跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊凱琳
研究生(外文):Kai-Lin Yang
論文名稱:Ti3Al基合金之低溫超塑性與應變誘發相變化研究
論文名稱(外文):Low Temperature Superplasticity and Strain Induced Phase Transformation in Ti3Al Based Alloy
指導教授:黃志青黃志青引用關係
指導教授(外文):J. Chih-Ching Huang
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:182
中文關鍵詞:非等向性鈦合金相變化織構超塑性
外文關鍵詞:AnisotropySuperplasticityTextureTitanium alloysPhase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
Ti3Al基介金屬合金因其具有優異的高溫性質,因此是目前航太工業上倍受矚目的材料。本Ti-25Al-10Nb-3V-1Mo合金在高溫950-1000oC及低應變速率10-4-10-5 s-1下具有相當卓越之高溫超塑性,伸長率高達1000%以上,低溫則在850oC (0.57 Tm) 及5x10-4 s-1的應變速率下可獲得330%的低溫超塑性。本研究係探討Ti3Al合金之低溫超塑性質,並針對本研究中之重要發現,超塑性應變所誘發的相變化行為,做一整合性之分析及探討,進而建立低溫超塑性之變形機制,此發現將有助於Ti3Al合金低溫超塑性之開發。

本合金乃經由熱機處理所製成具有雙相(��2+��)組織之軋延薄板,細晶粒(2.2 �慆)的��2相均勻分佈在�狴嶼菑丑A兩相體積分率約40%比60%。在700-960oC靜態退火及超塑性拉伸過程中發現,��2’相會經由原子擴散的方式,由�珙衕鉣雃茖荂C這些經由相變化所產生的板條狀��2’相,因其會在�珙菑之峖芋A且與原先的��2相具有相同之DO19結晶構造,係屬不易變形的六方晶系,因此會阻礙超塑性變形時的差排調適過程,使得延展性大為降低,此乃是造成低溫超塑性無法達成的主要因素,此外,再加上應變誘發相變化結果,使得��2’相大量產生,造成900oC以下低溫超塑性之開發之困難性,本研究將對此一行為做深入性之探討。

另外,在機械非等向性行為研究方面,由室溫至高溫的非等向性機性測試中發現,當拉伸軸與軋延軸夾45o方向進行超塑性拉伸時,可獲得最佳之超塑性質。主要是因為軋延織構的存在,影響到差排的移動能力,所造成的非等向性機械行為。除此之外,本研究也利用背向散射電子繞射(EBSD)的方法,研究織構行為、觀察變形織構之演變及晶界滑移的程度,進而對變形機制做關聯性之整合。
Ti3Al based intermetallic alloys are attractive for aerospace and aircraft applications due to their superior high temperature properties. Excellent high temperature superplasticity in the Ti3Al-Nb based alloy has been widely published. However, the alloys become brittle and hard to deform at temperatures below 600oC so that low temperature superplasticity is difficult to develop. In the current super ��2 Ti3Al based alloy, the ordered BCC �� phase is the continuous matrix, with the DO19 hexagonal ��2 grains ~2.2 �慆 in grain size distributed uniformly in the �� matrix. The initial �� and ��2 volume fractions are around 60% and 40%, respectively, and strong textures are present in both phases. Although the alloy exhibits superior superplastic elongations over 1000% at 920-1000oC, the elongation drops appreciably to 600% at 900oC, 330% at 850oC and 140% at 750oC.
Upon subsequent static annealing and superplastic loading at 700-960oC, the alloy tends to undergo �� to ��2’ phase evolution, approaching to the equilibrium phase partition at the respective temperature. The transformation seems to be enhanced during dynamic straining at temperatures lower than 900oC, suggesting the strain enhanced phase transformation. With the fine ��2’ laths inside the �� grains, the accommodation process across the BCC �� grains is impeded, leading to premature failure and lower tensile elongations at lower temperatures.
Mechanical anisotropy is observed in this alloy and relatively higher tensile elongations are obtained in the 45o specimen as loaded at room temperature to 960oC. The texture characteristics appear to impose significant influence on the mechanical anisotropy at temperatures below 750oC (under the dislocation creep condition), as well as during the initial stage at a higher temperature of 920oC (under the superplastic flow condition). Systematic tracing of the texture evolution from the as-received to superplastically loaded specimens has been accomplished using electron backscattered diffraction. With the extensive dislocation motion plus a certain degree of grain boundary sliding and grain rotation during loading at 750oC, the ��2 grains gradually rotate to form the {0001} basal texture and some of the �� grains concentrate into the {111}< > orientation. At higher temperatures such as 920oC, extensive grain boundary sliding proceeds and results in grain orientation distributions for the ��2 and �� phases basically random in nature. Rationalizations for the mechanical anisotropy in terms of the Schimid factor calculations for the major and minor texture components in the ��2 and �� phases provide consistent explanations for the deformation behavior at lower temperatures as well as the initial straining stage at higher temperatures.
TABLE OF CONTENTS……..……………………………………………….……………….i
LIST OF TABLES……..……………………………………………….………….………….iv
LIST OF FIGURES……..……………………………………………….……………………vi
ABSTRACT……..……………………………………………….………………………….xiii
中文提要…………………………………………………………………………………….xv
致謝…………………………………………………………………………………………xvi
CHAPTER 1 Background and Research Motive…….....……………………………………1
1.1 Introduction to Ti3Al intermetallic compounds………………………….………...1
1.1.1 The characteristics of Ti3Al………………………….…………….………1
1.1.2 The structures and properties of Ti3Al…………………………….………1
1.2 Processing for producing fine-grained Ti3Al alloys……..……….…………………3
1.3 Introduction to superplasticity and deformation mechanisms..……………………..6
1.3.1 Introduction to superplasticity……………………….…………….………6
1.3.2 Deformation mechanisms………………………………………….……11
1.4 Superplastic behavior in Ti3Al alloys……………………………………….……13
1.4.1 HTSP in Ti3Al alloys………………………………………...…….……..13
1.4.2 LTSP in Ti3Al alloys……………………………………………….……17
1.4.3 LTSP and HSRSP in other Ti based alloys……………………….………19
1.5 Phase transformation phenomena…………………………………………...……21
1.6 Anisotropy during superplastic deformation………………………………………23
1.7 The texture analyses on Ti3Al alloys………………………………………..……24
1.8 Introduction to electron back scatterred diffraction (EBSD) ……………..………28
1.8.1 Advantages of EBSD……………………………………………...……28
1.8.2 The basic principles and set-up of a typical EBSD system………………29
1.9 Motive of the research………………………….……………………………...…31
CHAPTER 2 Experimental Methods…….....…………………………………………..…33
2.1 Materials………………………….……….. ……………………………….……33
2.2 Mechanical tests….…………………………………………………….…….……33
2.3 Anisotropic tests…..………………………………………………………….……34
2.4 Retention of microstructure for tensile specimens………………………….……35
2.5 Microstructure characteristics……………………………………………………35
2.5.1 OM and SEM observations………………………………………..……35
2.5.2 TEM observations………………………….………………………...…36
2.6 Volume fraction determinations………………………….………………………36
2.7 Texture analyses………………………….………………………………………37
CHAPTER 3 Experimental Results…….....………………………………………….……39
3.1 Microstructure characterization of the as-received materials……………………39
3.2 Mechanical tests…..………………………….……………………………………40
3.2.1 Room temperature properties…………………………………….………40
3.2.2 Elevated temperature properties…………………………….….………...40
3.3 Anisotropic tests…………………………………………………………………41
3.4 Microstructure evolutions………………………….……………………………42
3.4.1 Static annealing………………………………………………….……….42
3.4.2 The crystal relationship between �� and ���╮式K……………………….…45
3.4.3 Microstructural evolution during superplastic loading……………..……46
3.5 Texture analyses………………………….………………………………………48
3.5.1 The as-received materials……………………….………………………48
3.5.2 Texture evolution during anisotropic tensile straining…………………53
3.5.2.1 Lower temperature at 750oC…………………………...……54
3.5.2.2 Higher temperature at 920oC…………………………..……55
3.5.2.3 Grain misorientation distributions at 750oC and 920oC...……56
3.5.2.4 Texture evolution as a function of superplastic strain……..…58
CHAPTER 4 Discussions…….....…………………………………………………………60
4.1 Deformation mechanisms…………………………….………………….………...60
4.1.1 Apparent strain rate sensitivity (ma) …………………………….……….60
4.1.2 Apparent activation energy (Qa) ………………….……………….……60
4.1.3 Threshold stress (�綟h), true strain rate sensitivity (mt), and true activation energy (Qt) ……………………………………………………….………61
4.1.4 Deformation mechanisms during LTSP……...………………….……….63
4.2 Phase transformation characteristics……………………………………….……64
4.2.1 �� to ��2 transformation behaviors………………………………….……64
4.2.2 Deformation enhanced transformation…………………………….……67
4.2.3 Relationship between microstructure transformation and superplastic performance……………………………………………………….……69
4.3 The relationship among texture, mechanical anisotropy and superplasticity…...…70
4.3.1 Texture evolution during thermomechanical treatment………………..…70
4.3.2 Texture evolution during superplasticity………………………….……72
4.3.3 Influence from textures on the mechanical anisotropy……………..……73
4.3.3.1 Microstructure effects on the mechanical anisotropy………...73
4.3.3.2 Texture effects on the mechanical anisotropy……………..…73
CHAPTER 5 Conclusions…….....………………………………………………………….76
REFERENCES………………………………………………………………………………79
TABLES……………………………………………………………………………………86
FIGURES…………………………………………………………………………………...106




LIST OF TABLES

Table 1 Summary of typical intermetallic compounds….…….…………………….……86
Table 2 The main accommodation processes accommodated for GBS……….………….87
Table 3 Models of CGBS…………………………………………………………………89
Table 4 Summary of HTSP in Ti3Al base alloys…………………….……………………91
Table 5 Summary of LTSP in Ti3Al base alloys………………….…………………….....92
Table 6 Summary of LTSP or HRSP in other Ti based alloys…………….………………93
Table 7 The crystal parameters of the Ti3Al-Nb alloy…………….……………………...94
Table 8 Summary of tensile properties at different strain rates and temperatures. The elongations listed here are subjected to 10% uncertainty.……………………..95
Table 9 Anisotropic tensile test results performed at room temperature and an initial strain rate of 3x10-3 s-1…………………………………………………………………..96
Table 10 Anisotropic tensile test results performed at elevated temperatures and an initial strain rate of 5x10-4 s-1……………………………………..……………………96
Table 11 The grain sizes and volume fractions in specimens statically annealed for 1.5 h and then water quenched………………...…………………..…………………...97
Table 12 Measurement of the ��2’ thickness, h, and the relative volume fractions in specimens statically annealed at 800 and 850oC for different periods of time and then water quenched……………………………………….……………………98
Table 13 The relative volume fractions in specimens statically annealed at 850oC for 1.5 h and then cooled under different conditions…………….….……………………..98
Table 14 The ��2 grain size and relative volume fractions in the tensile loaded specimens deformed to failure………………………..……………….……………………..99
Table 15 Measurement of the ��2’ thickness, h, and the relative volume fractions in specimens tensile loaded at 850oC and 5x10-4 s-1 to different engineering elongations or true strains ��.........................……………….……………………100
Table 16 The misorientation angle distribution in the theoretically random case, the as-received alloy, and the 0o post-SP specimens at 750 and 920oC……………101
Table 17 The misorientation angle distribution in the theoretical randomly case, and the post-SP 0o specimen performed at 850oC and 5x10-4 s-1 to different true strains �捸K………………………………………………………………………………101
Table 18 The textures sharpness measured from the AR alloy and the post-SP specimens…………………………………………………………………….…102
Table 19 The apparent ma-values and the true mt-values at 700-850oC…………………103
Table 20 The apparent Qa-values and the true Qt-values at 700-850oC…………………..104
Table 21 Schmid factors calculated for the ���nphase………………………………………104
Table 22 Schmid factors calculated for the ��2�nphase……………………………………..105














LIST OF FIGURES

Fig. 1 Ti-Al binary equilibrium phase diagram….………………………………………106
Fig. 2 (a) Phase diagram of the Ti3Al-Nb system, and (b) relative volume fractions of the ��2 and �� phases in accordance with the equilibrium phase diagram……………107
Fig. 3 The crystal structures of the�n(a) ��2, (b) O�z�nand (c) �� phases……………………..108
Fig. 4 A vertical section along the Ti-27.5Al-Nb for the Ti-Al-Nb system. For Ti3Al with the Nb content ~10 at%, the stable phases at the TMT processing temperature of ~1000-1200oC are only ��2 and B2……………..…………………………………109
Fig. 5 Illustration of the principle of an EBSD system…………………………………..110
Fig. 6 Illustration of the set-up of an EBSD system……………………………………..110
Fig. 7 Schematic Euler angles (��1, ���z�n���n2), which would specify an orientation…………111
Fig. 8 Schematic illustration of the misorientation angle between two grains…………..111
Fig. 9 Schematic drawing of the specimen dimension for tensile tests at (a) elevated temperatures (with a gauge length of 5.5 mm), and (b) room temperature (with a gauge length of 10 mm)…………………………………………………………112
Fig. 10 Illustration of the design for quenching by liquid nitrogen……………………….113
Fig. 11 SEM micrograph showing the three-dimensional microstructure of the as-received material (the darker phase is the ��2 phase and the ligher one is the �� phase)……114
Fig. 12 OM micrographs of the as-received material taken from the (a) rolling plane, (b) longitudinal plane, and (c) transverse plane………………………………………115
Fig. 13 (a) TEM micrograph of the as-received material, with the diffraction patterns taken from the (b) ��2 [ ] and (c) �� [001] zones………………………………….117
Fig. 14 Representative planer slip in the �� phase…………………………………………118
Fig. 15 The (a) engineering and (b) true stress-strain curves recorded from tensile tests performed at room temperature (25oC) and an initial strain rate of 3x10-3 s-1........119
Fig. 16 The dependence of superplastic elongations as a function of loading temperature at four different initial strain rates.…………………………………………………120
Fig. 17 The dependence of superplastic elongations as a function of strain rate at representative temperatures.………………………………………………………120
Fig. 18 The appearance of specimens before and after superplastic loading at 850oC and 5x10-4 s-1…………………………………………………………………………..121
Fig. 19 Typical true stress-strain curves recorded from tensile tests at different initial strain rates for the loading temperatures of (a) 700oC, (b) 750oC, (c) 800oC, and (d) 850oC.......................................................................................................................122
Fig. 20 The variation of engineering UTS as a function of loading temperature at 700-1000oC………………………………………………………………………124
Fig. 21 The stress-strain curves recorded from the anisotropic tests under an initial strain rate of 3x10-3 s-1 performed at (a) room temperature, and under an initial strain rate of 5x10-4 s-1 performed at (b) 750oC, (c) 850oC, and (d) 920oC.………………….125
Fig. 22 Representative anisotropic tensile specimens loaded at 920oC and 5x10-4 s-1……127
Fig. 23 Representative SEM micrographs showing the microstructures in the statically annealed specimens for 1.5 h for (a) 700oC, (b) 750oC, (c) 800oC, (d) 850oC, (e) 900oC, and (f) 960oC.……………………………………………………………128
Fig. 24 TEM micrograph of the specimen statically annealed at 850oC for 1.5 h, with the diffraction pattern taken from the [ ] zone of the transformed ��2’ phase.…129
Fig. 25 TEM micrographs showing dislocation structures in the�n��2 and �� phases in the sample annealed at 850oC for 1.5 h and then water quenched……………………130
Fig. 26 Typical SEM micrographs showing the microstructures evolution during static annealing at (a) 800oC for 30 min, (b) 800oC for 2.5 h, (c) 850oC for 3 min, and (d) 850oC for 1.5 h……………………………………………………………………131
Fig. 27 EBSD patterns taken from the (a) ��2’ grain and (b) �� grain. The overlapped stereographic projections in (c) shows the orientation relationship between the ��2’ and �� phases.……………………………………………………………………132
Fig. 28 SEM micrographs showing the microstructures in the superplastically loaded specimens: (a) grip, 700oC, (b) gauge, 700oC, (c) grip, 800oC, (d) gauge, 800oC..133
Fig. 29 Variation of the ��2’ volume fraction as a function of the annealing or loading temperature.………………………………………………………………………134
Fig. 30 SEM micrographs showing the microstructures in the gauge sections of the specimens loaded at 850oC and 5x10-4 s-1 to a true strain of (b) ��=0.3, (c) ��=1.0, (d) ��=1.2, (e)�n��=1.4, (f) ��=1.5 (failure), and then stopped and rapidly quenched by blowing liquid nitrogen. The true stress and strain curve is shown in (a), which is plotted from the measurements of these stopped specimens.……………………135
Fig. 31 X-ray pole figures of the as-received material: (a) the �� phase (200) plane with the maximum intensity contour level of 40, and (b) the ��2 phase plane with maximum contour of 10…………………………………………………………137
Fig. 32 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the �� phase in the as-received specimen……………………………………………………………138
Fig. 33 The sequence for texture determination: (a) a {100} pole figure; (b) choose a standard projection to make all the {100} poles in (a) occupy the {100} pole family in (b); (c) {ND}<RD> could be identified………………………………………139
Fig. 34 Schematic illustration of the hexagonal system represented by {OX1X2X3} and the cubic system represented by {OXYZ}……………………………………………140
Fig. 35 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2 phase in the as-received specimen……………………………………………………………141
Fig. 36 (a) The SEI image and phase map in the as-received specimen. The OIMs displace the orientation distribution of (b)-(d) in the �� phase and (f)-(h) in the ��2 phase. By using the orientation color key (e) and (i), orientation in the �� and ��2 phases are visualized, respectively…………………………………………………………...142
Fig. 37 Five regions sampled from the �� phase in the as-received specimen: strong {100}<011> rotated cube and weak {111}< > textures are present in (a), (b), and (c); occasional strong {110}<001> Goss in (d); and strong {111}< > in (e)..144
Fig. 38 Five regions sampled from the ��2 phase in the as-received specimen: strong { }<0001> and weak {0001}< > and { }< > are present in (a), (b), and (c); strong { }<0001> and weak {0001}< > and {0001} fiber in (d); strong {0001}< > and weak {0001}< > and {0001} fiber in (e).…146
Fig. 39 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ���nphase in the 0o specimen loaded at 750oC and 5x10-4 s-1.………………………………………148
Fig. 40 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2 phase in the 0o specimen loaded at 750oC and 5x10-4 s-1.………………………………………149
Fig. 41 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ���nphase in the 45o specimen loaded at 750oC and 5x10-4 s-1.………………………………………150
Fig. 42 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2�nphase in the 45o specimen loaded at 750oC and 5x10-4 s-1.………………………………………151
Fig. 43 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the �� phase in the 90o specimen loaded at 750oC and 5x10-4 s-1…………………………………………152
Fig. 44 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2 phase in the 90o specimen loaded at 750oC and 5x10-4 s-1…………………………………………153
Fig. 45 (a) {111} and (b) { } standard stereographic projections……………………154
Fig. 46 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the �� phase in the 0o specimen loaded at 920oC and 5x10-4 s-1…………………………………………155
Fig. 47 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2 phase in the 0o specimen loaded at 920oC and 5x10-4 s-1…………………………………………156
Fig. 48 Standard {0001} stereographic projection. After superplastic loading, the {0001}< > texture is present in the ��2 phase in the 0o specimens loaded at 750 and 920oC.………………………………………………………………………157
Fig. 49 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the �� phase in the 45o specimen loaded at 920oC and 5x10-4 s-1.………………………………………158
Fig. 50 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2 phase in the 45o specimen loaded at 920oC and 5x10-4 s-1…………………………………………159
Fig. 51 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the �� phase in the 90o specimen loaded at 920oC and 5x10-4 s-1…………………………………………160
Fig. 52 (a) Pole figures, (b) inverse pole figures, and (c) ODF of the ��2 phase in the 90o specimen loaded at 920oC and 5x10-4 s-1…………………………………………161
Fig. 53 Pole figures obtained from the 0o specimens loaded at (a) 750oC and (b) 920oC. Orientation distributions become much more random at higher temperatures…162
Fig. 54 The random grain misorientation distribution in the cubic and hexagonal systems. Redrawn from ref. [105,106]……………………………………………………163
Fig. 55 Misorientation angle distributions of the (a) ��2 and (b) ���nphases in the AR alloy, (c)�n��2 and (d) ���nphases�nin the post-SP 0o specimens at 750oC, (e)�n��2 and (f) ���nphases in the post-SP 0o specimens at 920oC……………………………………………164
Fig. 56 SEM micrograph showing the microstructure at the fracture tip of the post-SP specimen loaded at 920oC and 5x10-4 s-1. The volume fraction of the light �� phase and the darker ��2 phase are nearly 50% to 50%…………………………………165
Fig. 57 Texture evolution while superplastic loading at 850oC and 5x10-4 s-1 to a true strain of (a) ��=0.3, (b) ��=1.0, (c) ��=1.2, (d) ��=1.5 (failure) in the �� phase……………166
Fig. 58 Texture evolution while superplastic loading at 850oC and 5x10-4 s-1 to a true strain of (a) ��=0.3, (b) ��=1.0, (c) ��=1.2, (d) ��=1.5 (failure) in the ��2 phase…………….168
Fig. 59 Misorientation angle distribution of the ��2 and �� phases at various true strain locations with �掟0.3, 1.0, 1.2 and 1.5 in the post-SP 0o specimen performed at 850oC and 5x10-4 s-1: (a) �����~�|���z�n��2 phase, (b) �����~�|���z�n�� phase, (c) �������|�~�z�n��2 phase, (d) �������|�~�z�n�� phase, (e) �������|���z�n��2 phase, and (f) �������|���z�n�� phase, (g) �������|���z�n��2 phase, and (h) �������|���z�n�� phase..………………………………………………………………170
Fig. 60 The dependence of the flow stress versus the strain rate for (a) 700, (b) 750, (c) 800, and (d) 850oC, from the slope the ma-value can be extracted.……………………171
Fig. 61 Dependence on (1/T) for (a) ln ( ) under a fixed stress condition, and (b) ln (��) under a fixed strain condition for 700-750oC. From the slope, the apparent activation energy can be extracted………………………………………………..173
Fig. 62 Dependence on (1/T) for (a) ln ( ) under a fixed stress condition, and (b) ln (��) under a fixed strain condition for 800-850oC. From the slope, the apparent activation energy can be extracted………………………………………………174
Fig. 63 The plot for extracting the threshold stress �綟h at 700-750oC by substituting nt=4, 5, and 6………………………………………………………………………………175
Fig. 64 The plot for extracting the threshold stress �綟h at 800-850oC by substituting nt=2.5, 3, and 3.5……………………………………………………………………………176
Fig. 65 Dependence on (1/T) for (a) ln ( ) under a fixed stress condition, and (b) ln (���{��0) under a fixed strain condition for 700-750oC. From the slope, the apparent activation energy can be extracted………………………………………………..177
Fig. 66 Dependence on (1/T) for (a) ln ( ) under a fixed stress condition, and (b) ln (���{��0) under a fixed strain condition for 800-850oC. From the slope, the apparent activation energy can be extracted.………………………………………………178
Fig. 67 (a) Variation of the ��2’ thickness as a function of the square root of annealing time, t1/2, at 800 and 850oC, and (b) the extraction of activation energy Q……………179
Fig. 68 (a) Variation of the double logarithm of the transformation percentage of the ��2’ phase as a function of lnt, and (b) the extraction of transformation exponent n….180
Fig. 69 Illustrations of the volume change from the �� to ��2’ phase………………………181
Fig. 70 (0002) pole figures for the specimens under the following conditions: (a) hot rolling and then isochronally annealed for 1 h at (b) 850, (c) 900, (d) 960, (e) 1020oC…182
1.C. H. Ward, Int. Mater. Rev., 38 (1993) 79.
2.H. Hino, T. Miyashita, and S. Minakata, Light Metals (Japan), 43 (1993) 545 (in Japanese).
3.R. Strychor, J. C. Williams, and W. A. Soffa, Metall. Trans., 19A (1988) 225.
4.K. Muraleedharan, T. K. Nandy, D. Banerjee, and S. Lele, Metall. Trans., 23A (1992) 401.
5.W. A. Baeslack III and T. Broderick, Scripta Metall. Mater., 24 (1990) 319.
6.M. Long. and H. J. Rack, Mater. Sci. Technol., 11 (1995) 150.
7.C. S. Liauo, H. C. Fu, I. C. Hsiao, and J. C. Huang, Mater. Sci. Eng., A271 (1999) 275.
8.D. Banerjee, Prog. Mater. Sci., 42 (1997) 135.
9.D. Banerjee, T. K. Nandy, and A. K. Gogia, Scripta Metall., 21 (1987) 597.
10.D. S. Xu, Y. Song, D. Li, and Z. Q. Hu, Mater. Sci. Eng., A234-236 (1997) 230.
11.D. G. Konitzer, I. P. Jones, and H. L. Fraser, Scripta Metall., 20 (1986) 265.
12.H. A. Lipsitt, D. Shechtman, and R. E. Schafrik, Metall. Trans. A, 11A (1980) 1369.
13.吳易座,“Ti3Al-Nb鈦鋁介金屬合金之超塑性研究”,國立台灣大學材料科學與工程研究所博士論文,1998。
14.A. Miyazaki, M. Tokizane, and T. Inaba, J. Japan Inst. Metals, 54 (1990) 1279.
15.A. Dutta and D. Banerjee, Scripta Metall. Mater., 24 (1990) 1319.
16.Y. T. Wu and C. H. Koo, Intermetallics, 5 (1997) 29.
17.G. A. Salishchev, R. M. Imayev, O. N. Senkov, V. M. Imayev, N. K. Gabdullin, M. R. Shagiev, A. V. Kuznetsov, and F. H. Froes, Mater. Sci. Eng., A286 (2000) 236.
18.J. H. Kim, C. G. Park, T. K. Ha, and Y. W. Chang, Mater. Sci. Eng., A269 (1999) 197.
19.J. W. Zang, S. Q. Li, D. X. Zou, W. Q. Ma, and Z. Y. Zhong, Intermetallics, 8 (2000) 699.
20.T. G. Langdon, Superplasticity in Advanced Materials, S. Hori, M. Tokizane, and N. Furushiro (eds.), Osaka, JSRS, 1991, p. 3.
21.O. D. Sherby and J. Wadsworth, Prog. Mater. Sci., 33 (1989) 169.
22.N. Ridley, Mater. Sci. Tech., 6 (1990) 1145.
23.A. H. Chokshi, A. K. Mukherjee, and T. G. Langdon, Mater. Sci. Eng., R10 (1993) 1.
24.S. Primdahl, A. Thölén, and T. G. Langdon, Acta Metall. Mater., 43 (1995) 1211.
25.J. W. Edington, Metall. Trans. A. 13A (1982) 703.
26.M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36 (1997) 699.
27.G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., (1988) 289.
28.T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, New York, 1997, p. 22.
29.M. Mabuchi, K. Higashi, Y. Okada, S. Tanimura, T. Imai, and K. Kubo, Scripta Metall. Mater., 25 (1991) 2517.
30.T. G. Nieh and J. Wadsworth, Mater. Sci. Eng. A, 147 (1991) 129.
31.S. J. Hales, T. R. McNelley, and H. J. McQueen, Metall. Trans. A, 22A (1991) 1037.
32.M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Scripta Metall. Mater., 36 (1997) 681.
33.E. Girault, J. J. Blandin, A. Varloteaux, M. Suery, and Y. Combres, Scripta Metall. Mater., 29 (1993) 503.
34.D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, and W. H. Hunt, Inter. Mater. Rev., 41 (1996) 169.
35.T. G. Nieh and J. Wadsworth, Mater. Sci. Eng., A239-240 (1997) 88.
36.S. X. McFadden. R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Muherjee, Nature, 398 (1999) 684.
37.L. Lu, M. L. Sui, and K. Lu, Science, 287 (2000) 1463.
38.Q. Liu, W. Yang, and G. Chen, Acta Metall. Mater., 43 (1995) 3571.
39.D. Lee, Metall. Trans., 1 (1970) 309.
40.K. Holm, J. D. Embury, and G. R. Purdy, Acta Metall., 25 (1977) 1191.
41.M. F. Ashby and R. A. Verrall, Acta Metall., 21 (1973) 149.
42.M. F. Ashby, G. H. Edward, J. Davenport, and R. A. Verrall, Acta Metall., 26 (1978) 1379.
43.T. E. Chung and T. J. Davies, Acta Metall., 27 (1979) 627.
44.D. S. Wilkinson, B. Wilshire and D. R. J. Owen (eds.), Creep and Fracture of Engineering Materials and Structures, Pineridge, Swansea, 1982, p. 223.
45.T. L. Spingarn and W. D. Nix, Acta Metall., 26 (1978) 1389.
46.T. Kamijo, T. Furakama, and H. Fukutori, J. B. BildeSorensen, N. Hansen, D. J. Jensen, et al. (eds.), Materials Architecture, Proc. 10th Riso Int. Symp. on Metallurgy and Materials Science, 1989, p. 429.
47.R. C. Gifkins, Metall. Trans. A., 7 (1976) 1225.
48.R. Z. Valev and T. G. Langdon, Acta Metall., 41 (1993) 949.
49.B. Baudelet, Scripta Metall. Mater., 27 (1992) 745.
50.K. Matsuki, H. Morita, M. Yamada, and Y, Murakami, Met. Sci., 11 (1977) 156.
51.R. C. Gifkins, J. Mater. Sci., 13 (1978) 1926.
52.T. G. Langdon, Met. Forum, 4 (1981) 14.
53.A. E. Geckinli, Met. Sci., 17 (1983) 12.
54.R. C. Gifkins, N. E. paton and C. H. Hamiton (eds.), Superplastic Forming of Structural Alloys, Metallurgical Society of AIME, New York, 1982, p. 3.
55.R. Ray and M. F. Ashby, Metall. Trans. A, 2 (1971) 1113.
56.W. D. Nix, J. C. M. Li and A. K. Mukherjee (eds.), Rate Processes in Plastic Deformation of Materials, Vol. 4, American Society of Metals Park, OH, 1975, p. 384.
57.C. G. Barret, J. G. Rasmussen (ed.), High Temperature Materials Phenomena, Vol. 1, Polytecknisk Forlag, 1973, p. 79.
58.W. R. Cannon and W. D. Nix, Phil. Mag., 27 (1973) 9.
59.I. I. Novikov and V. K. Portnoy, Superplasticity in Alloys with Ultrafine Grain Structure, Metallurgia, Moscow, 1984, (in Russian).
60.P. G. Partridge, D. S. MacDarmaid, and A. W. Bowen, Acta Metall., 33 (1985) 571.
61.P. M. Hazzeldine and D. E. Newbury, Proc. ICSMA3, Cambridge, 1 (1973) 202.
62.J. E. Morral and M. R. Ashby, Acta Metall., 22 (1974) 567.
63.E. Sato, K.Kuribayshi, and R. Horiuchi, M. J. Mayo, M. Kobayashi and Wadsworth (eds.), Superplasticity in Metals, Ceramics, and Intermetallics, Materials Research Society, Pittsburgh, PA, 1990, p. 27.
64.T. Kamijo, T. Furakama, and H. Fukutori, J. B. BildeSorensen, N. Hansen, D. Jucel Jensen, et al. (eds.), Materials Architecture, Proc. 10th Riso Int. Symp. on Metallurgy and Materials Science, 1989, p. 429.
65.H. S. Yang, P. Jin, E. Dalder, and A. K. Mukherjee, Scripta Metall., 25 (1991) 1223.
66.H. S. Yang, M. G. Zelin, R. Z. Valiev, and A. K. Mukherjee, Scripta Metall. Mater., 26 (1992) 1707.
67.H. S. Yang, M. G. Zelin, and A. K. Mukherjee, Proc. Conf. High Temp. Ordered Intermetallic Alloys V, Boston, Mass, USA, 1992, p. 879.
68.A. K. Ghosh and C. H. Cheng, Superplasticity in Advanced Materials, S. Hori, M. Tokizane and N. Furushiro (eds.), Osaka, JSRS, 1991, p. 299.
69.N. Ridley, D. W. Livesey, and M. T. Salehi, Proceedings of the International Conference on High Temperature Intermetalics, London, UK, 1991, p. 198.
70.H. C. Fu, J. C. Huang, T. D. Wang, and C. C. Bampton, Acta Mater., 46 (1998) 465.
71.Y. T. Wu and C. H. Koo, Scripta Mater., 38 (1998) 267.
72.H. Zhu, Z. Li, B. Shang, W. Mao, and C. Wang, J. Mater. Sci. Technol., 17 (2001) 119.
73.R. Imayev, N. Gabdullin, and G. A. Salishchev, Intermetallics, 5 (1997) 229.
74.O. A. Kaibyshev, Superplasticity of Commercial Alloys, Moscow, Russian, 1984, p. 263.
75.R. M. Imayev, N. K. Gabdullin, G. A. Salishchev, O. N. Senkov, V. M. Imayev, and F. H. Froes, Acta Mater., 47 (1999) 1809.
76.R. M. Imayev, V. M. Imayev, and G. A. Salishchev, J. Mater. Sci., 27 (1992) 4465.
77.T. G. Nieh, J. N. Wang, L. M. Hsiung, J. Wadsworth, and V. Sikka, Scripta Metall., 37 (1997) 773
78.B. Huang, Z. Deng, Y. Liu, X. Qu, and Y. He, Intermetallics, 8 (2000) 559.
79.H.Hofmann, G. Frommeyer, and W. Herzog, Mater. Sci. Eng., A203 (1995) 128.
80.V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Scripta Mater., 43 (2000) 819.
81.T. Ahmed and H. J. Rack, Mater. Sci. Eng., A243 (1998) 206.
82.M. Grujicic and P. Dang, Mater. Sci. Eng., A224 (1997) 187.
83.X. Ren and M. Hagiwara, Acta Mater., 49 (2001) 3971.
84.J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, and K. Maruyama, Acta Mater., 28 (2000) 2059.
85.K. Mualeedharan, T. K. Nandy, and D. Banerjee, Intermetallics, 3 (1995) 187.
86.L. M. Hsiung and H. N. G. Wadley, Mater. Sci. Eng., A192/193 (1995) 908
87.D. S. McDarmaid, A. W. Bowen, and P. G. Partridge, J. Mater. Sci., 19 (1984) 2378.
88.W. P. Hon, S. K. Wu, and C. H. Koo, Mater. Sci. Eng., A131 (1991) 85.
89.D. B. Knorr and N. S. Stoloff, Mater. Sci. Eng., A123 (1990) 81.
90.S. Suwas, A. K. Singh, R. K. Ray, and S. Bhargava, Scripta Mater., 35 (1996) 897.
91.S. Suwas and R. K. Ray, Acta Mater., 47 (1999) 4599.
92.S. Suwas and R. K. Ray, Metall. Trans., 31A (2000) 2339.
93.O. A. Kaibyshev, I. V. Kazachkov, and R. M. Galeev, J. Mater. Sci., 16 (1981) 2501.
94.廖忠賢,黃志青,科儀新知,第十九卷,第五期,1998,43頁。
95.Link Opal Operater’s Guide, Opalman 3.0, Issue 1, Oxford Instruments plc, Buckinghamshire, UK, 1997.
96.V. Randle, Oxford Guide Book Series, Electron Backscatter Diffraction, 1996, p. 3.
97.V. Randle, Microtexture Determination and Its Applications, Institute of Materials, London, 1992, p. 20.
98.CaRIne Crystallography version 3.1, 17 rue du Moulin du Roy F-60300 SENLIS FRANCE, (c) 1989-1998 C. Boudias & D. Monceau.
99.OPTIMAS version 6.1, Copyright (c) 1995 - 1999 Media Cybernetics Inc. 8484 Georgia Avenue, Silver Spring, MD 20910, USA.
100.伏和中,“Ti3Al基介金屬合金超塑性薄板之顯微組織變化與變形機構分析”,國 立中山大學材料科學研究所博士論文,1998。
101.A. K. Gogia, D. Banerjee, and T. K. Nandy, Metall. Trans. A, 21A (1990) 609.
102.R. J. Roe, J. Appl. Phy., 36 (1965) 2024.
103.H. J. Bunge, Texture Analysis in Material Science, Butterworths, London, Boston, 1982, p. 22.
104.G. Garces, M. C. Cristina, M. Torralba, and P. Adeva, Journal of Alloys and Compounds 309 (2000) 229
105.J. Wheeler, D. J. Prior, Z. Jiang, R. Spiess, P. W. Trimby, Contribution to Mineralogy and Petrology, 141 (2001) 109.
106.N.Gey and M. Humbert, Acta Mater., 50 (2002) 227.
107.K. T. Park and F. A. Mohamed, Metall. Mater. Trans., 26A (1995) 3119.
108.T. K. Nandy and D. Banerjee, Intermetallics, 8 (2000) 915.
109.H. Nakajima, W. Sprengel, and K. Nonaka, Intermetallics, 4 (1996) s17.
110.J. Rusing and Chr. Herzig, Intermetallics, 4 (1996) 647.
111.T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, New York, 1997, p. 223.
112.A. M. Brown and M. F. Ashby, Acta Metal., 28 (1980) 1085.
113.V. M. Imayev, G. A. Salishev, M. R. Shagiev, A. V. Kuznetsov, R. M. Imayev, O. N. Senkov, and F. H. Foes, Scripta Mater., 40 (1999) 183.
114.J. W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, New York, 1975. p. 489.
115.R. S. Mishra and D. Banerjee, Mater. Sci. Eng. A, 130 (1991) 151.
116.C. Huang and M. H. Lorretto, Mater. Sci. Eng. A, 192 (1995) 722.
117.T. B. Massalski, Metall. Trans., 33A (2002) 2277.
118.P. Wang, D. Veeraraghavan, M. Kumar, and V. K. Vasudevan, Metall. Trans., 33A (2002) 2353.
119.J. M. Howe, W. T. Reynolds, and V. K. Vasudevan, Metall. Trans., 33A (2002) 2391.
120.D. Banerjee, J. H. Wetbrook and R. L. Fleischer (eds.), Intermetallic Compounds, Vol. 2, John Wiley, New York, 1994, p. 91.
121.B. Bai, H. S. Yang, N. Chen, and A. K. Mukherjee, Scrip. Mater., 40 (1999) 1079.
122.D. R. Thornburg and H. R. Piehler, R. I. Jaffee and H. M. Burte (eds.), Titanium Science and Technology, Plenum Press, New York, 1973, p. 1187.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top