跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張竣飲
研究生(外文):Chun-Ying Chang
論文名稱:電制吸收光調變器磊晶成長及DLTS系統
論文名稱(外文):InP-Based Electro-Absorption Modulator Structures Grown and DLTS System
指導教授:賴聰賢張道源張道源引用關係
指導教授(外文):Tsong-Sheng LayTao-Yuan Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:106
中文關鍵詞:電制吸收光調變器深層缺陷暫態頻譜系統
外文關鍵詞:Electro-Absorption Modulator (EAM)Deep-Level Transient Spectroscopy (DLTS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩大部份。論文第一部份在設計與量測電制吸收光調變器磊晶結構。我們所設計的磊晶結構分別為:1.5�慆波段的對稱式、非對稱式垂直電場(TE)極化量子井與極化不敏感量子井結構;TE極化量子井結構模擬的部分,當電場的變化由-40kV/cm到-120kV/cm時,其波長紅移量分別為47nm與60nm;極化不敏感多重量子井結構的設計結果部分,則利用Tensile Strained Quantum-Well 的概念,使得該結構在不同電場下對TE及垂直磁場(TM)的極化光,有相同的躍遷能量與吸收。
論文第二部份在建立深層缺陷暫態頻譜系統(DLTS)。我們量測了兩個含氮量不同之InGaAsN/GaAs量子井結構樣品: TR578 (In0.32Ga0.68AsN0.03)與TR581 (In0.32Ga0.68AsN0.05)。在不同偏壓、脈衝寬度及速率窗條件下,其DLTS訊號均呈現二個主要電洞缺陷,峰值對應之溫度分別為TR578之H1 (T=120~150K)與H2 (T=160~200K),TR581之H1* (T=130~145K)與H2* (T=160~200K)。我們分析它們的活化能、捕捉截面積、濃度及放射速率並與文獻中記載位於GaAs及InGaAsN塊材(bulk)之電洞缺陷作比較,雖有溫度範圍與活化能值相近之電洞缺陷,但本實驗之電洞放射速率較之塊材者則有10~100倍。我們亦分析DLTS訊號可能由量子井本身捕放電洞所產生之情形,因而利用量子井的Arrhenius Plot分析方式重新計算H1、H2、H1*與H2*之活化能值,再藉由位障區為GaAs材料,井區為In0.32Ga0.68AsN材料之模型計算電洞次能帶,我們發現H1及H1*之活化能(ΔE~0.29eV)與H2及H2*之活化能(ΔE~0.34eV)分別與InGaAsN/GaAs量子井中hh2與hh1 subband 之解離能相近。
The thesis includes two aspects. The first part includes designs and optical study of electro-absorption modulator structures. Three structures are designed near 1.5�慆 : symmetric, asymmetric multiple quantum well (MQW) of TE polarization, and polarization insensitive MQW. For symmetric and asymmetric MQWs, their red-shift are 47 nm and 60 nm, respectively, as the electric field decreases from -40 kV/cm to -120 kV/cm. For polarization insensitive quantum well, we use the tensile strained quantum-well concept to achieve the same transition energy and absorption for TE and TM polarizations.
The second part is establishing the DLTS system. We have measured two samples of InGaAsN/GaAs single quantum well (SQW) structures. They are TR578 (In0.32Ga0.68AsN0.03) and TR581 (In0.32Ga0.68AsN0.05). In both samples we observed two main hole traps respectively under different reverse bias, pulse width and rate window. They are assigned to H1 and H2 in TR578, and H1* and H2* in TR581. The temperature range of H1 is 120K~150K and H2 is 160K~200K. The temperature range of H1* is 130K~145K and H2* is 160K~200K. We analyzed the activation energy, capture cross section, concentration and emission rate of the traps, and compared the data with the hole traps found in GaAs and InGaAsN bulk materials. Although there are hole traps with similar activation energies and temperature ranges, their emission rates are 10 to 100 times smaller than those we measured. We also analyzed the case of the DLTS signal from the nature of InGaAsN quantum well (QW). We used the Arrhenius Plot analysis for QW and recalculated the activation energies. We found that the activation energies of H1 and H1* (ΔE~0.29eV) are close to the calculated hh2 ionization energy, and the activation energies of H2 and H2* (ΔE~0.34eV) are close to hh1 ionization energy.
第一章 EAM簡介 1
第二章 EAM原理 3
2-1 二維量子井 3
2-2 量子侷限史塔克效應 4
2-3 極化不敏感 5
2-4 材料系統 7
第三章 EAM結構設計與模擬 9
3-1 TE 極化多重量子井 9
3-1-1 TE極化對稱式量子井結構 9
3-1-2 TE極化非對稱式量子井結構 12
3-1-3 TE極化量子井結構設計比較 12
3-2 極化不敏感多重量子井 15
3-2-1 應變平衡的極化不敏感多重量子井設計 15
3-2-2 補償量子井的設計 18
第四章 EAM結果與討論 22
4-1 TE極化對稱式量子井結構 23
4-1-1 X-Ray Diffraction 23
4-1-2 光激螢光光譜 24
4-1-3 光電流光譜圖 25
4-2 TE極化非對稱式量子井結構 26
4-2-1 X-Ray Diffraction 26
4-2-2 光激螢光光譜 27
4-2-3 光電流光譜圖 28
第五章 DLTS簡介 29
第六章 DLTS量測原理 31
6-1 缺陷動態動作機制(Trap Dynamics) 32
6-2 電容暫態響應 35
6-3 缺陷參數決定 41
6-4 缺陷的捕捉特性 44
6-5 The Poole-Frenkel effect 46
6-6 量子井似缺陷的載子動態行為 47
第七章 樣品備製與DLTS系統簡述 48
7-1 樣品製作流程 49
7-1-1 TR581 樣品製作流程 49
7-1-2 TR578 樣品製作流程 50
7-2 DLTS量測系統簡述 51
7-2-1 DLTS UNIT 52
7-3 實驗流程 53
第八章 DLTS量測結果與討論 54
8-1 TR578量測結果分析與討論 55
8-1-1 電流-電壓、電容-電壓曲線 55
8-1-2 TR578捕捉暫態 59
8-1-3 TR578 多數載子放射暫態 62
8-1-4 TR578 少數載子放射暫態 73
8-1-5 使用量子井參數分析 76
8-2 TR581量測結果分析與討論 79
8-2-1 電流-電壓、電容-電壓曲線 79
8-2-2 TR581捕捉暫態 82
8-2-3 TR581多數載子放射暫態 87
8-2-4 TR581 少數載子放射暫態 95
8-2-5 使用量子井參數分析 97
8-3 TR578與TR581綜合比較 98
第九章 結論 101
9-1 EAM結論 101
9-2 DLTS結論 102
參考文獻 104
[1]M.G. Young, U. Koren, B.I. Miller, M. Chien, T.L. Koch, D.M. Tennant, K. Dreyer and G. Raybon, “Six Wavelength laser array with integrated amplifier and modulator” Electronics Letters, Vol.3, No.21, pp.1835-1836, Oct. 1995.
[2]D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood and C.A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect” Physical Review Letters, Vol.53, No.22, pp.2173-2176, Nov. 1984.
[3]Y. Chen, J.E. Zucker, N.J. Sauer, and T.Y. Chang, “Polarization- Independent Strained InGaAs/InGaAlAs Quantum-Well Phase Modulators” IEEE Technology Photonics Letters, Vol.4, No.10, pp.1120-1123, Oct. 1992.
[4]G. Bastard, E.E. Mendez, L.L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field” Phys. Rev. B, Vol.28, No.6, pp.3241-3245, 1983.
[5]S. Chelles, R. Ferreira, and P. Voisin, J.C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells” Appl. Phys.Lett, Vol.67, pp.247-249, July 1995.
[6]Nacer Debber and Pallab Bhattacharya, “Carrier dynamics in quantum wells behaving as giant traps” J. Appl. Phys, Vol.62, pp.3845-3847, Nov. 1987.
[7]Liwu Lu, J. Wang, Y. Wang, Weikun, Guowen Yang and Zhanguo Wang, “Conduction-band offset in a pseudomorphic GaAs/In0.2Ga0.8As quantum well determined by capacitance-voltage profiling and deep-level transient spectroscopy techniques” J. Appl. Phys, Vol.83, pp.2093-2097, Feb. 1998.
[8]K.L. Jiao and W.A. Anderson, “Trap behavior in nonintentionally doped AlGaAs/GaAs single quantum well structures” J. Appl. Phys, Vol.73, pp.271-276, Jan. 1993.
[9]X. Letartre and D. Stievenard, “Accurate determination of the conduction-band offset of a single quantum well using deep level transient spectroscopy” Appl. Phys. Lett, Vol.58, pp.1047-1049, Mar. 1991.
[10]A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.A. Chelniy, A.G. Milnes, Xiaolei Li, B.M. Leiferov, A.N. Aluev, “Conduction band offsets in InGaAlP/InGaPheterojunctions as measured by DLTS” Materials Science and Engineering B39, pp.79-81, 1996.
[11]O. Chretien, R.Apetz, L. Vescan, A. Souifi, H. Luth, “Capture, Storage, and emission of holes in Si/Si1-xGex/Si QW''s for the determination of the valence band offset by DLTS” Applied Surface Science 102, pp.237-241, 1996.
[12]D.V. Lang, “Deep-level transient spectroscopy: A new method to
characterize traps in semiconductors” J. Appl. Phys, Vol.45, pp.3023-3032, July 1974.
[13]Masahiko Kondow, Kazuhisa Uomi, Atsuko Niwa, Takeshi Kitatani, Seii Watahiki and Yoshiaki Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance” Jpn. J. Appl. Phys, Vol.35, pp.1273-1275, Feb. 1996.
[14]R. Darwich and B. Massarani, “Effect of fill-pulse parameters on
deep-level transient spectroscopy peaks in highly doped p-type InP” J. Appl. Phys, Vol.88, pp.794-799, July 2000.
[15]E. Fred Schubert, Doping in III-V Semiconductors, p.75. 1993.
[16]P.F. Baude, M.A. Haase, G.M. Haugen, K.K. Law, T.J. Miller, K.Smekalin, J. Phillips and P. Bhattacharya, “Conduction band offsets in CdZnSSe/ZnSSe single quantum wells measured by deep level transient spectroscopy” Appl. Phys. Lett, Vol.68, pp.3591-3593, June 1996.
[17]E. Fred Schubert, Doping in III-V Semiconductors, p.59. 1993.
[18]R.J. Kaplar and S.A. Ringel, “Deep-level in InGaAsN grown by
molecular-beam epitaxy” Appl. Phys. Lett, Vol.80, pp.4777-4779, June 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top