跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊江源
研究生(外文):Chiang-Yuan Chuang
論文名稱:摻鉻釔鋁石榴石超頻寬晶體光纖放大器之研製
論文名稱(外文):The Study of Super-Wideband Optical Amplifier Based on Cr4+:YAG Crystal Fiber
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:65
中文關鍵詞:光放大器晶體光纖摻鉻釔鋁石榴石
外文關鍵詞:optical amplifierchromium doped yttrium aluminum garnetcrystal fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在最近十年以來,由於光通訊的快速成長與需求,傳輸資訊量每年皆以倍數成長。由於消除OH-離子光纖的發展,使得可傳輸的波長擴展為1.3 �慆~1.6 �慆的低損耗波段,而伴隨著光纖通訊的需求急速增加,亦發展出分波多工技術,這樣的光學傳輸網路系統也使得光學元件的光譜頻寬需求也跟著變大。

Cr4+:YAG晶體光纖,其3T2→3A2之自發輻射光譜涵蓋了1.3μm ~1.6μm的範圍,包含光通訊的O、E、S、C、L波段,且其吸收頻譜在0.9μm~1.2μm波長範圍內,與目前摻鉺光纖放大器0.98μm激發光源相容,非常適合於超頻寬晶體光纖放大器之應用。

本論文將LHPG方法生長的Cr4+:YAG晶纖,長度為60.9 mm,以光纖熔燒機將雙纖衣Cr4+:YAG晶體光纖與通訊用之單模矽光纖熔燒接合,-20 dBm 的1520 nm訊號光在0.8 W的1064 nm光源激發下,產生10 dB的增益,此超頻寬光放大器的3 dB頻寬,預計約為265 nm。而未來我們將針對較小的纖心直徑、較長的晶纖、較高的Cr4+摻雜濃度雙纖衣Cr4+:YAG晶纖等因素加以改善,並利用鍍二氧化矽的端面進行熔燒達到更小的熔燒損耗,以期望能得到更高的增益。
Abstract
During the last decade, the maximum capacity of an optical fiber transmission line more than doubled every year to match the fast-growing communication need. The technology break through in dry fiber fabrication opens the possibility for fiber bandwidth all the way from 1.3 �慆 to 1.6 �慆. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology. In consequence, it raises the requirement of spectral bandwidth of all the optical components used in the optical transport networking systems.

Cr4+:YAG has potential to meet this demand because its 3T2→3A2 transition has a strong spontaneous emission that just covers the O, E, S, C, and L bands in optical fiber communication. Besides, the absorption spectrum is between 0.9 �慆 to 1.2 �慆 which matchs the pumping source in Er doped optical amplifiers. Such a fiber is, therefore, eminently suitable for super-wideband optical amplifier applications.

We have successfully fused a double cladding Cr:YAG crystal fiber with a single mode fiber by fusion splicer. The crystal fibers are grown by the laser-heated pedestal growth technique. Using a 60.9 mm-long Cr:YAG single crystal fiber as the gain medium and a -20 dBm, 1520 nm signal light, 10 dB gain was achieved with a 0.83 W, 1064 nm pump light. The 3-dB width of the super-wideband optical amplifier was expected to be 265 nm. In the future, to further increase the gain we will reduce the core diameter, lengthen the fiber, and increase the Cr4+ doping concentration. SiO2 coating at the fiber faces will also be tried to reduce the fusion loss.
目錄
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
第二章 Cr:YAG的晶體特性 6
2.1 Cr:YAG的晶體特性分析 6
2.2 Cr:YAG的能階模型與吸收及放射頻譜 9
2.3 Cr:YAG的生長方法
13
第三章 Cr:YAG超頻寬晶體光纖放大器之研製 19
3.1 Cr:YAG晶體光纖端面之研磨拋光 19
3.2 Cr:YAG晶體光纖與單模光纖之熔接 23
3.2.1 光纖熔燒機 23
3.2.2 光纖熔燒參數 28
3.2.3 Cr:YAG晶體光纖之熔燒與包覆 31
第四章 Cr:YAG超頻寬晶體光纖放大器之量測 35
4.1 Cr:YAG晶體光纖熔接後之檢測 35
4.1.1 反射損耗量測 35
4.1.2 插入損耗量測 39
4.2 增益量測實驗架構與結果 41
4.3 雙邊熔燒Cr:YAG晶纖之量測 46
4.3.1 雙邊熔燒及特性量測 46
4.3.2 雙邊熔燒Cr:YAG晶纖ASE量測 47
第五章 結論 49
參考文獻 51
中英對照表 54
[1] D. W. Hewak, “Progress towards a 1300 nm fiber amplifier,” New Developments in Optical Amplifiers (Ref. No. 1998/492), IEE Colloquium, Vol. 26, pp. 12/1-12/5, 1998.
[2] S. Q. Man, H. W. Liu, Y. H. Wong, E. Y.B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 �慆 optical amplifiers,” Lasers and Electro-Optics Society (LEOS) Annual Meeting, Vol. 1, pp.196-197, 1998.
[3] S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42 %,” Optical Fiber Communication (OFC) Conference, Vol. 4, pp. PD1-1 - PD1-3, 2001.
[4]Y. Miyajima, T. Kamukai, and T. Sugawa, “1.31-1.36�慆 optical amplification in Nd3+-doped fluorozirconate fiber,” Electron. Lett., Vol. 26, pp. 194-195, 1990.
[5]G. P. Agrawal and N. K. Dutta, “Long-Wavelength Semiconductor lasers,” New York: Van Nostrand Reinhold, 1986. Ch3.
[6]A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical networks,” Optics & Photonics News, pp. 37-42, March 2001.
[7]Mohammed N. Islam, “Raman Amplifiers for Telecommunications,” IEEE J. Quant. Electron., Vol. 8, No. 3, pp. 548-559, May/June 2002.
[8]E. Desurvire, “Erbium-Doped Fiber Amplifiers. Principles and Applications,” New York: Wiley, 1994. Ch4.
[9]S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” New York: Wiley, 1994. Ch2.
[10]Y. Shi and O. Poulsen, “High-power broadband single mode Pr3+-doped fiber superfluoresc-ence light source,” Electron. Lett., Vol. 29, No. 22, pp. 1945-1946, 1993.
[11]R. S. Feigelson, W. L. Kway, and R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng., Vol. 24, pp. 1102-1107, 1985.
[12]J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Report NASA-CR-120948, May 1972.
[13]C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett., Vol. 26, pp. 318-320, 1975.
[14]M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt., Vol. 24, pp. 2362-2368, 1985.
[15]S. Sudo, A. Cordova-Plaza, R. L.Byer, and H. J. Shaw, “MgO: LiNbO3 single-crystal fiber with magnesium-ion In-diffused cladding,” Opt. Lett., Vol. 12, pp. 938-940, 1987.
[16]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated prdestal growth method,” J. Crystal Growth, Vol. 183, pp. 614-621, 1998.
[17]S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” OSA Trends in Optics and Photonics, 34, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds. (Optical Society of America, Washington, DC), pp. 426-430, 2000.
[18]Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glass,” J. of Alloys and compounds, Vol. 341, pp. 19-27, 2002.
[19]U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[20]S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip lasers,” Technical Digest, Conference on Lasers and Electro-Optics, pp. 120-121, 2002.
[21]J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett., Vol. 24, No. 22, pp. 1575-1577, 1999.
[22]S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proceedings on Advanced Solid-State Lasers, Vol. 10, pp. 92-94, 1991.
[23]A. A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[24]S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano, and Y. Tsuchiya, “Tunable picosecond all solid-state Cr:LiSAF laser, " IEEE, IMTC’94, pp. 937-940, 1994.
[25]Y.K. Kuo, M.F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[26]Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and laser oscillation characteristics of high Cr4+-doped forsterite,” IEEE J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[27]S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[28]A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am., Vol. 18, No. 11, pp. 1578-1586, 2001.
[29]G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., Vol. 56, pp. 108-110, 1990.
[30]L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Opt. Lett., Vol. 13, pp. 877-879,1988.
[31]R. S. Feigelson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science, Vol. 240, pp. 1642-1645, 1988.
[32]張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,1993年。
[33]W. Zheng, O. Hulten, and Mats Bengtsson, “Lens-effect tracing technique aligns and splices polarization-maintaining fiber,” IEEE J. Lightwave Tech., pp. 48-53, Nov. 1988.
[34]W. Zheng, O. Hulten, and R. Rylander, “Erbium-doped fiber splicing and splice loss estimation,” IEEE J. of Lightwave Techn., Vol. 12, No. 3, pp. 430-435, March 1994.
[35]H. Y. Tam, “Simple fusion splicing technique for reducing splicing loss between standard single mode fibers and erbium-doped fiber,” Electron Lett., Vol. 27, pp. 1597-1599, Aug. 1991.
[36]J. Peacock, J. Scarfe, J. Reid, and S. R. Mallinson, “Field measurement of fusion splice loss using pulse reflection method,” Electron Lett., Vol. 25, pp. 602-603, Aug. 1989.
[37]G. M. Davis, I. Yokohama, S. Sudo, and K. Kubodera, “1.3-�慆 Nd:YAG crystal fiber amplifiers,” IEEE Photonics Technology Letters, Vol. 3, No. 5, pp. 459-461, May 1991.
[38]C. J. Koester, and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt., Vol. 3, No. 10, pp. 1182-1186, October 1964.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊