跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈彥良
研究生(外文):Yen-liang Shen
論文名稱:應用電子束微影術於格式化半導體基板與光子晶體之研製
論文名稱(外文):Application of Electron-Beam Lithography to the Fabrication of Patterned Semiconductor Substrate and Photonic Crystal
指導教授:賴聰賢張道源張道源引用關係
指導教授(外文):Tsong-sheng LayTao-yuan Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:102
中文關鍵詞:光子晶體格式化半導體基板
外文關鍵詞:Patterned Semiconductor SubstratePhotonic Crystal
相關次數:
  • 被引用被引用:3
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用電子束微影術及電感耦合電漿乾蝕刻機(ICP-RIE),成功地完成格式化半導體基板、分布式布拉格反射鏡(DBR)邊射型雷射、二維光子晶體以及二維光子晶體微m共振腔的製程。我們以自行架設之電子束微影術系統,測試出其最小可寫線寬約50nm,最大可寫範圍為500×500µm2,並成功地定義出各種陣列圖案。接下來利用電子束微影定義出圓洞直徑100nm,間隔為100nm的陣列,並以乾蝕刻製程製作面積為100×100µm2之格式化半導體基板,其中格式化Si基板蝕刻深度為50nm,格式化GaAs基板為20nm,格式化半導體基板將提供成長量子點之用。在研製DBR邊射型雷射部分,各以二對及三對DBR分別成形於雷射共振腔兩側,其中DBR的半導體反射鏡厚度(Ds)皆為209nm,DBR的空氣間隔寬度(Da)分別為240nm與720nm,可在波長960nm達到高反射率。
我們設計具有TE極化不存在的光子能隙之二維光子晶體,結構為空氣圓柱呈三角晶格排列,其對應的波長範圍為936.45nm至968.85nm,圓柱半徑(R)為327nm,晶格常數(A)為742nm。同時在此二維光子晶體中間製作一點缺陷,形成單點缺陷微共振腔,並模擬出缺陷的光場模態。我們也模擬在R為56nm,A為224nm,以及中間的缺陷增加至七個,形成七點缺陷微共振腔後,其光場模態將變為單極模態(monopole mode),對應波長為959.86nm。在DBR邊射型雷射、二維光子晶體與微共振腔的製程上,電子束微影定義圖案後,蒸鍍鉻並將之掀離,利用ICP-RIE深蝕刻至基板。
最後以我們架設的微光激螢光光譜量測系統,初步量測出二維光子晶體與微共振腔在相同的雷射激發功率下,微光激螢光光譜訊號強度在波長960nm時相差4.5倍。二維光子晶體的正規化微光激螢光光譜訊號,在波長860nm到980nm時皆低於0.5,而微共振腔在波長985nm的正規化訊號強度最大,跟製程完成後實際之微共振腔,缺陷模態所對應的波長984nm非常接近。另一方面,室溫下操作的二維光子晶體微共振腔,L-L特性曲線之臨界功率約為5.13到6.81mW,將操作溫度固定在15℃時,臨界功率下降至約1.4到3.13mW。
In this thesis, we successfully fabricated patterned semiconductor substrates, edge-emitting lasers with deeply etched distributed Bragg reflectors (DBRs), two-dimensional photonic crystals (2DPCs) and two-dimensional photonic crystal microcavities (2DPC microcavities) by electron-beam lithography and inductively coupled plasma-reactive ion etching (ICP-RIE). We have obtained a minimum writing linewidth of 50nm and a maximum writing range of 500×500µm2 in our electron-beam lithography system. Pitch arrays of 100nm pitch-diameter and 100nm separation have been formed on 100×100µm2 semiconductor substrates. The etching depth of patterned Si substrates and patterned GaAs substrates are 50nm and 20nm, respectively. In the design of edge-emitting lasers with deeply etched DBRs, two and three pairs of DBRs were formed on the edge of laser cavity, respectively. To obtain high reflectance at wavelength (λ) = 960nm, 209nm mirror width and 240nm or 720nm air gap were fabricated.
In the design of 2DPCs, a triangular array of air columns was adopted. The lattice constant (A) and column radius (R) are 742nm and 327nm, respectively. It has a band gap for TE modes corresponding to wavelength range in 936.45nm~968.85nm. We placed single defect in the 2DPCs to form 2DPC microcavities. In addition, we simulated the photonic band structure of a seven-defect 2DPC microcavity with A = 224nm and R = 56nm. We obtained a monopole defect mode at λ = 959.86nm.
To measure 2DPCs and 2DPC microcavities, we have set up a micro-photoluminescence (Micro-PL) spectrum measurement system. We observed the Micro-PL intensity of the 2DPC microcavity is 4.5 times larger than 2DPCs at λ = 960nm in the same pumping power. The 2DPC microcavities show a lasing performance under optical pumping. The threshold power of 2DPC microcavities is 5.13mW~6.81mW at room temperature and decreases to 1.4mW~3.13mW at 15℃.
第一章 緒論..............................................1
1-1 前言..........................................1
1-2 格式化半導體基板..............................1
1-3 光子晶體.............................................2
1-3-1 一維光子晶體....................................3
1-3-2 二維光子晶體....................................4
1-4 論文架構.............................................4

第二章 儀器架構及原理....................................5
2-1 電子束微影術的原理...................................5
2-1-1 歷史背景........................................5
2-1-2 基本原理........................................5
2-1-3 儀器架構........................................6
2-1-4 鄰近效應........................................7
2-2 電子束微影術的實驗結果..............................10

第三章 元件設計與模擬...................................18
3-1 光子晶體的特性與理論................................18
3-1-1 光子能隙.......................................18
3-1-2 光子晶體中的缺陷...............................19
3-1-3 光子晶體理論...................................20
3-2 元件設計與模擬結果..................................21
3-2-1 DBR邊射型雷射..................................21
3-2-2 二維光子晶體...................................30

第四章 元件製程.........................................51
4-1 製程流程圖..........................................51
4-2 製程示意圖..........................................52
4-2-1 格式化半導體基板...............................52
4-2-2 二維光子晶體與DBR邊射型雷射....................53
4-3 製程步驟與實驗結果..................................53
4-3-1 格式化半導體基板...............................53
4-3-2 二維光子晶體與DBR邊射型雷射....................66

第五章 量測結果與分析...................................76
5-1 微光激螢光光譜量測系統架構..........................76
5-2 量測結果與分析......................................81

第六章 結論.............................................95

參考文獻................................................97
[1] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Applied Physics Letters, vol. 40, no. 11, p. 939, 1982.
[2] M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing over 40 Gbit/s,” Japanese Journal of Applied Physics, vol. 40, part 2, no. 5B, p. L488, 2001.
[3] Y. Sugimoto, N. Ikeda, N. Carlesson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” Journal of Applied Physics, vol. 91, no. 3, p. 922, 2002.
[4] H. Nakamura, S. Nishikawa, S. Kohmoto, K. Kanamoto, and K. Asakawa, “Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements,” Journal of Applied Physics, vol. 94, no. 2, p. 1184, 2003.
[5] K. Nishi, H. Saito, and S. Sugou, “A narrow photoluminescence linewidth of 21 meV at 1.35 µm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Applied Physics Letters, vol. 74, no. 8, p. 1111, 1999.
[6] K. Yamaguchi, K. Yujobo, and T. Kaizu, “Stranski-Krastanov growth of InAs quantum dots with narrow size distribution,” Japanese Journal of Applied Physics, vol. 39, part 2, no. 12A, p. L1245, 2000.
[7] Choongseop Lee, and Albert-László Barabási, “Spatial ordering of islands grown on patterned surfaces,” Applied Physics Letters, vol. 73, no. 18, p. 2651, 1998.
[8] W. Seifert, N. Carlsson, A. Petersson, L.-E. Wernersson, and L. Samuelson, “Alignment of InP Stranski–Krastanow dots by growth on patterned GaAs/GaInP surfaces,” Applied Physics Letters, vol. 68, no. 12, p. 1684, 1996.
[9] H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, “Strain-engineered self-assembled semiconductor quantum dot lattices,” Applied Physics Letters, vol. 78, no. 1, p. 105, 2001.
[10] E. Kuramochi, J. Temmyo, T. Tamamura, and H. Kamada, “Perfect spatial ordering of self-organized InGaAs/AlGaAs box-like structure array on GaAs (311)B substrate with silicon nitride dot array,” Applied Physics Letters, vol. 71, no. 12, p. 1655, 1997.
[11] Y. Nakamura, O. G. Schmidt, N. Y. Jin-Phillipp, S. Kiravittaya, C.
Müller, K. Eberl, H. Gräbeldinger, and H. Schweizer, “Vertical alignment of laterally ordered InAs and InGaAs quantum dot arrays on patterned (001) GaAs substrates,” Journal of Crystal Growth, vol. 242, p. 339, 2002.
[12] S. Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, “Site-controlled self-organization of individual InAs quantum dots by scanning tunneling probe-assisted nanolithography,” Applied Physics Letters, vol. 75, no. 22, p. 3488, 1999.
[13] Y. Nakamura, N. Ikeda, S. Ohkouchi, Y. Sugimoto, H. Nakamura, and K. Asakawa, “Two-dimensional InGaAs quantum-dot arrays with periods of 70–100nm on artificially prepared nanoholes,” Japanese Journal of Applied Physics, vol. 43, no. 3A, p. L362, 2004.
[14] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[15] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[16] E. Yablonovitch, “How to be truly photonic,” Science, vol. 289, p. 557, 2000.
[17] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, p. 143, 1997.
[18] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, p. 608, 2000.
[19] O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, p. 1819, 1999.
[20] K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technology Letters, vol. 7, p. 1119, 1995.
[21] T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama, and K. Iga, “A novel short-cavity laser with deep-grating distributed Bragg reflectors,” Japanese Journal of Applied Physics, vol. 35, part 1, no. 2B, p. 1390, 1996.
[22] E. Höfling, R. Werner, F. Schäfer, J. P. Reithmaier, and A. Forchel, “Short-cavity edge-emitting lasers with deeply etched distributed Bragg mirrors,” Electronics Letters, vol. 35, no. 2, p. 154, 1999.
[23] E. Höfling, F. Schäfer, J. P. Reithmaier, and A. Forchel, “Edge-emitting GaInAs-AlGaAs microlasers,” IEEE Photonics Technology Letters, vol. 11, no. 8, p. 943, 1999.
[24] M. Ariga, Y. Sekido, A. Sakai, T. Baba, A. Matsutani, F. Koyama, and K. Iga, “Low Threshold GaInAsP Lasers with Semiconductor/Air Distributed Bragg Reflector Fabricated by Inductively Coupled Plasma Etching,” Japanese Journal of Applied Physics, vol. 39, part 1, no. 6A, p. 3406, 2000.
[25] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photonics Technology Letters, vol. 12, no. 9, p. 1126, 2000.
[26] 陳宏賓,“應用電子束微影術於電制吸收光調變器之研製”,國立中山大學光電工程研究所碩士論文,2003.
[27] F. Murai, J. Yamamoto, H. Yamaguchi, S. Okazaki, K. Sato, and H. Hayakawa, “High-speed single-layer-resist process and energy- dependent aspect rations for 0.2μm electron-beam lithography,” Journal of Vacuum Science Technology, B12, p. 3874, 1994.
[28] http://nano.nchc.gov.tw
[29] 蔡雅芝,“淺談光子晶體”,物理雙月刊,二十一卷,四期,p. 445,1999.
[30] R. Jambunathan, and J. Singh, “Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 7, p. 1180, 1997.
[31] T. Takagi, “Refractive index of Ga1-xInxAs prepared by vapor-phase epitaxy,” Japanese Journal of Applied Physics, vol. 17, no. 10, p. 1813, 1978.
[32] S. Adachi, “GaAs, AlAs, and AlxGa1–xAs Material parameters for use in research and device applications,” Journal of Applied Physics, vol. 58, no. 3, p. R1, 1985.
[33] D. D. Sell, H. C. Casey Jr., and K. W. Wecht, “Concentration dependence of the refractive index for n- and p-type GaAs between 1.2 and 1.8 eV,” Journal of Applied Physics, vol. 45, no. 6, p. 2650, 1974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top