|
參考文獻 第一章 晶體光纖簡介 [1]T.H. Maiman, "Stimulated optical radiation in ruby lasers," Nature, 187, 493 (1960). [2]J.E. Geusic, H.M. Marcos, and L.G. Van Uitert, "Laser Oscillation in Nd-Doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets," Applied Physics Letters, 4, 182 (1964). [3]P.P. Sorokin, and M.J. Stevenson, "Stimulated Infrared Emission from Trivalent Uranium," Physical Review Letters, 5, 557 (1960). [4]E. Snitzer, "Optical Maser Action of Nd3+ in a Barium Crown Glass," Physical Review Letters, 7, 444 (1961). [5]P.F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," Journal of the Optical Society of America B, 3, 125 (1986). [6]P. Lacovara, L. Esterowitz, and R. Allen, "Flash-lamp-pumped Ti:Al2O3 laser using fluorescent conversion," Optics Letters, 10, 273 (1985). [7]J.F. Pinto, L. Esterowitz, G.H. Rosenblatt, M. Kokta, and D. Peressini, "Improved Ti:sapphire laser performance with new high figure of merit crystals," IEEE Journal of Quantum Electronics, 30, 2612 (1994). [8]L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE Journal of Quantum Electronics, 32, 885 (1996). [9]G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Schaffers, J.-O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+ ZnSe laser," Optics Letters, 24, 19 (1999). [10]J.C. Walling, H.P. Jenssen, R.C. Morris, E.W. O’Dell, and D.G. Peterson, "Tunable-laser performance in BeAl2O:Cr3+," Optics Letters, 4, 182 (1979). [11]S.A. Payne, L.L. Chase, H.W. Newkirk, L.K. Smith, and W.F. Krupke, "LiCaAlF6:Cr3+: a promising new solid-state laser material," IEEE Journal of Quantum Electronics, 24, 2243 (1988). [12]S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, and H.W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," Journal of Applied Physics, 66, 1051 (1989). [13]V. Petricevic, S.K. Gayen, and R.R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?," Applied Physics Letters, 53, 2590 (1988). [14]N.B. Angert, N.I. Borodin, V.M. Garmash, V.A. Zhiynyuk, A.G. Okhrimchuck, O.G. Siyuchenko, and A.V. Shestakov, "Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 mm," Soviet Journal of Quantum Electronics, 18, 73 (1988). [15]B.H.T. Chai, Y. Shimony, C. Deka, X.X. Zhang, E. Munin, and M.Bass, "Polarizing spectroscopy of Y3Al5O12, SrAl2O4, and CaAl2O4 crystals containing Cr4+," in OSA proceedings on advanced solid state lasers, (OSA, Washington D.C.), 13, 28 (1992). [16]N.I. Borodin, V.A. Zhitnyuk, A.G. Okhrimchuk, A.V. Shestakov, andIzvestiya Akademii Nauk, "Oscillation of aY3Al5O12:Cr4+ laser in wave length region of 1.34-1.6 mm," SSSR, Seriya Fizicheskaya, 54, 1500 (1990). [17]P.M.W. French, N.H Rizvi, J.R. Taylor, and A.V. Shestakov, "Continuous-wave mode-locked Cr4+:YAG laser," Optics Letters, 18, 39 (1993). [18]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Continuous-wave self-mode-locked operation of Cr4+:YAG laser," Optics Letters, 19, 390 (1994). [19]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Efficient continuous-wave chromium-doped YAG laser," Journal of the Optical Society of America B, 12, 930 (1995). [20]S. Ishibashi, K. Naganuma, and I. Yokohama, "Cr, Ca:Y3Al5O12," Journal of Crystal Growth, 183, 614 (1998). [21]I,T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser," Optics Letters, 24, 1578 (1999). [22]S. Ishibashi, and K. Naganuma, "Diode pumped Cr4+:YAG single crystal fiber laser," in Advanced Solid-State Lases, OSA Technical Digest, Davos, Switzerland, 103 (2000).
第二章 Cr4+:YAG晶體光纖特性 [1]L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE Journal of Quantum Electronics, 32, 885 (1996). [2]G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Schaffers, J.-O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+ ZnSe laser," Optics Letters, 24, 19 (1999). [3]N.B. Angert, N.I. Borodin, V.M. Garmash, V.A. Zhiynyuk, A.G. Okhrimchuck, O.G. Siyuchenko, and A.V. Shestakov, "Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 mm," Soviet Journal of Quantum Electronics, 18, 73 (1988). [4]Hergen Eilers, William M. Dennis, William M. Yen, Stefan Kuck, Klaus Peterman, Gunter Huber, and W. Jia, "Performance of a Cr:YAG laser," IEEE Journal of Quantum Electronics, 29, 2508 (1993). [5]P.M.W. French, N.H Rizvi, J.R. Taylor, and A.V. Shestakov, "Continuous-wave mode-locked Cr4+:YAG laser," Optics Letters, 18, 39 (1993). [6]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Continuous-wave self-mode-locked operation of Cr4+:YAG laser," Optics Letters, 19, 390 (1994). [7]A. Sennaroglu, C.R. Pollock, and H. Nathel, "Efficient continuous-wave chromium-doped YAG laser," Journal of the Optical Society of America B, 12, 930 (1995). [8]S. Ishibashi, K. Naganuma, and I. Yokohama, "Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method" Journal of Crystal Growth, 183, 614 (1998). [9]I,T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser," Optics Letters, 24, 1578 (1999). [10]S. Ishibashi, and K. Naganuma, "Diode pumped Cr4+:YAG single crystal fiber laser," in Advanced Solid-State Lases, OSA Technical Digest, Davos, Switzerland, 103 (2000). [11]Tokumatsu Tachiwaki, Masaru Yoshinaka, Ken Hirota, Takayasu Ikegami, and Osamu Yamaguchi, "Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics," Solid State Communications, 119, 603 (2001). [12]D.Ravichandran, R. Roy, A.G. Chakhovskoi, C.E. Hunt, W.B. White, and S. Erdei, "Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications," Journal of Luminances,71, 291 (1997). [13]Shi Shikao, and Wang Jiye, "Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles," Journal of Alloys Compounds, 327, 82 (2001). [14]H. Wang, L. Gao, Z. Shen, M. Nygren, "Mechanical properties and microstructures of Al2O3–5 vol.% YAG composites," Journal of the European Ceramic Society, 21, 779 (2001). [15]Ji-Guang Li, Takayasu Ikegami, Jong-Heun Lee, Toshiyuki Mori, and Yoshiyuki Yajima, "Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant," Journal of the European Ceramic Society, 20, 2395 (2000). [16]Mehmet A. Gulgun, Wai-Yim Ching, Yong-Nian Xu, and Manfred Ruhle, "Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations," Philosophical Magazine B, 79, 921 (1999). [17]S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, "Spectroscopic and laser studies of Cr4+:YAG and Cr:Y2SiO5," OSA Proceedings on Advanced Solid-State Lasers, 15, 334 (1993). [18]V. Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, "Laser action in chromium-doped forsterite," Applied Physics Letters, 52, 1040 (1988). [19]V. Petricevic, S.K. Gayen, and R.R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?," Applied Physics Letters, 53, 2590 (1988). [20]H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, "Chromium-doped forsterite laser pumped with 1.06 mm radiation," Applied Physics Letters, 53, 2593 (1988). [21]S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, "Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12," Journal of Crystal Growth, 180, 81 (1997). [22]B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, Coloration of chromium –doped yttrium aluminum garnet single-crystal fiber using a divalent codopant," Journal of Applied Physics, 70, 3775 (1991). [23]Hergen Eilers, William M. Dennis, William M. Yen, Stefan Kuck, Klaus Peterman, Gunter Huber, and W. Jia, "Performance of a Cr:YAG laser," IEEE Journal of Quantum Electronics, 29, 2508 (1993). [24]I,T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser," Optics Letters, 24, 1578 (1999). [25]S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, "Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12," Journal of Luminances, 68, 1 (1996). [26]A. Sennaroglu, "Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers," Journal of Optical Society America B, 18, 1578 (2001). [27]A. Sennaroglu, and B. Pekerten, "Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite laser near room temperature," IEEE Journal of Quantum Electronics, 34, 1996 (1998). [28]A. Sennaroglu, "Optimization of power performance in room-temperature continuous-wave Cr4+:YAG laser," Optics Communicationss, 192, 83 (2001). [29]G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Edition, Wiley (1997). [30]M. M. Fejer, "Crystal fibers: Growth dynamics and nonlinear optical interactions," Ph.D. dissertation, Standard University, Standford, CA (1986). [31]M. J. F. Digonnet, C. J. Gaeta, D. O’Meara, and H. J. Shaw, "Clad Nd:YAG fiber for laser applications," Journal of Lightwave Technology, LT-5, 642 (1987).
第三章 Cr4+:YAG晶體光纖雷射元件製作 [1]Zhang Shoudu, Wang Siting, Shen Xingda, Wang Haobing, Zhong Heyu, Zhang Shunxing, and Xu Jun, "Czochralski growth of rare-earth orthosilicates-Y2SiO5 single crystals," Journal of Crystal Growth, 197, 901 (1999). [2]G. A. Magel, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched second harmonic generation of blue light in periodically LiNbO3," Applied Physics Letters, 56, 108 (1990). [3]D. B. Gasson, and B. Cockayne, "Oxide crystal growth using gas lasers," Materials Science, 5, 100 (1970). [4]C. Goutaoudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli, and E. Cavalli, "LHPG and flux growth of various Nd:YVO4 single crystals: A comparative characterization," Materials Research Bulletin, 33, 1457 (1998). [5]http://www.struers.com
第五章 Cr4+:YAG晶體光纖之微結構分析 [1]J.P. McCaffrey, M.W. Phaneuf, and L.D. Madsen, "Surface damage formation during ion-beam thinning of samples for transmission electron microscpoy," Ultramicroscopy, 87, 97 (2001). [2]Mehmet A. Gulgun, Wai-Yim Ching, Yong-Nian Xu, and Manfred Ruhle, "Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations," Philosophical Magazine B, 79, 921 (1999). [3]Li-ping You, C.L. Heng, S.Y. Ma, Z.C. Ma, W.H. Zong, Zheng-long Wu, and G.G. Qin, "Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films," Journal of Crystal Growth, 212, 109 (2000). [4]O. Conde, A.G. Rolo, M.J.M. Gomes, C. Ricolleau, and D.J. Barber, "HRTEM and GIXD studies of CdS nanocrystals embedded in Al2O3 films produced by magnetron RF-sputtering," Journal of Crystal Growth, 247, 371 (2003). [5]Yu-Jun Bai, Zhen-Gang Liu, Xian-Gang Xu, De-Liang Cui, Xiao-Peng Hao, Xin Feng, and Qi-Long Wang, "Precipitation of InN nanocrystals by solvo-thermal method," Journal of Crystal Growth, 241, 189 (2002). [6]Zhihong Sun, Duorong Yuan, Xiulan Duan, Xuecheng Wei, Haiqing Sun, Caina Luan, Zengmei Wang, Xuzhong Shi, Dong Xu, and Mengkai Lv, "Preparation and characterization of Co2+-doped Y3Al5O12 nano-crystal powders by sol-gel technique," Journal of Crystal Growth, 260, 171 (2004). [7]F. Yun, B.J. Hinds, S. Hatatani, S. Oda, Q.X. Zhao, and M. Willander, "Study of structural and optical properties of nanocrystalline silicon embedded in SiO2," Thin Solid Films, 375, 137 (2000). [8]W.T. Young, L.K.L. Falk, H. Lemercier, V. Peltier-Baron, Y. Menke, and S. Hampshire, "The crystallization of the yttrium-sialon glass: Y15.2Si14.7A18.7O54.1N7.4," Journal of Non-Crystalline Solids, 270, 6 (2000). [9]L. Kepinski, D. Hreniak, and W. Strek, "Microstructure and luminescence properties of nanocrystalline cerium silicates," Journal of Alloys and Compounds, 341, 203 (2002). [10]P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, "Room-temperature visible luminescence from nanocrystals in silicon implanted SiO2 layers," Applied Physics Letter, 66 (7), 851 (1995). [11]M. Aparicio, R Moreno, and A. Duran, "Colloidal stability and sintering of yttria-silica and yttria-silica-alumina aqueous suspensions," Journal of European Ceramic Society, 19, 1717 (1999). [12]Keisuke Sato, Tomio, Izumi, Mitsuo Iwase, Yoshiyuki Show, Hiroshi Morisaki, Toshie Yaguchi, and Takeo Kamino, "Nucleation and growth of nanocrystalline silicon studied by TEM, XPS and ESR," Applied Surface Science,216, 376 (2003). [13]A.M. Tonejc, I. Djerdj, and A. Tonejc, "Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders," Materials Science and Engineering B, B85, 55 (2001). [14]L. Kepinski, and M. Wolcyrz, "Nanocrystalline rare earth silicates: structure and properties," Materials Chemistry and Physics, 81, 396 (2003). [15]J. Dutkiewicz, L. Stoch, J. Morgiel, G. Kostorz, and P. Stoch, "Analytical and HREM study of the early stages of SiO2-Al2O3-(Mg, Zn)O glass crystallisation," Materials Chemistry and Physics, 81, 411 (2003).
|