跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃明仁
研究生(外文):Ming-Ren Huang
論文名稱:二次鋰離子電池中陰極材料鋰錳尖晶石於充放電過程中晶體結構的變化與電容量遞減
論文名稱(外文):Structural Modifications and Capacity Fading of LiMn2O4 Cathode during Charge-Discharge of Secondary Lithium Ion Batteries
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:360
中文關鍵詞:鋰錳尖晶石陰極材料結構演化電容量遞減充放電測試
外文關鍵詞:structure evolutionLiMn2O4 spinelcapacity decaycathodecharge/discharge test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
論文提要

在鋰錳尖晶石當做鋰離子二次電池中陰極材料的研究,大部分致力於了解其電化學的特性,對於結構的演化則缺乏直接的證據。本論文主要的研究課題則為研究電化學特性隨著充放電而變化時其微觀結構的演化(evolution),而希望能找出其間的關係來解釋充、放電時鋰離子嵌入與淬出的機制。
鋰離子電池充、放電的電極反應可以由下列式子來表示:

反應向左時是放電(discharging),往右時是充電(charging)。由此式可以說明鋰離子(Li+-ion)在陰陽兩極之間來回往返,當完全放電時,陰極理論上又回復到尖晶石的結構。可是這些鋰離子在嵌入(insertion)和淬出(extraction)於 LiMn2O4結構時,總有一部份拒絕再加入往返於兩極之間的行列,所以電池容量逐漸降低,直到完全沒有。
研究結果發現,要得到單一均質的 LiMn2O4粉體,最適當的煆繞溫度為 800°C。於鋰不足的情況,合成而得到的粉體會含有 LiMn2O4和第二相 Mn2O3;而鋰過量時,除了形成第二相 Li2MnO3外,生成的尖晶石相為具有相同空間群的 Li4Mn5O12或 Li2Mn4O9。鋰錳尖晶石(LixMn2O4)的晶格常數變化,在 x < 1時是介於 0.823~0.824 nm之間,但在 x = 1.0~1.8則由 0.824 nm迅速掉到 0.817 nm。
微差熱分析的結果顯示當溫度高於 935°C時,氧和氧化鋰會擴散損失而形成具有長方(tetragonal)對稱的 Mn3O4。當溫度升高超過 1045°C時,則會形成具有斜方晶系(orthorhombic)對稱的 LiMnO2。且發現當退火溫度超過 935°C,形成的殘留相為 Mn3O4。
平板狀晶粒(lamellae domain)和雙晶(twinned)結構在 LiMn2O4粉體中常可觀察到,且其界面大部分為 {111}面。起始合成的粉體中 {200}及 {420}等在 禁止出現的繞射面,及充放電後出現的超晶格 1/2{311}和 1/3{422}說明 LiMn2O4結構的空間群不屬於 。繞射面 {311}和 {111}的比值隨充電、放電循環而增加說明了經過充放電後,反尖晶石相增加了。
LiMn2O4結晶相經過燒結後,其構形像 {100}面被切掉的 cubo-octahedron。其明顯出現的結晶面為 {111},{011},{001},{113}。具有最低表面能的結晶面為 {111}。
在充放電過程中結構的演化可分為可逆和不可逆兩部分。可逆部分包括(1)具有立方尖晶石結構,於 3.3~4.3 V之間充放電,晶格常數呈可逆變化(0.824~0.814 nm),組成改變(如形成Li4Mn5O12,Li1-xMn2O4),但仍保有尖晶石結構;(2)LiMn2O4表面形成的圓方形介穩定相亦在充放電過程中使鋰離子可來回淬出嵌入。不可逆部分(1)已扭曲成長方、斜方、三斜晶格的粉體;(2)高度不規則排列的奈米區域;(3)表面被可阻礙鋰離子進出的非結晶相包覆的粉體;(4)轉變成 Mn2O3的粉體;(5)結構內部或晶格界面已崩潰的粉體;(6)具反尖晶石結構的粉體。
Abstract

A vast majority of the studies devoted to Lithium manganese oxide deals with their electrochemical characteristics in lithium batteries. The main project of this study is to realize the structure evolution upon electrochemical cycling. The phase transformations under the charge and discharge testing are an interesting project.

Nitrate or oxide precursor calcined at 800°C can produce single phase stoichiometric LiMn2O4. The hypo-stoichiometric compositions (xLi2O×4MnO, x < 1) synthesized by Li-poor situation contain LiMn2O4 and Mn2O3. The hyper- stoichiometric compositions (xLi2O×4MnO, x > 1) synthesized by Li-rich situation contain non-stoichiometric spinel LixMn2O4 (such as Li4Mn5O12 or Li2Mn4O9) and Li2MnO3. The lattice parameter of LiMn2O4 increases slightly with increase of the lithium content at x < 1 (0.823 ~ 0.824 nm), but decreases sharply for x = 1.0 ~ 1.8 (0.824 to 0.817 nm).

Differential thermal analysis showed at temperature higher than 935ºC, rocksalt phase (with tetragonal symmetry), Mn3O4 will be produced. Above 1045ºC, the crystallite phases contain cubic LiMn2O3 spinel, tetragonal Mn3O4 and orthorhombic symmetry LiMnO2. After high temperature annealing (> 935ºC), the residual phase is lithium-deficient structure, Mn3O4.

Apparent facets with {111}, {011}, and {001} (and {113}) planes are usually observed. The LiMn2O4 crystallite appears to be a truncated cubo-octahedron. The lowest surface energy gsv for LiMn2O4 spinel is located at the {111} planes.

Lamellae domain and twinned structure are usually observed in LiMn2O4 particles. The occurrence of domain boundary and twin plane are {111} mostly. Forbidden reflections {200}, {420} in the initial powder and 1/2{311} and 1/3{422} superlattice reflections occurred after charging and discharging test reveal LiMn2O4 structure is a violation of space group. [311]/[111] peak ratio in the XRD traces is increase after electrochemical cycling. Fraction of inverse phase increased upon electrochemical cycling.

The results for structure evolution under charging and discharging test can be divided into two parts for reversible and irreversible. First, unit cell of cubic spinel contracted upon charging and returned to original after discharging. The lattice constant varies back and forth between 0.824 nm to 0.814 nm for cycle between 3.3 and 4.3 V. LiMn2O4 transits to Li4Mn5O12 and l-MnO2 after fully charging to 4.3 V, which then recovers to cubic spinel LixMnyO4 after discharging to 3.3 V. The structure variations in the cycle of changing and discharging are LiMn2O4 – (Li4Mn5O12 + l-MnO2) – LixMnyO4. And metastable circular or rectangle LiMn2O4 particles observed in the surface can be extracted and inserted Li+ ion upon charging and discharging test. This process is reversible.

Second, (1) tetragonal, rhombohedral and triclinic distorted within cubic spinel particles; (2) nanoscale regions of highly disordered lattices observed; (3) amorphous film observed in the powder particle surface; (4) crystalline phase Mn2O3 increased; (5) structure collapse inside the particle and the domain boundary; (6) inverse spinel structure. The structure of LixMn2O4 had distorted upon electrochemical cycling. These results are irreversible.
Contents
Page
論文提要 …………………………………………………………………………….…...i
Abstract ……………………………………………………………...………...………ii
Contents ………………………………………………………………………………..iv
List of Tables ...………………………………………………………...……….…..viii
List of Figures ………………………………………………………………….…..…ix

Chapter 1 Introduction ………………………………………………...………………...1
1.1 Basic information of lithium ion batteries ………………………………..1
1.1.1 Developments of lithium ion battery ……………………………..1
1.1.2 Researches of cathode …………………………………………3
1.1.3 Researches of anode …………………………………………...5
1.1.4 Researches of electrolyte ………………………..……………..6
1.2 Objectives of research …………………………………………………7
1.3 Experimental approach ………………………………………………...7

Chapter 2 Literature survey ………………………………………………………….14
2.1 Background knowledge ………………………………………………14
2.1.1 Crystal structure …………………………………………...…14
2.1.2 Chemical bonding in lithium intercalation compound ………….18
2.2 Phase diagram of Li-Mn-O system …………………………………..19
2.3 Lithium manganese spinel ……………………………………………20
2.3.1 Powder preparation …………………………………………..20
2.4 Surface energy - general description …………………………………22
2.4.1 Definition of surface energy ………………………………….23
2.4.2 Surface energy from chemical bonding ………………………25
2.4.3 Surface energy from thermodynamic view ……………………..25
2.4.4 Anisotropic surface energy ……………………………………...26
2.4.5 Wulff theorem - the equilibrium shape of a crystal ……………..28
2.4.6 Thermodynamic basis of Wulff plot ……………………………29
2.4.7 Determination of equilibrium crystal shape ……………………..30
2.5 Intercalation mechanism ……………………..……………………....30
2.5.1 Charging and discharging mechanisms …………………………34
2.5.2 LiMn2O4 cathode ………………………………………………..35
2.6 Capacity fading for LixMn2O4 …………………………………………..35
2.7 Phase transformations for LixMn2O4 ……………………………………37
2.8 Defect structure in LiMn2O4 spinels ……………………………………38
2.8.1 Oxygen deficient spinels; LiMn2O4-d …………………………...39
2.8.2 Extracted forms of Li1-xMn2O4 ………………………………….39
2.9 The Jahn-Teller effect ………………….….……………………………39

Chapter 3 Experimental Procedures …………………………………………………....74
3.1 Powder preparation …………………………………………………......74
3.1.1 Thermogravimetric and differential thermal analysis …………..75
3.1.2 Particle size distribution ……………………………….…..……76
3.2 Test cell assembly ………………………………………………………76
3.3 Charging and discharging cycles ………………………………………..78
3.4 Density measurements …………………………………………………..80
3.5 X-ray diffractometry …………………………………………………….81
3.6 Microstructure observations ………………………………………...…..81
3.6.1 Scanning electron microscopy ……………………………...…..81
3.6.2 Transmission electron microscopy …………………………...…82
3.6.2.1 Kikuchi map for cubic spinel ………………...……..83
3.6.2.2 Convergent beam electron diffraction ……………....84

Chapter 4 Experimental Results ………………………………………………………..91
4.1 As-prepared LixMn2O4 powders ………………………………………...91
4.1.1 Chemical reactions for synthesized powder …………………….91
4.1.2 Particle size distribution ……………………………………...…91
4.1.3 Crystalline phases ……………………………………………….92
4.1.4 Lattice parameters ……………………………………………....95
4.1.5 Chemical bonding of LiMn2O4 ………………………………....95
4.1.6 Ionic structures …………………………………………………97
4.1.7 Microstructure observations ……………………………………98
4.1.8 The thermal stability of LiMn2O4 ……………………………...100
4.2 Crystallographic facetting in solid-state-reacted LiMn2O4 spinel powder 101
4.2.1 As-calcined powder ……………………………………………102
4.2.2 Annealed powder ………………………………………………104
4.3 Microstructural analysis of powders from charging-discharging cycles 108
4.3.1 Phase transformations upon electrochemical cycling ………....108
4.3.2 Microstructural observations of cathode ……………………....110
4.3.3 Structure evolution for spinel LixMn2O4 under cycling ……….111
4.3.3.1 Region “1” (before charge and discharge) ………….111
4.3.3.2 Region “2” (as the first charge plateau) …………….112
4.3.3.3 Region “3” (as the second charge plateau) …………113
4.3.3.4 Region “4” (after charge test) ……………………….114
4.3.3.5 Region “5” (as first discharge plateau) ……………...116
4.3.3.6 Region “6” (as secondary discharge plateau) ……….117
4.3.3.7 Region “7” (end of one electrochemical cycle) ……..117
4.3.3.8 Region “8” (dead cell) ………………………………117
4.3.3.9 Summary of microstructure observations …………..118
4.3.4 Microstructural observations of particle surface ………………118
4.4 Microstructural observations of sintered LiMn2O4 ceramics ………….119
4.4.1 X-ray diffraction …………………………………………...…..120
4.4.2 Microstructure observations ……………………..…………….120
4.5 Defect reaction equations ……………………………………...………122

Chapter 5 Discussion of Results ………………………………………………………217
5.1 As-prepared LixMn2O4 powders ……………………………………….217
5.1.1 Chemical reactions for synthesized powder ……………...…....217
5.1.2 Particle size distribution ……………...………………………..217
5.1.3 Crystalline phases ……………………………………………...218
5.1.4 Lattice parameters …………………………………...………...219
5.1.5 Chemical bonding of LiMn2O4 …………………………...…...220
5.1.6 Ionic structures …………………………………………...……221
5.1.7 Microstructure observations ……………………………...……223
5.1.8 The thermal stability of LiMn2O4 ……………………………...225
5.2 Crystallographic facetting in solid-state-reacted LiMn2O4 spinel powder 227
5.2.1 Surface energy anisotropy ……………………………………..227
5.2.2 Crystal form ……………………………………………………230
5.3 Microstructural analysis of powders from charging-discharging cycles 232
5.3.1 Phase transformations upon electrochemical cycling …...…….232
5.3.2 Structure evolution for spinel LixMn2O4 under cycling ……….233
5.3.3 Microstructural observations of particle surface ……………....242
5.3.3.1 Interface chemistry of LixMn2O4 electrodes ………….243
5.4 Microstructural observations of sintered LiMn2O4 ceramics ……...…..244
5.4.1 X-ray diffraction ……………………………………………….244
5.4.2 Microstructure observations …………………………………...244

Chapter 6 Conclusions ……………………………...………………………………...257

Chapter 7 Suggestions to Future Work ……………………………...………………..259

Appendices
Appendix 1 …………………………………………………………………….260
Appendix 2 ……………………………………………………………….……267
Appendix 3 ……………………………………………………………….……269
Appendix 4 ……………………………………………………………….……272
Appendix 5 ……………………………………………………………….……274
Appendix 6 ……………………………………………………………….……278
Appendix 7 ……………………………………………………………….……279
Appendix 8 ……………………………………………………………….……285
Appendix 9 ……………………………………………………………….……286
Appendix 10 ....…………………………………………………………….…..287
Appendix 11 ………………………………………………………...…….…...289
Appendix 12 ……………………………………………………………….…..292

References
References

1.D. H. Doughty, "Materials Issues in Lithium Ion Rechargeable Battery Technology," SAMPLE J., 32 [2] 75-81 (1996).
2.J. B. Goodenough, M. M. Thackeray, W. I. F. David, P. G. Bruce, Rev. Chim. Miner., 21, 435 (1984).
3.C. Wolverton, A. Zunger, "Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic LixCoO2," J. Electrochem. Soc., 145, 2424-31 (1998).
4.E. Levi, et al., "Electrochemical and in-situ XRD Characterization of LiNiO2 and LiCo0.2Ni0.8O2 Electrodes for Rechargeable Lithium Cells," Solid State Ionics, 126, 97-108 (1999).
5.S. Megahed, B. Scrosati, "Rechargeable Nonaqueous Batteries," The Electrochem. Soc. Interface, winter 34-37 (1995).
6.M. M. Thackeray, "Manganese Oxides for Lithum Batteries," Prog. Solid State Chem., 25, 1-71 (1997).
7.T. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, "LixCoO2 (0 < x £ 1): A new cathode material for batteries of high energy density," Mater. Res. Bull., 15 [6] 783-89 (1980).
8.J. R. Dahn, U. v. Sacken, M. W. Juzkow, H. Al-Janaby, "Rechargeable LiNiO2/Carbon Cells," J. Electrochem. Soc., 138 [8] 2207-11 (1991).
9.M. M. Thackeray, P. J. Johnson, L. A. d. Picciotto, "Electrochemical Extraction of Lithium from LiMn2O4," Mat. Res. Bull., 19, 179-187 (1984).
10.D. Guyomard, J. M. Tarascon, "Li Metal-Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization," J. Electrochem. Soc., 139 [4] 937-948 (1992).
11.J. M. Tarascon, et al., "Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4," J. Electrochem. Soc., 141 [6] 1421-31 (1994).
12.M. Atanasov, J. L. Barras, L. Benco, C. Daul, "Electronic Structure, Chemical Bonding, and Vibronic Coupling in Mn(IV)/Mn(III) Mixed valent LixMn2O4 Spinels and Their Effect on the Dynamics of Intercalated Li: A Cluster Study Using DFT," J. Am. Chem. Soc., 122, 4718-28 (2000).
13.Y. M. Chiang, H. Wang, Y. I. Jang, "Electrochemically Induced Cation Disorder and Phase Transformations in Lithium Intercalation Oxides," Chem. Mater., 13 [1] 53-63 (2001).
14.C. Masquelier, et al., "Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 System," J. Solid State Chem., 123 255-266 (1996).
15.L. Gautier, M. Meeus, J. Scoyer, "Optimized Cathode Material for Lithium-Ion Batteries," Progress in Batteries & Battery Materials, 16 30-43 (1997).
16.Y. M. Chiang, et al., "Synthesis of LiCoO2 by Decomposition and Intercalation of Hydroxides," J. Electrochem. Soc., 145 [3] 887-891 (1998).
17.G. X. Wang, S. Zheng, D. H. Bradhurst, S. X. Dou, H. K. Liu, "LiAl2Nix-2O2 Solid Solutions as Cathodic Materials for Rechargeable Lithium Batteries," Solid State Ionics, 116, 271-77 (1999).
18.L. Feng, Y. Chang, L. Wu, T. Lu, "Electrochemical bahaviour of spinel LiMn2O4 as positive electrode in rechargeable lithium cells," J. Power Sources, 63, 149-152 (1996).
19.W. Liu, K. kowal, G. C. Farrington, "Electrochemical Characteristics of Spinel Phase LiMn2O4 -Based Cathode Materials Prepared by the Pechini Process," J. Electrochem. Soc., 143 [11] 3590-96 (1996).
20.Y. Xia, M. Yoshio, "An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds," J. Electrochem. Soc., 143 [3] 825-833 (1996).
21.Y. Shimakawa, T. Numata, J. Tabuchi, "Verwey-Type Transition and Magnetic Properties of the LiMn2O4 Spinels," J. Solid State Chem., 131, 138-143 (1997).
22.C. Delmas, I. Saadoune, A. Rougier, "The cycling properties of the LixNi1-yCoyO2 electrode," J. Power Sources, 44 [1-3] 595-602 (1993).
23.T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, "Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells," Electrochim. Acta, 38 [9] 1159-67 (1993).
24.A. D. Pasquier, et al., "Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95O4 Electrodes," J. Electrochem. Soc., 146 [2] 428-36 (1999).
25.J. B. Goodenough, M. M. Thackeray, W. I. F. David, P. G. Bruce, "Structural Characterization of delithiated LiVO2," Mater. Res. Bull., 19 [11] 1497-1506 (1984).
26.P. G. Bruce, "Solid-State Chemistry of Lithium Power Sources," Chem. Commun., 1817-24 (1997).
27.E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems -The Solid Electrolyte Interphase Model," J. Electrochem. Soc., 126, 2047-51 (1979).
28.R. Fong, U. V. Socken, J. R. Dahn, "Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells," J. Electrochem. Soc., 137 [7] 2009-2013 (1990).
29.Z. X. Shu, R. S. McMillan, J. J. Murray, "Electrochemical Intercalation of Lithium into Graphite," J. Electrochem. Soc., 140 [4] 922-927 (1993).
30.J. M. Tarascon, D. Guyomard, "Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathode (0 £ x £ 1) and Carbon Anodes," J. Electrochem. Soc., 138 [10] 2864-2868 (1991).
31.J. R. Dahn, R. Fong, M. J. Spoon, "Suppression of Staging in Lithium-Intercalated Carbon by Disorder in the Host," Phys. Rev. B, B42, 6424 (1990).
32.X. Qiu, Q. Liu, L. Yang, "The Processes of Lithium Ions Intercalatinf into Benzene Pyrolytic Decomposition Carbon," Solid State Ionics, 60, 351 (1993).
33.M. Mohri, et al., "Rechargeable Lithium Battery Based on Pyrolytic Carbon as a Negative Electrode," J. Power Sources, 26 [3-4] 545-51 (1989).
34.A. Mabuchi, H. Fujimoto, K. Tokumitus, T. Kasuh, "Charge-Discharge Mechnaism of Graphitized Mesophaase Microbeads," J. Electrochem. Soc., 142, 3049-51 (1995).
35.K. Sekai, et al., "Lithium-Ion rechargeable Cells with LiCoO2 and Carbon Electrodes," J. Power Sources, 43 [1-3] 241-44 (1993).
36.R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi, O. Yamamoto, "Carbon as Negative Electrodes in Lithium Secondary Cells," J. Power Sources, 26 [3-4] 535-43 (1989).
37.T. Zhang, Q. Zhong, J. R. Dahn, "High-Capacity Carbons Prepared from Phenolic Resin for Anode of Lithium-Ion Batteries," J. Electrochem. Soc., 142 [11] L211-L214 (1995).
38.J. S. Xue, J. R. Dahn, "Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins," J. Electrochem. Soc., 142 [11] 3668-77 (1995).
39.A. Herold, Bull. Soc. Chim. France, 187, 999 (1955).
40.K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, "A Mechanism of Lithium Storage in Disordered Carbons," Science, 264 [5158] 556-58 (1994).
41.S. Yata, et al., "Structure and Properties of Deeply Li-doped Polyacenic Semiconductor Materials beyond C6Li Stage," Synth. Met., 62 [2] 153-58 (1994).
42.J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue, "Mechanisms for Lithium insertion in Carbonaceous Materials," Science, 270 [5236] 590-93 (1995).
43.Y. Xia, K. Tatsumi, T. Fujieda, P. P. Prosini, T. Sakai, "Solid-State Lithium-Polymer Batteries Using Lithiated MnO2 Cathodes," J. Electrochem. Soc., 147 [6] 2050-56 (2000).
44.G. Ceder, A. V. D. Ven, M. K. Aydinol, "Lithium-Intercalation Oxides for Rechargeable Batteries," JOM, Setember, 35-40 (1998).
45.T. Hahn, “International Tables for Crystallography, vol. A. space-group symmetry,” D. Reidel Pub. Co., Boston, USA, ed. 2nd rev. ed., 1988.
46.W. A. Deer, R. A. Howie, J. Zussman, “An introduction to the rock-forming minerals,” Longman, Colchester, Essex, 1992.
47.F. S. Galasso, “Structure and Properties of Inorganic Solids,” Pergamon Press, Oxford, New York, USA, 1970.
48.P. Villars, L. D. Calvert, “Pearson''s handbook of crystallographic data for intermetallic phases,” Am. Soc. Metals, Metals Park, OH, vol. 2., 1985.
49.W. H. Bragg, "The Structure of the Spinel Group of Crystals," Pjilos. Mag., 30 [176] 305-15 (1915).
50.S. Nishikawa, "Structure of Some Crystals of the Spinel Group," Proc. Math. Phys. Soc. Tokyo, 8, 199-209 (1915).
51.K. E. Sickafus, J. M. Wills, "Structure of Spinel," J. Am. Ceram. Soc., 82 [12] 3279-92 (1999).
52.Y. M. Chiang, D. P. Birnie, W. D. Kingery, “Physical Ceramics,” John Wiley & Sons, Inc., New York, USA, 1997.
53.R. C. Evans, “An Introduction to Crystal Chemistry,” Cambridge University Press, London, ed. 2nd ed., 1964.
54.R. K. Mishra, G. Thomas, "Surface Energy of Spinel," J. Appli. phys., 48 [11] 4576-4580 (1977).
55.N. W. Grimes, "Off-Centre'' Ions in Compounds with Spinel Structure," Phil. Mag., 26, 1217-26 (1972).
56.Y. Liu, T. Fujiwara, H. Yukawa, M. Morinaga, "Chemical Bonding in Lithium Intercalation Compound LixMn2O4 (x = 0,1,2)," Electrochem. Acta., 46 [8] 1151-59 (2001).
57.J. M. Paulsen, J. R. Dahn, "Phase Diagram of Li-Mn-O Spinel in Air," Chem. Mater., 11 [11] 3065-79 (1999).
58.M. Y. Saidi, J. Barker, R. Koksbang, "Thermodynamic and Kinetic Investigation of Lithium Insertion in the Li1-xMn2O4 Spinel Phase," J. Solid state Chem., 122, 195-199 (1996).
59.M. M. Thackeray, M. F. Mansuetto, C. S. Johnson, "Thermal Stability of Li4Mn5O12 Electrodes for Lithium Batteries," J. Solid State Chem., 125, 274-277 (1996).
60.D. Aurbach, et al., "Capacity Fading of LixMn2O4 Spinel Electrodes Studied by XRD and Electroanalytical Techniques," J. Power Sources, 81-82, 472-479 (1999).
61.W. Liu, K. Kowal, G. C. Farrington, "Mechanism of the Electrochemical Insertion of Lithium into LiMn2O4 Spinels," J. Electrochem. Soc., 145 [2] 459-465 (1998).
62.R. A. Swalin, “Thermodynamics of solids,” J. Wiley, New York, 2nd Edition, 1991.
63.C. H. P. Lupis, “Chemical thermodynamics of materials,” North-Holland, New York, 1983.
64.G. C. Kuczynski, "Self-diffusion in sintering of metallic particles," Trans. AIME, 185, 169-78 (1949).
65.A. W. Searcy, J. W. Bullard, "Thermodynamics and kinetics of surface area changes of faceted particles," J. Am. Ceram. Soc., 77 [9] 2314-18 (1994).
66.J. L. Hutchison, N. A. Briscoe, "Surface Profile Imaging of Spinel Catalyst Particles," Ultramicroscopy, 18, 435-38 (1985).
67.M. R. Huang, C. W. Lin, H. Y. Lu, "Crystallographic Facetting in Solid-State Reacted LiMn2O4 Spinel Powder," Appl. Surf. Sci, 177, 103-13 (2001).
68.C. J. Ting, PhD Thesis, National Sun Yat-Sen University (1997).
69.J. H. Choi, et al., "Equilibrium Shape of Internal Cavities in Sapphire," J. Am. Ceram. Soc., 80 [11] 62-68 (1997).
70.R. J. Thompson, Z. A. Muir, "Influence of particle size on the sintering kinetics of ultapure sodium chloride," J. Am. Ceram. Soc., 65 [6] 312-16 (1982).
71.Z. Y. Wang, M. P. harmer, Y. T. Chou, "Pore-Grain Boundary Configurations in LiF," J. Am. Ceram. Soc., 69 [10] 735-40 (1986).
72.J. M. Bermond, J. J. Metois, X. Egea, F. Floret, "The equilibrium shape of silicon," Surf. Sci., 330, 48-60 (1995).
73.P. W. Atkins, “Physical chemistry,” Oxford University Press, Oxford, England, ed. 1st Edition, 1978.
74.A. W. Adamson, “Physical chemistry of surfaces,” J. Wiley, New York, ed. 5th Edition, 1990.
75.D. Tabor, “Gases, liquids and solids,” Cambridge Unievrsity Press, Cambridge, England, ed. 2nd Edition, 1979.
76.T. E. Mitchell, "Dislocation and Mechanical Properties of MgO-Al2O3 Spinel Single Crystals," J. Am. Ceram. Soc., 82 [12] 3305-16 (1999).
77.P. W. Tasker, "The Surface Energies, Surface Tensions and Surface Structure of the Alkali Halide Crystals," Philos. Mag. A, 39 [2] 119-36 (1979).
78.C. A. Powell-Dogan, A. H. Heuer, "Microstructure of 96% Alumina Ceramics: I, Chacacterisation of the as-Sintered Materials," J. Am. Ceram. Soc., 73 [12] 3670-76 (1990).
79.M. P. Mallamici, A. B. Carter, "Faceting of the interface between Al2O3 and anorthite glass," Acta Mater., 46 [8] 2895-2907 (1998).
80.G. Wulff, "Zur Frage deer Geshwindigkeit des Washstums und der Aufloesung der Krystallflaechen," Z. Kristallogr., 34, 449-530 (1901).
81.C. Herring, “Structure and Properties of Solid Surfaces,” R. Gomer, C. S. Smith, Eds. University of Chicago Press, Chicago, pp. 5-81, 1953.
82.C. M. Fang, S. C. Parker, G. D. With, "Atomistic Simulation of the Surface Energy of Spinel MgAl2O4," J. Am. Ceram. Soc., 83 [8] 2082-84 (2000).
83.C. R. A. Catlow, K. M. Diller, M. J. Norgett, "about Buckingham potential," J. Phys. C: Solid State Phys., 10, 1395 (1977).
84.G. V. Lewis, C. R. A. Catlow, "Potential Models for Ionic Oxides," J. Phys. C: Solid State Phys., 18 1149-61 (1985).
85.R. L. Stewart, R. C. Bradt, “Plastic deformation of ceramics,” R. C. Bradt, Ed. Plenum Press, New York, pp. 21-28, 1995.
86.M. Born, K. Huang, “Dynamic theory of crystal lattices,” Oxford University Press, Oxford, 1954.
87.B. E. Sandquist, "A Direct Determination of the Anisotrpopy of the Surface Free Energy of Solid Gold, Silver, Copper, Nickel and Alpha and Gamma Iron," Acta Metall., 12 [1] 67-86 (1964).
88.F. A. Nichols, W. W. Mullins, "Surface-(Interface-) and volume diffusion contributions to morphological changes driven by capillarity," Trans. ZIME, 233 [10] 1840-45 (1995).
89.J. E. Blendell, W. C. Craig, C. A. Handwerker, "Faceting and Wetting Transition of Anisotropic Interfaces and Grain Boundaries," J. Am. Ceram. Soc., 82 [7] 1889-1900 (1999).
90.W. W. Mullins, "Theory of Linear Facet Growth during Thermal Etching," Philos. Mag., 6, 1313-41 (1961).
91.J. R. Heffelinger, M. W. Bench, C. B. Carter, "On the Faceting of Ceramic Surfaces," Surf. Sci., 343, L1161-66 (1995).
92.J. W. Gibbs, “The Scientific Papers, vol. 1, Thermodynamics,” Dover, New York, 1961.
93.C. Rottman, M. Wortis, "Equilibrium Crystal Shapes for Lattice Models with Nearest and Next-Nearest-Neighbour Interactions," Phys. Rev. B, 29 [1] 328-39 (1984).
94.V. S. Pervov, I. A. Kedrinskii, E. V. Makhonina, "Cathode Materials for Rechargeable Lithium Batteries," Inorg. Mater., 33 [9] 869-877 (1997).
95.R. J. Gummow, M. M. Thackeray, "An Investigation of Spinel-Related and Orthorhomic LiMnO2 Cathodes for Rechargeable Lithium Batteries," J. Electrochem. Soc., 141 [5] 1178-82 (1994).
96.M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, "Lithium Insertion into Manganese Spinels," Mat. Res. Bull., 18, 461-472 (1983).
97.R. J. Gummow, A. DeKock, M. M. Thackeray, "Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium-Manganese Oxide (Spinel) Cells," Solid State Ionics, 69 [1] 59-67 (1994).
98.M. M. Thackeray, M. F. Mansuetto, D. W. Dees, D. R. Vissers, "The Thermal Stability of Lithium-Manganese-Oxide Spinel Phases," Mat. Res. Bull., 31 [2] 133-140 (1996).
99.G. Ceder, et al., "Identification of Cathode Materials for Lithium Batteries guided by first-principles calculations," Nature, 392, 694-696 (1998).
100.P. Strobel, F. L. Cras, M. Anne, "Composition-Valence Diagrams: A New Reprresentation of Topotatic Reaction in Ternary Transition Metal Oxide Systems. Application to Lithium Intercalation," J. Solid State Chem., 124, 83-94 (1996).
101.G. G. Amatucci, et al., "Materials'' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries," Journal of Power Sources, 69, 11-25 (1997).
102.F. L. Cras, P. Strobel, M. Anne, D. Bloch, "Lithium intercalation in low temperature Li-Mn-O compounds: a new monoclinic phase and structural in situ studies," Journal of Power Sources, 65, 225 (1997).
103.Y. Gao, J. R. Dahn, "The High Temperature Phase Diagram of Li1+xMn2-xO4 and Its Implications," J. Electrochem. Soc., 143 [6] 1783-1788 (1996).
104.D. H. Jang, Y. J. Shin, S. M. Oh, "Dissolution of Spinel Oxides and Capacity Losses in 4V Li/LixMn2O4 Cells," J. Electrochem. Soc., 143 [7] 2204-2211 (1996).
105.D. H. Jang, S. M. Oh, "Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells," J. Electrochem. Soc., 144 [10] 3342-48 (1997).
106.D. Aurbach, Y. Gofer, "The Behavior of Lithium Electrodes in Mixtures of Alkyl Carbonates and Ethers," J. Electrochem. Soc., 138 [12] 3529-35 (1991).
107.D. Aurbach, et al., "The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. I. Li Anodes," J. Electrochem. Soc., 142 [9] 2873-81 (1995).
108.M. M. Thackeray, "Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries," J. Electrochem. Soc., 142 [8] 2558-2563 (1995).
109.N. W. Grimes, "Structural Distortion in MgCr2O4," J. Phys. C: Solid State Physics, 4, L342-L344 (1971).
110.S. J. Wen, et al., "FTIR Spectroscopy of Metal Oxide Insertion Electrodes: A New Diagnostic Tool for Analysis of Capacity Fading in Secondary Li/LiMn2O4 Cells," J. Electrochem. Soc., 143 [6] L136-L138 (1996).
111.Y. Xia, Y. Zhou, M. Yoshio, "Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells," J. Electrochem. Soc., 144 [8] 2593-600 (1997).
112.J. N. Reimers, J. R. Dahn, "Electrochemical and In Situ X-Ray Diffraction Studies of Lihtium Intercalation in LixCoO2," J. Electrochem. Soc., 139 [8] 2091-97 (1992).
113.T. Ohzuku, A. Ueda, M. Nagayama, "Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells," J. Electrochem. Soc., 140 [7] 1862-69 (1993).
114.M. M. Thackeray, "Spinel Electrodes for Lithium Batteries," J. Am. Ceram. Soc., 82 [12] 3347-3354 (1999).
115.A. V. d. Ven, M. K. Aydinol, G. J. Ceder, "First-Principles Evidence for Stage Ordering in LixCo02," J. Electrochem. Soc., 145 [6] 2149-54 (1998).
116.C. Wolverton, A. Zunger, "First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in LixCoO2," Phys. Rev. Lett., 81 [3] 606-9 (1998).
117.J. P. Peres, F. Weill, C. Delmas, "Lithium/Vacancy Ordering in the Monoclinic LixNiO2 (0.50 £ x £ 0.75) Solid solution," Solid State Ionics, 116, 19-27 (1999).
118.C. Delmas, et al., "Lithium Batteries: a New Tool in Solid State Chemistry," Inter. J. Inorg. Mater., 1, 11-19 (1999).
119.R. J. Gummow, D. C. Liles, M. M. Thackeray, "Lithium Extraction from Orthorhombic Lithium Manganese Oxide and the Phase Transformation to Spinel," Mat. Res. Bull., 28, 1249-56 (1993).
120.Y. S. Horn, et al., "Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging," J. Electrochem. Soc., 146 [7] 2404-12 (1999).
121.J. N. Reimers, E. W. Fuller, E. Rossen, J. R. Dahn, "Synthesis and Electrochemical Studies of LiMnO2 Prepared at low Temperature," J. Electrochem. Soc., 140 [12] 3396-3401 (1993).
122.I. M. Kotschau, J. R. Dahn, "In Situ X-Ray Study of LiMnO2," J. Electrochem. Soc., 145 [8] 2672-2677 (1998).
123.G. Vitins, K. West, "Lithium Intercalation into Layered LiMnO2," J. Electrochem. Soc., 144 [8] 2587-2592 (1997).
124.T. Ohzuku, A. Ueda, N. Yamamoto, "Zero-Strain Insertion Material of Li[Li1/3Ti5/3]04 for Rechargeable Lithium Cells," J. Electrochem. Soc., 142 [5] 1431-35 (1995).
125.Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, Y. Tokura, "Collapse of a Charge-Ordered State under a Magnetic Field in Pr1/2Sr1/2MnO3," Phys. Rev. Lett., 74 [25] 5108-11 (1995).
126.E. J. W. Verwey, P. W. Haaymann, "Electronic Conductivity and Transition point of Magnetite Fe3O4," Physica, 8, 979-87 (1941).
127.S. Mori, C. H. Chen, S. W. Cheong, "Pairing of Charge-Ordered Stripes in (La,Ca)MnO3," Nature, 392 [6675] 473-77 (1998).
128.N. F. Mott, "Materials with Mixed Valency that show a Verwey Transition," Philos. Mag. B, 42 [3] 327-35 (1980).
129.J. Schoonman, H. L. Tuller, E. M. Kelder, "Defect Chemical Aspects of Lithium-Ion Cathodes," J. Power Sources, 81-82, 44-48 (1999).
130.M. M. Thackeray, M. F. Mansuetto, J. B. Bates, "Structural stability of LiMn2O4 electroces for lithium batteries," Journal of Power Sources, 68, 153-158 (1997).
131.J. Sugiyama, T. Atsumi, T. Hioki, S. Noda, N. Kamegashira, "Oxygen Nonstoichiometry of Spinel LiMn2O4-d," Journal of Alloys and compounds, 235, 163-169 (1996).
132.J. Sugiyama, T. Atsumi, T. Hioki, S. Noda, N. Kamegashira, "Nonstoichiometry and defect structure of spinel LiMn2O4-d," Journal of Power Sources, 68, 641-645 (1997).
133.M. Tabuchi, et al., "Characterization of Li1-dMn2-2dO4 defect spinel materials by their phase transition, magnetic and electrochemical properties," Journal of Power Sources, 68, 623-628 (1997).
134.J. R. Carvajal, G. Rousse, C. Masquelier, M. Hervieu, "Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn2O4," Phys. rev. Lett., 81 [21] 4660-63 (1998).
135.J. Marzec, et al., "Conduction Mechanism in Operating a LiMn2O4 Cathode," Solid State Ionics, 146 [3-4] 225-37 (2002).
136.E. Iguchi, N. Nakamura, A. Aoki, "Electrical Transport properties in LiMn2O4," Philos. Mag. B, 78 [1] 65-77 (1998).
137.B. Chu, "Laser Light Scattering - Basic principles and practice," academic Press, Inc., 2nd ed. 2-3 (1991).
138.J. S. Reed, "Principles of Ceramic Processing," J. Wiley & Son, Inc., 2nd ed. chapter7-8 (1995).
139.B. Chu, "Laser Scattering," J. Chem. Educ., 45, 224-29 (1968).
140.D. G. Guyomard, J. M. Tarascon, “United States patent,” Bell Communications Research, Inc., Livingston, N.J., 1993.
141.ASTM, "Standard test method for water absorption, bulk density, apparent porosity and apparent speific gravity for fired whiteware products," Annual book of ASTM standards, 15.02, 112-113 (1990).
142.B. D. Cullity, "Elements of X-Ray Diffraction," Addison-Wesley, New York, 2nd. ed. 352-358 (1978).
143.M. H. Loretto, “Electron beam analysis of materials,” Chapman and Hall, London, ed. 2nd Ed., 1994.
144.E. T. Hahn, “International Tables for Crystallography - vol. A: Space-Group Symmetry,” Kluwer, Holland, Dordrecht, 4th revised edition, 1996.
145.D. B. Williams, C. B. Carter, “Transmission electron microscopy,” Plenum, New York, 1996.
146.P. Villars, L. D. Calvert, “Pearson''s handbook of crystallographic data for intermetallic phases.” ASM International, Materials Park, OH, 2nd edition, 1991.
147.R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta. Cryst., A32, 751-67 (1976).
148.K. Kanamura, H. Naito, T. Yao, Z. Takehara, "Structural Change of the LiMn2O4 Spinel Structure Induced by Extraction of Lithium," J. Mater. Chem., 6 [1] 33-36 (1996).
149.E. Cartmell, “Principles of Crystal Chemistry,” Royal Institute of Chemistry, Monograph for Teachers, London, England, 1971.
150.M. P. Mallamaci, C. B. Carter, "Faceting of the Interface Between Al2O3 and Anorthite Glass," Acta. Mater., 46 [8] 2895-2907 (1998).
151.D. Y. Kim, S. M. Wiederhorn, B. J. H. e. al., "Stability and Surface Energies of Wetted Grain Boundaries in Al2O3," J. Am. Ceram. Soc., 77 [2] 444-453 (1994).
152.F. D. Bloss, “Crystallography and Crystal Chemistry,” Holt, Reinhart and Winston Inc., 1971.
153.R. Uyeda, “in Morphology of Crystals, Part B,” I. Sunagawa, Ed. Terra Scientific, Tokyo, pp. 367-508, 1987.
154.A. J. E. Foreman, H. S. v. Harrach, D. K. Saldin, "The TEM Contrast of Faceted Voids," Philos. Mag. A, 45 [4] 625-45 (1982).
155.L. Hwang, A. H. Heuer, T. E. Mitchell, "On the Space Group of MgAl2O4 Spinel," Pjilos. mag., 28, 241-43 (1973).
156.A. H. Heuer, T. E. Mitchell, "Further Discussion on the Space Group of Spinel," J. Phys. C: Solid State Physics, 8, L541-L543 (1975).
157.M. Tokoname, H. Horiuchi, "On the Space Group of Spinel, MgAl2O4," Acta. Cryst., A36, 122-26 (1980).
158.B. C. D. Cooman, C. B. Carter, "On the Point Group of Stoichiometric Spinel, MgO Al2O3," Philos. Mag. A, 51 [2] 175-190 (1985).
159.F. C. Philips, “An Introduction to Crystallography,” Longman, Harlow, Essex, 4th ed., 1971.
160.T. Hayashi, T. Ohno, S. Y. e. al., "Formation of Ultrafine Metal Particles by Gas-Evaporation Technique, IV: Crystal Habits of Iron and fcc Metals, Al, Co, Ni, Cu, Pd, Ag, In, Au, Pb," Jap. J. Appl. Phys., 16, 705-17 (1977).
161.W. W. Millins, G. S. Rohrer, "Nucleation Barrier for Volume-Conserving Shape Changes of Faceted Particles," J. Am. Ceram. Soc., 83 [1] 214-16 (2000).
162.M. D. Levi, D. Aurbach, "Mechanism of Lithium Intercalation in Graphite Film Electrodes in Aprotic Media. Part 1. High Resolution Slow Rate Cyclic Volyammetric Studies and Modeling," J. Electroanal. Chem., 421 [1-2] 79-88 (1997).
163.M. D. Levi, D. Aurbach, "Mechanism of Lithium Intercalation in Graphite Film Electrodes in Aprotic Media. Part 2. Potentiostatic Intermittent Titration and in Situ XRD Studies of the Solid-State Ionic Diffusion," J. Electroanal. Chem., 421 [1-2] 89-97 (1997).
164.D. Aurbach, et al., "Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides," J. Electrochem. Soc., 145, 3024-34 (1998).
165.G. Pistoia, G. Wang, "Aspect of the Li+ insertion into LixMn2O4 for 0 < x < 1," Solid State Ionics, 66 [1-2] 135-42 (1993).
166.N. W. Grimes, P. Thompson, H. F. Kay, "New Symmetry and Structure for Spinel," Proc. R. Soc. A, 386, 333-45 (1983).
167.J. M. Tarascon, F. Coowar, G. Amatuci, F. K. Shokoohi, D. G. Guyomard, "The Li1+xMn2O4/C system materials and electrochemical aspects," J. Power Sources, 54, 103-108 (1995).
168.A. D. Brailsord, N. A. Gjostein, "Influence of Surface Energy Anisotropy on Morphological Changes Occuring by Surface Diffusion," J. Appl. Phys., 46 [6] 2390-97 (1975).
169.R. J. Brook, “in Fabrication Processes in Ceramics,” F. F. Y. Wang, Ed. AP, New York, 1976.
170.R. L. Stewart, R. C. Bradt, "Fracture of Single Crystal MgAl2O4," J. Mater. Sci, 15, 67-72 (1980).
171.N. W. Grimes, "Antiferroelectricity among Compounds with Spinel Structure?," J. Phys. C: Solid State Phys., 6, L78-L79 (1973).
172.A. Putnis, “Introduction to Mineral Sciences,” Cambridge University Press, Cambridge, England, 1992.
173.R. G. Burns, “Mineralogical Applications of Crystal Field Theory,” Cambridge University Press, Cambridge, England, 1970.
174.S. Elliott, “The Physics and Chemistry of Solids,” J. Wiley & Son, Inc, New York, USA, 1998.
175.J. D. Shore, D. J. Bukman, "Phase Separation of Crystal Surface: A Lattice Gas Approach," Phys. Rev. B, 51 [5] 4196-4211 (1995).
176.M. Tokonami, H. Horiuchi, "On the Space Group of Spinel, MgAl2O4," Acta Cryst., A36 122-126 (1980).
177.M. Y. Song, D. S. Ahn, H. R. Park, "Capacity Fading of Spinel Phase LiMn2O4 with Cycling," J. Power Sources, 83, 57-60 (1999).
178.G. Pistoia, A. Antonini, R. Rosati, D. Zane, "Storage Characteristics of Cathodes for Li-Ion Batteries," Electrochem. Acta, 41 [17] 2683-2689 (1996).
179.D. A. Skoog, D. M. West, F. J. Holler, “Analytical Chemistry: An Introduction,” Saunder College Publishing, Philadelphia, USA, fifth ed., 1990.
180.W. Huang, R. Frech, "In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes," J. Power Sources, 81-82, 616-20 (1999).
181.X. Q. Yang, et al., "In Situ Synchrotron X-Ray Diffraction Studies of the Phase Transitions in LixMn2O4 Cathode Materials," Electrochem. and Solid State Lett., 2 [4] 157-60 (1999).
182.S. Mukerjee, et al., "Structural Evolution of LixMn2O4 in Lithium-Ion Battery Cells Measured In Situ Using Synchrotron X-Ray Diffraction Techniques," J. Electrochem. Soc., 145 [2] 466-472 (1998).
183.H. Huang, et al., "Electrochemical Characterization of Commercial Lithium Manganese Oxide Powders," Solid State Ionics, 127, 31-42 (2000).
184.P. R. Buseck, P. H. Ribbe, "Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy," Reviews in mineralogy, Mineralogical Society of America, 27, 455-508 (1993).
185.N. Treuil, et al., "Relationship Between Chemical Bonding Nature and Electrochemical Property of LiMn2O4 Spinel Oxides with Various PArticle Sizes: :Electrochemical Grafting" Concept," J. Phys. Chem. B, 103 [12] 2100-106 (1999).
186.H. Oka, et al., "Structural Analysis of Lithium-excess Lithium Manganate Cathode Materials by 7Li magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy," Solid State Ionics, 144 [1-2] 19-29 (2001).
187.Y. Liu, T. Fujiwara, H. Yukawa, M. Morinaga, "Lithium Intercalation and Alloying Effects on Electrode Structures of Spinel Lithium manganese Oxides," Solar Energy Materials & Solar Cells, 62, 81-87 (2000).
188.Y. Koyama, I. TAnaka, H. Adachi, Y. Uchimoto, M. Wakihara, "First Principles Calculations of Formation Energies and Electronic Structures of Defects in Oxygen-Deficient LiMn2O4," J. Electrochem. Soc., 150 [1] A63-A67 (2003).
189.M. Wakihara, G. Li, H. Ikuta, “Lithium Ion batteries,” M. Wakihara, O. Yamamoto, Eds. Wiley-VCH, Weinheim, Kodansha,Tokyo, pp. 26-48, 1998.
190.M. Wakihara, "Recent Developments in Lithium Ion Batteries," Mater. Sci. Eng., R33, 109-34 (2001).
191.M. Hosoya, H. Ikuta, T. Uchida, M. Wakihara, "The Defect Structure Model in Nonstoichiometric LiMn2O4-d," J. Electrochem. Soc., 144 [4] L52-L53 (1997).
192.N. Hayashi, H. Ikuta, M. Wakihara, "Cathode of LiMgyMn2-yO4 and LiMgyMn2-yO4-d Spinel Phases for Lithium Secondary Batteies," J. Electrochem. Soc., 146 [4] 1351-54 (1999).
193.T. Nakamura, A. Kajiyama, "Low-Temperature Annealing of Li-Mn Spinel Oxide Prepared at High Temperature," Solid State Ionics, 133 [3-4] 195-202 (2000).
194.L. Guohua, H. Ikuta, T. Uchida, M. Wakihara, "The Spinel Phases LiMyMn2-yO4 (M=Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries," J. Electrochem. Soc., 143 [1] 178-182 (1996).
195.A. F. Wells, “Structural Inorganic Chemistry,” Clarendon Press, Oxford, New York, ed. 5th ed., 1984.
196.V. W. J. Verhoeven, et al., "Lithium Dynamics in LiMn2O4 Probed Directly by Two-Dimensional 7Li NMR," Phys. Rew. Lett., 86 [19] 4314-17 (2001).
197.A. Yamada, K. Miura, K. Hinokuma, M. Tanaka, "Synthesis and Structural Aspects of LiMn2O4** as a Cathode for Rechargeable Lithium Batteries," J. Elrctrochem. Soc., 142 [7] 2149-2156 (1995).
198.J. D. Dunitz, L. E. Orgel, "Electronic properties of transition-metal oxides -- I : Distortions from cubic symmetry," J. Phys. Chem. Solids, 3 [1-2] 20-29 (1957).
199.J. D. Dunitz, L. E. Orgel, "Electronic properties of transition-metal oxides-II : Cation distribution amongst octahedral and tetrahedral sites," J. Phys. Chem. Solids, 3 [3-4] 318-23 (1957).
200.C. Metzmacher, W. A. Groen, I. M. Reaney, "Microstructure and Electrical Properties of Mn-Ni-In Spinels," Phys. Stat. Sol., 181, 363-86 (2000).
201.D. G. Wickham, W. J. Croft, "Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese," J. Phys. Chem. Solids, 7 [4] 351-60 (1958).
202.N. Baffier, M. Huber, J. Phys. Chem. Solids, 33, 737 (1972).
203.G. Li, Y. Iijima, Y. Kudo, H. Azuma, "Structural Changes of Manganese Spinel at Elevated Temperatures," Solid State Ionics, 146 [1-2] 55-63 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top