配置決策------------------------------------------------------- 80
第七節 小結------------------------------------------------------------------------- 82
第八章 結論與建議------------------------------------------------------------------------ 84
第一節 結論------------------------------------------------------------------------- 84
第二節 建議------------------------------------------------------------------------- 86
中文參考文獻-------------------------------------------------------------------------------- 90
英文參考文獻-------------------------------------------------------------------------------- 91
附錄A、各實例所採用投資工具歷年報酬率----------------------------------------- 94
附錄B、LINGO運算程式---------------------------------------------------------------- 98
中央銀行(2001),中華民國台灣地區金融統計月報,民國九十年四月份,125-132頁。
白郁婷 (1998),退撫基金資產配置之研究,公務人員退休撫卹基金監理委員會專題研究報告。
吳嘉慶(1998),退休基金之資產配置,國立中山大學財務管理研究所碩士論文。
邱顯比 (1997),台灣退休基金資產分配之試評,證券市場發展季刊。9(2),29-57。
林瑞益 (2002),製程能力指標與損失函數關係之探討與研究,國立成功大學統計研究所碩士論文。
黃春福 (1998),損失函數極小化的製造公差設計,國立成功大學工業管理研究所碩士論文。
黃介良 (1998),「台灣退休基金資產配置之研究」,證券市場發展季刊,10(3),135-161。
黃明煜 (1997),公務人員退休撫卹基金管理與運用之研究,國立政治大學企業管理研究所碩士論文。
韋端 (2000),從國際金融趨勢論台灣金融實力的提升-設立國家理財機制芻議,國家政策研究基金會研究報告,財金(研)089-013號,13-18。
韋端、蔡憲唐、陳信宏(2001),如何有效提升我國特種基金之資金運用效率,行政院主計處研究計畫,計畫編號:RES-89-01。
韋端、蔡憲唐、陳信宏(2001),提升勞退基金營運績效之研究,主計月報,546,34-49。
韋端、蔡憲唐、傅懷慧、陳信宏(2001),臺大醫院基金管理績效之研究及在擴院集資之應用,臺大醫院委託研究計畫,計畫編號:9000143。
韋端、蔡憲唐、陳信宏(2002),郵政儲金最佳資產配置之研究,中國統計學報,40(1),1-16。
韋端、蔡憲唐、陳信宏(2002),提昇榮民醫療基金管理營運績效之研究,榮民總醫院委託研究計畫,計畫編號:VGH91-375-15。
韋端、蔡憲唐、陳信宏(2003),提昇榮民醫療基金管理營運績效之研究(續),榮民總醫院委託研究計畫,計畫編號:VGH92-380-11。
韋端 (2003),Data Mining 概述-以Clementine 7.0 為例,中華資料採礦協會。
韋端、張堯庭、謝邦昌 (2003),統計金融學,台灣知識庫。
韋伯韜,蔡憲唐,陳信宏(2004),以IRp投資組合績效指標建立資產配置決策之研究,中國統計學報,42(1),13-30。
陳文華、王佳真、吳壽山(1998),風險值體系運用之探討,交大管理學報,18(2),33-64。
陳子昂(1988),抽樣調查中如何決定樣本數之探討,國立清華大學應用數學研究所碩士論文。
陳隆麒(1999),當代財務管理,華泰書局,143-145。
賴憲政(1996),平均數—變異數投資組合理論實證研究—以台灣股市為例,國立成功大學企業管理研究所碩士論文。
蔡憲唐、韋端、戴貞德 (2002),應用田口損失函數於投資組合績效指標之研究,中山管理評論,10(3),521-535。
蔡憲唐、陳信宏、傅懷慧 (2003),應用損失函數於投資組合績效指標之研究,國科會計劃,計畫編號:NSC 91-2416-H-110-005。
劉文祺、張淑怡、詹麗錦 (2001),共同基金評選指標之實用性研究,台灣土地金融季刊,38(1),85-109。
游耀宗(2001),投資組合資產配置策略之研究-左偏動差模型之應用,銘傳大學金融研究所碩士論文。
鄭錦亞、遲國泰 (2001),基於差異係數 的最優投資組合方法,中國管理科學,9(1),1-5。
Bawa, V.S. and E.B. Lindenberg. 1977. Capital Market Equilibrium in a Mean-Lower Partial Moment Framework. Journal of Financial Economics, 5, 189-200.
Borch, K. 1969. A note on uncertainty and indifference curves. Review of Economic Study, 36, 1-4.
Brinson, G.P., B.D. Singer, and G.L. Beebower. 1991. Determinants of Portfolio Performance : An Update. Financial Analysts Journal, 47, 40-48.
Campbell, R., R. Huisman and K. Koedijk. 2001. Optimal portfolio selection in a Value-at-Risk framework. Journal of Banking & Finance, 25, 1789-1804.
Chipman, J. 1973. The ordering of portfolios in terms of mean and variance. Review of Economic Study, 40, 167-190.
Chopra, V.K., Hensel, C.R. and Turner, A.L. 1993. Massaging Mean-Variance Inputs : Returns from Alternative Global Investment Strategies in the 1980s. Management Science , 39, 845-55.
Chopra, V.K., and Ziemba, W.T. 1993. The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. The Journal of Portfolio Management , 19, 6-11.
Chunhachinda, P., K. Dandapani, S. Hamid, A.J. Prakash. 1997. Portfolio Selection and skewness: Evidence from international stock markets. Journal of Banking & Finance, 21, 143-167.
Dowd, K. 2000. Adjusting for risk: An improved Sharpe Ratio. International Review of Economics and Finance, 9, 209-222.
Elton, E.J. and M.J. Gruber. 1995. Modern Portfolio Theory and Investment Analysis, John Wiley & Sons.
Elliott, R.J., and Kopp, P.E. 1999. Mathematics of Financial Markets. Springer.
Fabozzi, F.J. and J.C. Francis. 1979. Mutual Fund Systematic Risk for Bull and Bear Markets: An Empirical Examination. Journal of Finance, 34, 1243-1250.
Feldstein, M.S. 1969. Mean variance analysis in the theory of liquidity preference and portfolio selection. Review of Economic Study, 36, 5-12.
Hanoch, G. and Levy, H. 1970. Efficient portfolio selection with quadratic and cubic utility. The Journal of Business , 43, 181-189.
Huang, C. F. and Litzenberger, R. H. 1988. Foundations for Financial Economics. North-Holland, New York.
Hull, J.C. 1997. Options, Futures, and Other Derivatives, 3rdEdition, Prentice-Hall International, Inc.
Hull, J.C. 1998. Introduction to Futures and Options Markets, 3rdEdition, Prentice-Hall International, Inc.
Hunt, P. J. and Kennedy, J. E. 2000. Financial derivatives in theory and practice. Wiley, New York.
Johnson, R.A. and D.W. Wichern. 1992. Applied Multivariate Statistical Analysis, Prentice Hall, New Jersey, Sixth Edition.
Kallberg, J.G. and Ziemba, W.T. 1984. MIS-Specification in Portfolio Selection Problem. Lecture Notes in Economics and Mathematical Systems, 227, 74-87.
Koskosidis, Yiannis A. and Duarte, Antonio M.1997, A Scenario-Based Approach to Active Asset Allocation, The Journal of Portfolio Management, 74-85.
Kroll, Y., H. Levy. and Markowitz, H. M. 1984. Mean-variance versus direct utility maximization. The Journal of Finance, 39, 47-61.
Leibowitz, M. L. and Henriksson, R. D. 1989. Portfolio Optimization with Shortfall Constraints: A Confidence-Limit Approach to Managing Downside Risk. Financial Analysts Journal , 45, 34-41.
Leibowitz, M. L., Kogelman, S. and Bader, L. N. 1992. Asset Performance and Surplus Control: a dual shortfall approach. Journal of Portfolio Management, 18(2), 28-37.
Levy, H. 1974. The rationale of the mean standard deviation analysis: comment. American Economic Review , 64, 434-441.
Levy, H. and Markowitz, H. M. 1979. Approximating expected utility by a function of mean and variance. American Economic Review, 69, 308-317.
Lintner, J. 1965. The Valuation of Risk Assets and the selection of Risk Investments in Stock Portfolio and Capital Budgets. The Review of Economics and Statistics, 47, 13-37.
Lucas, A. and Klaassen, P. 1998. Extreme Returns, Downside Risk, and Optimal Asset Allocation. Journal of Portfolio Management , 25(1), 71-79.
Lucas, A. and P. Klaassen. 1998. Extreme Returns, Downside Risk, and Optimal Asset Allocation, Journal of Portfolio Management, 25(1), 71-79.
Markowitz, H. M. 1952. Portfolio selection. The Journal of Finance , 7, 71-91.
Markowitz, H.M. 1959. Portfolio selection, John Wiley & Sons.
Merton, R.C. 1972. An Analytic Derivation of the Efficient Portfolio Frontier. The Journal of Financial and Quantitative Analysis , 21, 1851-72.
Murthi, B.P., Y.K. Choi and P. Desai. 1997. Efficiency of mutual funds and portfolio performance measurement: A non-parametric approach. European Journal of Operational Research, 98, 408-418.
Prakash, A.J., C.H. Chang and T.E. Pactwa. 2003. Selecting a portfolio with skewness : Recent evidence from US, European, and Latin American equity markets. Journal of Banking & Finance, 27, 1375-1390.
Ross, S. M. 1999. An Introduction to Mathematical Finance, Cambridge.
Sharpe, W.F. 1964. Capital Asset Prices : A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance , 19, 425-42.
Sharpe, W. F. 1966. Mutual Fund Performance. The Journal of Business , 39, 119-138.
Sharpe, W.F. 1994. The Sharpe Ratio. The Journal of Portfolio Management, 21, 49-58.
Steele, J. M. 2001. Stochastic Calculus and Financial Applications. Springer, New York.
Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products and Process, Japan Tokyo: Asian Productivity Organization.
Taha, H.A. 1997. Operations Research, Prentice Hall, New Jersey.
Tobin, J. 1969. A General Equilibrium Approach to Monetary Theory. Journal of Money, Credit, and Banking , 5, 15-29.
Tsiang, C. 1972. The rationale of the mean standard deviation analysis, skewness preference, and demand for money. American Economic Review , 62, 354-371.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top