跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李典融
研究生(外文):Dan-Long Lee
論文名稱:用濕蝕刻製作InGaAsP/InGaAsP之電致吸收光調變器
論文名稱(外文):Fabrication of InGaAsP/InGaAsP Electro-absorption Modulator by Wet Etching
指導教授:邱逸仁邱逸仁引用關係
指導教授(外文):Yi-Jen Chiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:濕蝕刻電致吸收光調變器
外文關鍵詞:Electro-absorption ModulatorInGaAsP/InGaAsPwet etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

RC頻寬效應決定了電致吸收光調變器的高速特性,為了降低元件的電容值,行波式波導為我們所採用。然而,若要進一步提昇元件的速度,如何有效降低元件的電容值是很重要的。本論文即著重於進一步降低元件電容以達到更高的調變效率。
全程使用濕蝕刻是本論文的主要特色,而其目地是為了得到很好的蝕刻表面以降低元件的光損耗。除此之外,利用濕蝕刻來執行內緣蝕刻不但可以得到較小的元件電容值,同時可以保有較小的電阻值,以利於元件在高速時的特性。
在這裡我們所採用的方法是利用濕蝕刻及內緣蝕刻來降低主動層的電容以達到高速的特性,再利用內緣蝕刻降低P型包覆層及N型包覆層中所產生的寄生電容以更進一步的提高調變效率。熱蒸鍍、電子束蒸鍍及平坦化亦是我們製程的重點。
最後元件之測試我們量測到:-15dB的光功率傳播、在40GHz的電傳輸只有衰減-6dB、而且在50Ω的輸出阻抗下,電光調變訊號已超過20GHz,如此之結果顯示此種元件有很大的潛力應用在光纖傳輸上。
Abstract

The high-speed performance of the lump-type electroabsorption modulator (EAM) is mainly limited by RC-effect. By taking advantage of the distributive effects, the traveling-wave structure can overcome the RC-lump effect. However, in order to enhance the limitation imposed by the conventional slow-waveguide type of traveling-wave structure, the speed of the device is still mainly restricted by the distributed capacitance of the waveguide. In this work, a novel type of traveling-wave-electroabsorption-modulator based on the undercut-etching the active region is successfully fabricated and measured.
The methods of the processing adopted here is to lower the capacitance by chemical-wet-etching and two-time subsequent undercut etching on active region to further decrease the parasitic capacitance between P-type and N-type cladding layer. Also, the optical scattering loss may be reduced due the smooth sidewall of the waveguide from the wet etching. The whole processing shown in this thesis includes the lift-off technique by lithography, the metalization for n-, p- contacts (by thermal evaporator) and CPW microwave transmission (by e-beam evaporator), and PMGI-planarization.
–15dB optical transmission, –6dB electrical transmission loss and >20GHz 3dB bandwidth of electrical-to-optical response at 50Ωtermination is measured on this kind of devices. It exhibits a high potential on the application of high-speed optical-fiber link in the future.
目錄

目錄………………………………………………………………………………Ⅰ
誌謝………………………………………………………………………………Ⅲ
中文摘要…………………………………………………………………………Ⅴ
英文摘要…………………………………………………………………………Ⅵ
圖表目錄…………………………………………………………………………Ⅶ
第一章 緒論…………………………………………………………………………1
1.1 前言…………………………………………………………………………1
1.2 研究動機……………………………………………………………………1
1.3 論文架構……………………………………………………………………3

第二章 電致吸收光調變器之工作原理……………………………………………4
2.1 載子躍遷……………………………………………………………………4
2.2 Franz-Keldysh Effect概述………………………………………………6
2.3 量子局限史塔克效應(Quantum Confined Stark Effect)………………6
2.3.1 量子局限史塔克位多(Quantum Confined Stark Shift)………………8
2.3.2 電子、電洞波函數的影響…………………………………………………10
2.4 飽合功率………………………………………………………………….11
2.4.1 載子跳脫時間…………………………………………………………..13
2.4.2 載子累積效應及電場屏蔽效應………………………………………….14

第三章 材料結構與元件製程…………………………………………………….16
3.1 材料結構與特性………………………………………………………….16
3.1.1 磊晶結構………………………………………………………………….16
3.1.2 材料特性-光激銀光(PL)特性及光電流特性……………………………18
3.2 元件製程………………………………………………………………….20
3.2.1 方向性測試……………………………………………………………….21
3.2.2 蝕刻液的選擇…………………………………………………………….23
3.2.3 製程步驟………………………………………………………………….24

第四章 製程討論與量測結果…………………………………………………….59
4.1 電特性及相關製程討論………………………………………………….59
4.2 光特性及相關製程討論………………………………………………….63
4.3 電-光特性……………………………………………………………….66

第五章 結論……………………………………………………………………….68

參考文獻…………………………………………………………………………….69
參考文獻

[1] Bernhard Stegmueller, Member, IEEE, Elmar Baur, and Max Kicherer, Student Member, IEEE, “ 15-GHz Modulation Performance of Integrated DFB Laser Diode EA Modulator With Identical Multiple-Quantum-Well Double-Stack Active Layer,” IEEE Photon. Technol. Lett., vol. 14, pp 1647-1649, Dec 2002.

[2] F. Devaux, E. Bigan, A. Ougazzaden, B. Pierre, F. Huet, M. Carre, and A. Carenco “ InGaAsP/InGaAsP Multiple-Quantum-Well Modulator with Improved Saturation Intensity and Bandwidth Over 20GHz” IEEE Photonics Technol. Lett.,VOL4, pp. 720-723, 1992.

[3] D. A. B. Miller, D. s. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus “ Band-Edge Electroabsorption in Quantum Well Structure: The Quantum-Confined Stark Effect” Phys. Rev. Lett. 53, 2173 (1984)

[4] D. A. B. Miller, D. s. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus “ Electric field dependence of optical absorption near the bank gap of quantum-well structures” Phys. Rev., vol. B32, pp. 1043-1060, 1985.

[5] W. Franz, Z. Naturforsch., vol. 13, pp. 484, 1958

[6] L. V. Keldysh, Zh. Eksp. Sov. Phys., vol. JETP7, pp. 788, 1953

[7] J. D. Dow and D. Redfield, “ Electroabsorption in semiconductors: The excitonic absorption edge, ” Phys. Rev. B, Solid State, vol. 1, pp. 3358-3371, 1970.

[8] I. A. Merkulov and V. I. Perel, “ Effects of electron-hole interaction on electroabsorption in semiconductors,” Phys. Lett. A, vol. 45A, pp. 83-84, 1973.

[9] I. Kotaka, K. Sato, K. Wakita, M. Yamamoto, and T. Kataoka, “ High-speed (20 Gb/s) low-drive voltage (2 V/sub p-p/) strained InGaAsP MQW modulator/DFB laser light source,” Electron. Commun. Jpn. 2, Electron. , vol. 78, pp.1-9, 1995.

[10] G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “ Variational calculations on a quantum well in an electric field,” Phys. Rev. B, Condens. Matter, vol. 28, pp. 3241-3245, 1983.

[11] S. Nojima and K. Wakita, “ Optimization of quantum well materials and structures for excitonic electroabsorption effects,” Appl. Phys. Lett., vol. 53, pp. 1958-1960, 1988.

[12] U, Koren, B. I. Miller, T. L. Koch, O. Einsenstein, R. S. Tucker, T. Bar-Joseph, and D. S. Chemla, “ Low-loss InGaAs/InP Multiple Quantum Well optical electroabsorption waveguide modulator,” Appl. Phys. Lett., vol. 54, pp.1132-1134, 1987.

[13] F. Devaux, F. Dorgeuille, A. Ougazzaden, F. Huet, M. Carre, A. Carenco, M. Henry, Y. Sorel, J. F. Kerdiles, and E. Jeannery, “ 20 Gbit/s Operation of a High-Efficiency InGaAsP/InGaAsP MQW Electroabsorption Modulator With 1.2-V Drive Voltage,” IEEE Photonics Technol. Lett., vol 5, pp. 1288-1290, 1993.


[14] M. Suzuki, H. Tanaka, and S. Akiba, “ Effect of hole pile-up at heterointerface on modulation voltage in GaInAsP electroabsorption modulators,” Electron. Lett., vol. 24, pp. 1272-3, 1988.

[15] A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “ Quantum well carrier sweep out: relation to electroabsorption and exciton saturation saturation,” IEEE J. Quantum Electron., vol. 27, pp. 2281-95, 1991.

[16] T. H. Wood, J. Z. Pastalan, Cl. A. Burrus, Jr., B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “ Electric field screening by photogenerated holes in multiple quantum wells: A. new mechanism for absorption saturation,” Appl. Phys. Lett., vol. 57, pp. 1081-1083, 1990.

[17] F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, J. C. Harmand, “ Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/InGaAsP MQw,” Semicond. Sci. Technol, vol. 10, pp. 887-901, 1995.

[18] Fox A M, Miller D A B, Livescu G, Cunnigham J E, and Yan W Y 1991 Quantum well carrier sweep out: relation to electroabsorption and exciton saturation IEEE J. Quantum Electron. 27 2281.

[19] F. Devaux, J.C. Harmand, I.F.L. Dias, T. Guettler, O. Krebs and P. Voisin, “ High power saturation, polarization insensitive electroabsorption modulator with spiked shallow wells” Electronics Letters, vol. 33, pp. 161-163, 1997.
[20] 研究生:陳奕任;指導教授:朱安國博士 “平坦化InGaAsP半導體雷射之製作與應用”國立中山大學光電工程研究所碩士論文,中華民國92年6月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top