跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育賢
研究生(外文):Yu-Hsien Lin
論文名稱:摻鉻釔鋁石榴石晶體光纖之光學鍍膜研製
論文名稱(外文):The Study and Fabrication of Optical Coating on Cr4+:YAG Crystal Fiber
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:光學鍍膜摻鉻釔鋁石榴石晶體光纖薄膜光學
外文關鍵詞:thin film coatingCr4+:YAG Crystal Fiberoptical coating
相關次數:
  • 被引用被引用:1
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於光通訊需求的快速成長,使得光傳輸網路系統中寬頻光放大器的需求量增加,而為了配合通訊用1300-1600 nm寬頻元件的發展,於是採用摻鉻釔鋁石榴石(Cr4+:YAG)晶體光纖,配合高品質鍍膜設計與製鍍(以TiO2作為高折射率材料,SiO2為低折射率之材料堆疊),以達成高效率且穩定的晶體光纖雷射開發。

本論文以Cr4+:YAG作為晶體光纖的增益介質,在晶體的兩端製鍍光學薄膜(輸入端900-1100 nm AR &1300-1600 nm HR及輸出端1300-1600 nm HR)形成雷射共振腔,以降低損耗,提高雷射效率。並在實驗過程中,探討薄膜成長的條件(溫度、通氧量及鍍膜速率),以達成膜質密度高、折射率穩定及吸收係數小的光學薄膜。而且藉由不同膜層厚度及堆疊設計,降低膜層介面上的電場強度,達成高雷射輻射損害閥值(Laser-Induced Damage Threshold; LIDT)效果,使其在高功率使用下能維持薄膜的耐用度及使用壽命。此外,並進一步於Cr4+:YAG原始晶棒側邊製鍍CaO及Cr2O3薄膜,再經由LHPG法生長晶纖,以增加晶體光纖中CaO與Cr2O3之摻雜濃度,進而提升Cr4+離子的濃度,達成Cr4+:YAG晶體光纖高螢光效率及高信號飽和功率。
In the last years, intensive research on new tunable solid state laser materials has been carried out. For the spectral range from 1300 to 1600 nm the Cr4+ ion seems to be the most promising laser-ion. In order to meet the the demand of broad-band devices, we employed the Cr4+ doped YAG crystal fibers with high optical quality thin films design and coating (high index material TiO2, low index material SiO2) to achieve the development of high efficiency crystal fiber lasers.

In this thesis, crystal fiber was used as the laser gain medium, and coated with optical thin films at both end faces (input face 900-1100 nm AR and 1300-1600 nm HR; output face 1300-1600 nm HR) as the laser cavity to reduce the loss and promote laser efficiency. During the experiment, we tried to optimize the coating conditions to acquire high density, stable index and low absorption coefficient thin films. With different thin film thickness and stacking designs, the electric field distribution was designed to be away from the laser interface and high index region to increase the laser-induced damage threshold and lifetime for high power pumping. In addition, CaO and Cr2O3 were deposited on Cr4+:YAG source rods before the laser-heated-pedestal growth to increase CaO and Cr2O3 doping concentration for higher fluorescence efficiency and signal saturation power.
中文摘要
英文摘要
圖目錄
表目錄
第一章 緒論
第二章 Cr4+:YAG 晶體光纖介紹
2.1 Cr4+:YAG 晶體特性
2.2 Cr4+:YAG之Cr4+離子濃度提升方法
第三章 光學薄膜特性與設計
3.1 薄膜的特性與膜矩陣
3.2 薄膜材料特性與光學常數分析
3.2.1光學薄膜材料特性
3.2.2薄膜光學常數分析
3.3 光學薄膜電場強度分佈
3.4 窄帶高反射膜堆疊設計比較
第四章 實驗設備與量測儀器
4.1 蒸鍍系統
4.1.1 電子槍蒸鍍系統
4.1.2 真空系統
4.1.3 薄膜監控系統
4.2 量測儀器
4.2.1 光譜量測儀
4.2.2 掃描式電子顯微鏡
第五章 實驗結果與討論
5.1 製程穩定性與參數分析
5.1.1 薄膜光譜行為相對時間之變化
5.1.2 薄膜製鍍之光譜漂移量分析
5.1.3 單層薄膜製鍍再現性
5.2 Cr4+:YAG 端面鍍膜分析與討論
5.2.1 雷射共振腔
5.2.2 光學鍍膜
5.2.3 Cr4+:YAG晶體光纖樣品準備與製鍍之比較
5.3 薄膜電場分佈與損害閥值分析
5.4 薄膜沈積微觀結構之分析
5.5 Cr4+:YAG 側面鍍膜結果與討論
第六章 結論
參考文獻
中英對照表
[1]M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated-miniature pedestal growth apparatus for single-crystal fibers,” Opt. Lett., Vol. 11, No. 7, pp. 437-439, 1986.
[2]D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” J. of Materials Sci., Vol. 5, pp. 100-104, 1970.
[3]N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45�慆,” Sov. J. Quant. Electron., Vol. 18(1), pp. 73-74, 1988.
[4]D. J. Ripin, C. Chudobs, J. T. Gopinath, J. G. Fujimoto, and E. P. Ippen, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett., Vol. 27, No. 1, pp. 61-63, 2002.
[5]A. Sennaroglu and C. R. Pollock, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt, Soc. Am. B, Vol. 12, No. 5, pp. 930-937, 1995.
[6]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method,” J. Cryst. Growth, Vol. 183, pp. 614-621, 1998.
[7]A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B, Vol. 18, pp. 1578-1586, 2001.
[8]H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectrocopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B, Vol. 49, No. 22, pp.15 505-15 513, 1994.
[9]B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fiber using a divalent codopant,” J. Appl. Phys., Vol. 70 (7), pp. 3775-3777, 1991.
[10]A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr, Ca:Y3Al5O12,” J. Cryst. Growth, Vol. 140, pp. 349-354, 1994.
[11]李正中,“薄膜光學與鍍膜技術”,第三版,藝軒出版社,民國八十八年
[12]J. C. Manifacier, J. Gasiot and J. P. Fillard, “A simple method for the determination of the optical constant n, k and the thickness of the weakly absorption thin film ,” J. Phy. E : Sci. Inst., pp. 1002-1021, 1976.
[13]Marco Alvisi, Giorgio De Nunzio, Massimo Di Giulio, Maria Cristina Ferrara, Maria Rita Perrone, Lucia Protopapa, and Lorenzo Vasanelli, “Deposition of SiO2 films with high laser damage thresholds by ion-assisted electron-beam evaporation,” J. of APPLIED OPTICS Vol. 38, No. 7, pp. 1237-1243, 1999.
[14]Fred E. Domann, Alan F. Stewart, and Arthur H. Guenther “laser-induced particle emission as a precursor to laser damage,” J. of APPLIED OPTICS Vol. 27, No. 21, pp. 4423-4427, 1998.
[15]D. Milam, W. H. Lowdermilk, F. Rainer, J. E. Swain, C. K. Carniglia, and T. Tuttle Hart “Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings,” J. of APPLIED OPTICS Vol. 21, No. 20, pp. 3689-3694, 1982.
[16]O. Arnon and P. Baumeister “Electric field distribution and the reduction of laser damage in multilayers,” J. of APPLIED OPTICS Vol. 19, No. 11, pp. 1853-1855, 1980.
[17]Hucker E., Lauth H. and Weissbrodt P., “Review of structural influence on the laser damage threshold of oxide coatings”, SPIE 2714, 316-330, 1996
[18]S C. Seitel and J. O. Porteus “Laser damage round-robin testing (1.06-�慆) with 13-nsec pulse duration and 40-�慆 spot size,” J. of APPLIED OPTICS Vol. 23, No. 21, pp. 3767-3773, 1984.
[19]K Rajasree, P Radhakrishnan, V P N Nampoori and C P G Vallabhan “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06�慆 using the pulsed photothermal deflection technique,” Laser Division, Department of Physics, Cochin University of Science and Technology, pp. 591-595, 1993.
[20]葉倍宏,“薄膜光學-電腦輔助模擬與分析,” ,台灣光復出版社,民國八十八年
[21]J. A. Dobrowolski and L. Li “Design of optical coatings for three or more separated spectral regions,” J. of APPLIED OPTICS Vol. 34, No. 16, pp. 2934-2940, 1995.
[22]呂登復 “實用真空技術,” 國興出版,民國九十一年
[23]吳秀菁,汪若文,林美吟 “儀器總覽-材料分析儀器,”行政院國家科學委員會精密儀器發展中心,民國八十七年
[24]汪建民 “材料分析,” 中國材料科學協會,民國八十七年
[25]P. G. Verly, A. V. Tikhonravov, and M. K. Trubetskov “Efficient refinement algorithm for the synthesis of inhomogeneous optical coatings,” J. of APPLIED OPTICS Vol. 36, No. 7, pp. 1487-1495, 1997.
[26]Pierre G. Verly “Optical coating synthesis by simultaneous refractive-index and refinement of inhomogeneous films,” J. of APPLIED OPTICS Vol. 37, No. 31, pp. 7327-7333, 1998.
[27]Lee C. C. and Hsu J. C. “Technique for deposition of multiplayer interference thin film using only one coating material,” ROC Patent Invention No. 137551, 2001.
[28]Wharton J. J. “Microstructure related properties of optical thin films,” Ph. D. Dissertation, Univ. of Arizona, 1984.
[29]Li-Piin Sung, Maria E. Nadal, Mary E. McKnight, Jennifer V. Nguyen, Chang-Jian Lin “Investigation of the relationship between microstructure and appearance of coating materials,” in proceedings of ICE 2000, A. G. Gilicinski, editor, FSCT, Blue Bell, pp. 19422-2350, 2001.
[30]S. Ishibashi, K. Naganuma, I. Yokohama, “Cr, Ca: Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. of Crystal Growth, pp. 614-621, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top