跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴建智
研究生(外文):Chien-Chih Lai
論文名稱:摻鉻釔鋁石榴石晶體光纖雷射之研製與其微結構分析
論文名稱(外文):The Study and Fabrication of Cr4+:YAG Crystal Fiber Laser and its Microstructure Analysis
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:129
中文關鍵詞:電子顯微鏡摻鉻釔鋁石榴石晶體光纖微結構
外文關鍵詞:laserCr:YAGcrystal fiberTEMmicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
對於1300至1600 nm光通訊波段,Cr4+離子成為最佳活性離子之選擇,且已被用於掺雜於各種主材而開發出許多種雷射,包含Cr4+:forsterite、Cr4+:Y2SiO5與Cr4+:YAG (yttrium aluminum garnet),其中由於YAG本身熱、光優越的特性,使之成為最佳雷射主材之一,但將Cr4+:YAG抽成光纖後,其材料特性及微結構之了解仍極為有限。
本論文利用LHPG (laser-heated pedestal growth)法來生長高品質的Cr4+:YAG晶體光纖。藉由此系統之容易更換生長參數的特性,我們可以成功地生長出不同生長速度與不同纖心直徑之Cr4+:YAG晶體光纖。並以fused-silica玻璃包覆Cr4+:YAG共同生長技術,可得到具有內(YAG+SiO2)、外(SiO2)層纖衣波導結構之Cr4+:YAG晶體光纖,其纖心直徑最小為11 mm,故有關Cr4+:YAG晶體光纖之製程與雷射元件之機械製備和其光學鍍膜設計等在本文中將作詳細說明。
然而為了更了解此種晶體光纖之顯微結構及其於不同生長參數下的變化,本論文亦將藉由高解析穿透式電子顯微鏡(high-resolution transmission electron microscopy;HRTEM)來觀察單、雙層纖衣結構之Cr4+:YAG晶體光纖,其中HRTEM影像提供於內、外層纖衣介面與纖心之奈米尺度微結構資訊,並進一步分析Cr4+:YAG晶體光纖於生長時之擴散過程與不同生長速度對擴散過程之關係。此外,本文亦藉由EPMA(electron-probe micro-analyzer)與EDX(energy dispersive X-ray spectrometer)量測來了解單、雙層纖衣結構晶體光纖中之CaO與Cr2O3掺雜濃度分佈,並配合Cr4+螢光強度量測來研究其與微結構及掺雜濃度之關係。
ABSTRACT
For the generation of broadband tunability over 1300 nm to 1600 nm range in optical communications, Cr4+ ions have been demonstrated in a number of hosts including Cr4+:forsterite, Cr4+:Y2SiO5, and Cr4+:YAG. Since YAG is a cubic crystal with Ia-3d space group, its excellent thermal and optical properties has drawn extensive studies. In recent years, various modes of operation using Cr4+:YAG as laser gain medium have been achieved since the first tunable CW laser of Cr4+:YAG bulk gain medium was demonstrated by Shestakov, et al in 1988.
Experimentally, the Cr4+:YAG crystal fiber was grown by the laser-heated pedestal growth (LHPG) method which provides outstanding crystal quality and can easily change growth conditions, such as growth speed and core diameter. A double cladding technique was developed with pure YAG, silica/YAG mixture, and pure silica as the core, inner cladding, and outer cladding, respectively. The smallest core diameter we achieved is 11 mm. In this thesis, the fabrication process of the Cr4+:YAG crystal fiber laser involving crystal fiber growth, sample preparation, and coating design will be presented in detail.
In order to understand the relation between the microstructure of Cr4+:YAG crystal fibers and the growth conditions, high-resolution transmission electron microscopy (HRTEM) was employed, which reveals the nano-scale information in the core region, the inner-outer cladding interface, and the mechanism of inter-diffusion process during growth. In addition, the thesis also describes the specimen preparation procedures of crystal fibers for the HRTEM analysis. Furthermore, quantitative analysis of Cr4+:YAG crystal fiber was employed by electron-probe micro-analyzer (EPMA) and energy dispersive X-ray spectrometer (EDX), showing accurate characterization of the constitute elements and concentrations. The comparison of Cr4+ fluorescence and dopant concentration of CaO and Cr2O3 will also be presented in this thesis.
目錄
中文摘要i
英文摘要ii
目錄iii
圖目錄v
表目錄ix

第一章 晶體光纖簡介1
1.1 可調波長之固態雷射1
1.2 Cr4+:YAG雷射歷史回顧4
1.3 晶體光纖之應用7
1.4 論文簡介9
第二章 Cr4+:YAG晶體光纖特性11
2.1 YAG晶體結構11
2.2 電荷補償14
2.3 能階模型16
2.4 晶纖中之傳輸19
2.5 結論22
第三章 Cr4+:YAG晶體光纖雷射元件製作23
3.1 雷射加熱提拉生長法23
3.2 Cr4+:YAG晶體光纖之生長28
3.3 元件之機械製備30
3.3.1 銅鋁及錫鉛合金包覆30
3.3.2 研磨、拋光34
3.4 結論38
第四章 Cr4+:YAG晶體光纖雷射39
4.1 雷射共振腔架構39
4.2 光學鍍膜41
4.3 雷射架構45
4.4 總結49
第五章 Cr4+:YAG晶體光纖之微結構分析51
5.1 TEM基本原理51
5.1.1 TEM構造51
5.1.2 電子源與電子槍52
5.1.3 TEM成像系統56
5.2 EDX基本原理58
5.2.1 EDX簡介58
5.2.2 半導體偵測器60
5.2.3 定性與定量分析61
5.3 Cr4+:YAG晶體光纖之TEM試片製作64
5.3.1 鑲埋64
5.3.2 機械減薄64
5.3.3 離子束減薄66
5.4 高解析TEM分析結果71
5.4.1 單層纖衣與雙層纖衣之微結構分析72
5.4.2 Cr4+:YAG晶體光纖之化學組成77
5.4.3 雙層纖衣結構之相互擴散機制83
5.4.4 纖心與內層纖衣結晶顆粒之分析86
5.4.5 雙層纖衣於不同生長速度之微結構比較95
5.5 總結104
第六章 結論105

參考文獻108
中英對照表114
參考文獻
第一章 晶體光纖簡介
[1]T.H. Maiman, "Stimulated optical radiation in ruby lasers," Nature, 187, 493 (1960).
[2]J.E. Geusic, H.M. Marcos, and L.G. Van Uitert, "Laser Oscillation in Nd-Doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets," Applied Physics Letters, 4, 182 (1964).
[3]P.P. Sorokin, and M.J. Stevenson, "Stimulated Infrared Emission from Trivalent Uranium," Physical Review Letters, 5, 557 (1960).
[4]E. Snitzer, "Optical Maser Action of Nd3+ in a Barium Crown Glass," Physical Review Letters, 7, 444 (1961).
[5]P.F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," Journal of the Optical Society of America B, 3, 125 (1986).
[6]P. Lacovara, L. Esterowitz, and R. Allen, "Flash-lamp-pumped Ti:Al2O3 laser using fluorescent conversion," Optics Letters, 10, 273 (1985).
[7]J.F. Pinto, L. Esterowitz, G.H. Rosenblatt, M. Kokta, and D. Peressini, "Improved Ti:sapphire laser performance with new high figure of merit crystals," IEEE Journal of Quantum Electronics, 30, 2612 (1994).
[8]L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE Journal of Quantum Electronics, 32, 885 (1996).
[9]G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Schaffers, J.-O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+ ZnSe laser," Optics Letters, 24, 19 (1999).
[10]J.C. Walling, H.P. Jenssen, R.C. Morris, E.W. O’Dell, and D.G. Peterson, "Tunable-laser performance in BeAl2O:Cr3+," Optics Letters, 4, 182 (1979).
[11]S.A. Payne, L.L. Chase, H.W. Newkirk, L.K. Smith, and W.F. Krupke, "LiCaAlF6:Cr3+: a promising new solid-state laser material," IEEE Journal of Quantum Electronics, 24, 2243 (1988).
[12]S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, and H.W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," Journal of Applied Physics, 66, 1051 (1989).
[13]V. Petricevic, S.K. Gayen, and R.R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?," Applied Physics Letters, 53, 2590 (1988).
[14]N.B. Angert, N.I. Borodin, V.M. Garmash, V.A. Zhiynyuk, A.G. Okhrimchuck, O.G. Siyuchenko, and A.V. Shestakov, "Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 mm," Soviet Journal of Quantum Electronics, 18, 73 (1988).
[15]B.H.T. Chai, Y. Shimony, C. Deka, X.X. Zhang, E. Munin, and M.Bass, "Polarizing spectroscopy of Y3Al5O12, SrAl2O4, and CaAl2O4 crystals containing Cr4+," in OSA proceedings on advanced solid state lasers, (OSA, Washington D.C.), 13, 28 (1992).
[16]N.I. Borodin, V.A. Zhitnyuk, A.G. Okhrimchuk, A.V. Shestakov, andIzvestiya Akademii Nauk, "Oscillation of aY3Al5O12:Cr4+ laser in wave length region of 1.34-1.6 mm," SSSR, Seriya Fizicheskaya, 54, 1500 (1990).
[17]P.M.W. French, N.H Rizvi, J.R. Taylor, and A.V. Shestakov, "Continuous-wave mode-locked Cr4+:YAG laser," Optics Letters, 18, 39 (1993).
[18]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Continuous-wave self-mode-locked operation of Cr4+:YAG laser," Optics Letters, 19, 390 (1994).
[19]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Efficient continuous-wave chromium-doped YAG laser," Journal of the Optical Society of America B, 12, 930 (1995).
[20]S. Ishibashi, K. Naganuma, and I. Yokohama, "Cr, Ca:Y3Al5O12," Journal of Crystal Growth, 183, 614 (1998).
[21]I,T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser," Optics Letters, 24, 1578 (1999).
[22]S. Ishibashi, and K. Naganuma, "Diode pumped Cr4+:YAG single crystal fiber laser," in Advanced Solid-State Lases, OSA Technical Digest, Davos, Switzerland, 103 (2000).

第二章 Cr4+:YAG晶體光纖特性
[1]L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE Journal of Quantum Electronics, 32, 885 (1996).
[2]G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Schaffers, J.-O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+ ZnSe laser," Optics Letters, 24, 19 (1999).
[3]N.B. Angert, N.I. Borodin, V.M. Garmash, V.A. Zhiynyuk, A.G. Okhrimchuck, O.G. Siyuchenko, and A.V. Shestakov, "Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 mm," Soviet Journal of Quantum Electronics, 18, 73 (1988).
[4]Hergen Eilers, William M. Dennis, William M. Yen, Stefan Kuck, Klaus Peterman, Gunter Huber, and W. Jia, "Performance of a Cr:YAG laser," IEEE Journal of Quantum Electronics, 29, 2508 (1993).
[5]P.M.W. French, N.H Rizvi, J.R. Taylor, and A.V. Shestakov, "Continuous-wave mode-locked Cr4+:YAG laser," Optics Letters, 18, 39 (1993).
[6]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Continuous-wave self-mode-locked operation of Cr4+:YAG laser," Optics Letters, 19, 390 (1994).
[7]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Efficient continuous-wave chromium-doped YAG laser," Journal of the Optical Society of America B, 12, 930 (1995).
[8]S. Ishibashi, K. Naganuma, and I. Yokohama, "Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method" Journal of Crystal Growth, 183, 614 (1998).
[9]I,T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser," Optics Letters, 24, 1578 (1999).
[10]S. Ishibashi, and K. Naganuma, "Diode pumped Cr4+:YAG single crystal fiber laser," in Advanced Solid-State Lases, OSA Technical Digest, Davos, Switzerland, 103 (2000).
[11]Tokumatsu Tachiwaki, Masaru Yoshinaka, Ken Hirota, Takayasu Ikegami, and Osamu Yamaguchi, "Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics," Solid State Communications, 119, 603 (2001).
[12]D.Ravichandran, R. Roy, A.G. Chakhovskoi, C.E. Hunt, W.B. White, and S. Erdei, "Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications," Journal of Luminances,71, 291 (1997).
[13]Shi Shikao, and Wang Jiye, "Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles," Journal of Alloys Compounds, 327, 82 (2001).
[14]H. Wang, L. Gao, Z. Shen, M. Nygren, "Mechanical properties and microstructures of Al2O3–5 vol.% YAG composites," Journal of the European Ceramic Society, 21, 779 (2001).
[15]Ji-Guang Li, Takayasu Ikegami, Jong-Heun Lee, Toshiyuki Mori, and Yoshiyuki Yajima, "Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant," Journal of the European Ceramic Society, 20, 2395 (2000).
[16]Mehmet A. Gulgun, Wai-Yim Ching, Yong-Nian Xu, and Manfred Ruhle, "Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations," Philosophical Magazine B, 79, 921 (1999).
[17]S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, "Spectroscopic and laser studies of Cr4+:YAG and Cr:Y2SiO5," OSA Proceedings on Advanced Solid-State Lasers, 15, 334 (1993).
[18]V. Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, "Laser action in chromium-doped forsterite," Applied Physics Letters, 52, 1040 (1988).
[19]V. Petricevic, S.K. Gayen, and R.R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?," Applied Physics Letters, 53, 2590 (1988).
[20]H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, "Chromium-doped forsterite laser pumped with 1.06 mm radiation," Applied Physics Letters, 53, 2593 (1988).
[21]S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, "Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12," Journal of Crystal Growth, 180, 81 (1997).
[22]B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, Coloration of chromium –doped yttrium aluminum garnet single-crystal fiber using a divalent codopant," Journal of Applied Physics, 70, 3775 (1991).
[23]Hergen Eilers, William M. Dennis, William M. Yen, Stefan Kuck, Klaus Peterman, Gunter Huber, and W. Jia, "Performance of a Cr:YAG laser," IEEE Journal of Quantum Electronics, 29, 2508 (1993).
[24]I,T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser," Optics Letters, 24, 1578 (1999).
[25]S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, "Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12," Journal of Luminances, 68, 1 (1996).
[26]A. Sennaroglu, "Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers," Journal of Optical Society America B, 18, 1578 (2001).
[27]A. Sennaroglu, and B. Pekerten, "Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite laser near room temperature," IEEE Journal of Quantum Electronics, 34, 1996 (1998).
[28]A. Sennaroglu, "Optimization of power performance in room-temperature continuous-wave Cr4+:YAG laser," Optics Communicationss, 192, 83 (2001).
[29]G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Edition, Wiley (1997).
[30]M. M. Fejer, "Crystal fibers: Growth dynamics and nonlinear optical interactions," Ph.D. dissertation, Standard University, Standford, CA (1986).
[31]M. J. F. Digonnet, C. J. Gaeta, D. O’Meara, and H. J. Shaw, "Clad Nd:YAG fiber for laser applications," Journal of Lightwave Technology, LT-5, 642 (1987).

第三章 Cr4+:YAG晶體光纖雷射元件製作
[1]Zhang Shoudu, Wang Siting, Shen Xingda, Wang Haobing, Zhong Heyu, Zhang Shunxing, and Xu Jun, "Czochralski growth of rare-earth orthosilicates-Y2SiO5 single crystals," Journal of Crystal Growth, 197, 901 (1999).
[2]G. A. Magel, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched second harmonic generation of blue light in periodically LiNbO3," Applied Physics Letters, 56, 108 (1990).
[3]D. B. Gasson, and B. Cockayne, "Oxide crystal growth using gas lasers," Materials Science, 5, 100 (1970).
[4]C. Goutaoudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli, and E. Cavalli, "LHPG and flux growth of various Nd:YVO4 single crystals: A comparative characterization," Materials Research Bulletin, 33, 1457 (1998).
[5]http://www.struers.com

第五章 Cr4+:YAG晶體光纖之微結構分析
[1]J.P. McCaffrey, M.W. Phaneuf, and L.D. Madsen, "Surface damage formation during ion-beam thinning of samples for transmission electron microscpoy," Ultramicroscopy, 87, 97 (2001).
[2]Mehmet A. Gulgun, Wai-Yim Ching, Yong-Nian Xu, and Manfred Ruhle, "Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations," Philosophical Magazine B, 79, 921 (1999).
[3]Li-ping You, C.L. Heng, S.Y. Ma, Z.C. Ma, W.H. Zong, Zheng-long Wu, and G.G. Qin, "Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films," Journal of Crystal Growth, 212, 109 (2000).
[4]O. Conde, A.G. Rolo, M.J.M. Gomes, C. Ricolleau, and D.J. Barber, "HRTEM and GIXD studies of CdS nanocrystals embedded in Al2O3 films produced by magnetron RF-sputtering," Journal of Crystal Growth, 247, 371 (2003).
[5]Yu-Jun Bai, Zhen-Gang Liu, Xian-Gang Xu, De-Liang Cui, Xiao-Peng Hao, Xin Feng, and Qi-Long Wang, "Precipitation of InN nanocrystals by solvo-thermal method," Journal of Crystal Growth, 241, 189 (2002).
[6]Zhihong Sun, Duorong Yuan, Xiulan Duan, Xuecheng Wei, Haiqing Sun, Caina Luan, Zengmei Wang, Xuzhong Shi, Dong Xu, and Mengkai Lv, "Preparation and characterization of Co2+-doped Y3Al5O12 nano-crystal powders by sol-gel technique," Journal of Crystal Growth, 260, 171 (2004).
[7]F. Yun, B.J. Hinds, S. Hatatani, S. Oda, Q.X. Zhao, and M. Willander, "Study of structural and optical properties of nanocrystalline silicon embedded in SiO2," Thin Solid Films, 375, 137 (2000).
[8]W.T. Young, L.K.L. Falk, H. Lemercier, V. Peltier-Baron, Y. Menke, and S. Hampshire, "The crystallization of the yttrium-sialon glass: Y15.2Si14.7A18.7O54.1N7.4," Journal of Non-Crystalline Solids, 270, 6 (2000).
[9]L. Kepinski, D. Hreniak, and W. Strek, "Microstructure and luminescence properties of nanocrystalline cerium silicates," Journal of Alloys and Compounds, 341, 203 (2002).
[10]P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, "Room-temperature visible luminescence from nanocrystals in silicon implanted SiO2 layers," Applied Physics Letter, 66 (7), 851 (1995).
[11]M. Aparicio, R Moreno, and A. Duran, "Colloidal stability and sintering of yttria-silica and yttria-silica-alumina aqueous suspensions," Journal of European Ceramic Society, 19, 1717 (1999).
[12]Keisuke Sato, Tomio, Izumi, Mitsuo Iwase, Yoshiyuki Show, Hiroshi Morisaki, Toshie Yaguchi, and Takeo Kamino, "Nucleation and growth of nanocrystalline silicon studied by TEM, XPS and ESR," Applied Surface Science,216, 376 (2003).
[13]A.M. Tonejc, I. Djerdj, and A. Tonejc, "Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders," Materials Science and Engineering B, B85, 55 (2001).
[14]L. Kepinski, and M. Wolcyrz, "Nanocrystalline rare earth silicates: structure and properties," Materials Chemistry and Physics, 81, 396 (2003).
[15]J. Dutkiewicz, L. Stoch, J. Morgiel, G. Kostorz, and P. Stoch, "Analytical and HREM study of the early stages of SiO2-Al2O3-(Mg, Zn)O glass crystallisation," Materials Chemistry and Physics, 81, 411 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top