跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建汎
研究生(外文):Chien-Fan Chen
論文名稱:含苯并雙噻唑之聚合物的合成與鑑定分析
論文名稱(外文):Synthesis and Characterization of Benzobisthiazole Derived Polymers
指導教授:許子建許子建引用關係
指導教授(外文):Tzu-Chien Hsu
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:187
中文關鍵詞:電光係數硬桿狀高分子非線性光學聚醯亞胺聚苯并雙噻苯并雙噻
外文關鍵詞:polyimidesrigid-rod polymersnonlinear opticalNLObenzobisthiazoleelectrooptic coefficientpoly(benzobisthiazoles)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇研究中,有兩系列的含苯并雙噻唑之聚合物被合成。首先,2,5-雙胺-1,4-苯雙硫醇與一系列系統化選擇的雙酸於聚磷酸中進行溶液聚合形成芳香族雜環聚苯并雙噻唑硬桿狀高分子,其溶解效應在此先被探討說明。聚磷酸的功用已被確認且五氧化二磷與水的效應也被探討,而不同結構的雙酸所形成的聚苯并雙噻唑,其固有黏度及裂解溫度的關係也被一併探討。最後,雙酸結構對聚苯并雙噻唑的合成與微結構的效應也被研究。而這些結果進一步以這些雙酸的共軛、對稱及溶解的效應來討論。
其次,苯并雙噻唑的剛硬性與共軛性被運用並擴展到二次非線性光學的應用。新型含苯并雙噻唑衍生之發光基團的非線性光學(NLO)聚醯亞胺已被合成出來。含有不同比例之羧酸基的可溶型聚醯亞胺首先被合成出來,然後NLO發光基團的預聚物再與羧酸基反應接到聚醯亞胺主鏈上,最後含苯并雙噻唑NLO發光基團於300 oC及真空條件下成型。而由FTIR與UV-vis光譜分析,再加上模型聚醯亞胺的比對分析,已確認苯并雙噻唑結構的形成。由TGA與TMA的分析結果顯示這些NLO聚醯亞胺具有優越的熱性質,如PI-1在10 wt %的重量損失溫度高達554 oC及玻璃轉化溫度為324 oC。而X光繞射分析顯示這些聚醯亞胺為不定型型態,然而含苯并雙噻唑NLO發光基團的剛硬性也造成了一些有序的分子鏈排列。最後,PI-1的電光係數(r33 = 5.3 pm/V)也已測量得到。
In this study, two series of polymers based on benzobisthiazole were synthesized. The poly(benzobisthiazoles) (PBTs) have been synthesized by the solution polycondensation of 2,5-diamino-1,4-benzenedithiol in poly(phosphoric acid)s (PPA). The diacids used were systematically varied to find the best for the solubilization of the aromatic heterocyclic rigid-rod polymers. The role of PPA is identified and the effects of phosphorous pentoxide and water on PBT during polycondensation are discussed. Polymer properties such as the inherent viscosity, decomposition temperature are correlated to systematically varied diacids. Finally, the effect of diacid architecture on the synthesis and microstructure of PBT is studied. The results are further discussed in terms of resonance, symmetry, and solubilization of the diacids.
Next, we extend the rigidity and resonance of benzobisthiazole for the application as second-order nonlinear optics. Novel nonlinear optical (NLO) polyimides containing benzobisthiazole chromophores have been synthesized. The soluble polyimides containing different ratios of carboxylic acids (COOH) were first prepared and the precursors of NLO chromophores reacted with those carboxylic acids, followed by the benzobisthiazole derived chromophores synthesized at 300 oC under vaccum. The formation of benzobisthiazole was evidenced by FTIR and UV-vis spectra in combination with the analysis of model polyimides. The excellent thermal properties of those NLO polyimides were examined by TGA and TMA. PI-1 shows thermal decomposition temperature as high as 554 oC at 10 wt % loss and a Tg of 324 oC. The amorphous morphology of those polyimides was verified by XRD traces and some ordered alignments were found, due to the rigidity of the benzobisthiazole derivatize chromophores. The electrooptic coefficient of PI-1 (r33 = 5.3 pm/V) was obtained.
Page
Acknowledgements i
List of Abbreviation and Symbols v
List of Tables viii
List of Figures ix
List of Schemes xii
Abstract xiv
中文摘要 xv

Chapter 1 Introduction 1
1.1 Rigid-rod aromatic heterocyclic benzazole polymers 1
1.2 Polyimides 3
1.2.1 Polyimides 3
1.2.2 Second-order nonlinear optical (NLO) polyimides 3
1.3 Second-order nonlinear optics 5
1.4 Objectives of this study 7
1.4.1 Diacid architecture effect on the synthesis and microstructure of PBTs
1.4.2 Synthesis and characterization of novel nonlinear optical polyimides containing benzobisthiazole derived chromophores 8
1.4.3 The depiction of our study about benzobisthiazole derived polymers 9
1.5 Experimental approaches 9
1.5.1 Preparation of 2,5-diamino- 1,4-benzenedithiol dihydrochloride (DABDT) 9
1.5.2 Structural design and analysis of PBTs based on six diacids 13
1.5.3 Synthesis of the benzobisthiazole derived chromophore
14
1.5.4 Synthesis of second-order NLO polyimides 15
1.5.5 Characterization of second-order NLO polyimides 15

Chapter 2 Literature Reviews 18
2.1 Conjugated rigid-rod aromatic heterocyclic benzazole polymers 18
2.2 Synthesis of poly(p-phenylene-2,6-benzo[1,2-d:4,5-d’]bisthiazole) (PBT) 24
2.2.1 Preparation of 2,5-diamino- 1,4-benzenedithiol dihydrochloride (DABDT) 24
2.2.2 The introduction and role of poly(phosphoric acid)s (PPA) in polymerization 24
2.2.3 Preparation of poly(p-phenylene-2,6-benzo[1,2-d:4,5-d’] bisthiazole) (PBT) 27
2.3 Polyimides 28
2.3.1 Developments of polyimides 28
2.3.2 Preparation of polyimides 30
2.3.3 Optical properties of polyimides 40
2.4 Nonlinear optical polymers 49
2.4.1 Background and concepts 49
2.4.2 NLO chromophores 58
2.4.3 NLO polymer systems 62
2.4.4Electrooptic Effect 70
Chapter 3 Experimental 72
3.1 Preparation of Monomers 72
3.1.1 Preparation of 2,5-diamino- 1,4-benzenedithiol dihydrochloride (DABDT) 72
3.1.2 Preparation of benzobisthiazole derived chromophore 74
3.2 Preparation of PBTs 78
3.2.1 Preparation of poly(phosphoric acid)s (PPA) 78
3.2.2 Polymerization of PBTs in PPA 79
3.2.3 Fabrication of films 80
3.3 Preparation of polyimides 81
3.3.1 Polymerization of polyimides 81
3.3.2 Fabrication of films 85
3.4 Measurements 86
3.4.1 General measurements 86
3.4.2 Measurement of electrooptic coefficient (r33) 87

Chapter 4 Results and Discussion of PBTs 90
4.1 Structural analysis of monomers 90
4.1.1 p-Phenylene-bisthiourea (BTU) 90
4.1.2 2,6-Diaminobenzo [1,2-d:4,5-d’] bisthiazole (DABBT)
90
4.1.3 2,5-Diamino- 1,4-benzenedithiol dihydrochloride (DABDT) 92
4.2 Discussion of poly(benzobisthiazoles) (PBTs) 94
4.2.1 Resonance effect 94
4.2.2 Symmetry effect 103
4.2.3 Solubilization effect 103
4.3 Summary 104

Chapter 5 Results and Discussion of Polyimides 105
5.1 Structural analysis of monomers 105
5.1.1 2,5-Bis[(cyanoethyl)thio]-1,4-phenylenediamine (C1)
105
5.1.2 N-[4-Amino-2,5-bis-(2-cyano-ethylsulfanyl)-phenyl]-4-nitro-benzamide (C2) 106
5.1.3 3,5-Bis-(2,2,2-trifluoroacetylamino)benzoic acid (M)
107
5.1.4 N-[4-nitrobenzamide-2,5-Bis-(2-cyanoethylsulfanyl)phenyl] -3,5-bis(2,2,2-trifluoroacetylamino)benzamide (C3)
109
5.1.5 5-[6-(4-Nitrophenyl)benzo[1,2-d;4,5-d'''']bisthiazol-2-yl]benzene-1,3-diamine (C5) 109
5.2 Characterization of polyimides 113
5.2.1 Synthesis and characterization of polyimides 113
5.2.2 Thermal properties 124
5.2.3 Solubility behavior of the polyimides 131
5.2.4 Microstructural study 132
5.2.5 Optical properties 138
5.2.6 Second-order NLO behavior 144
5.3 Discussion of the synthesis and promoting of the polyimides for NLO application 148
5.3.1 The easy approach to prepare the NLO polyimide via the precursor 148
5.3.2 Performance of those polyimides 148
5.3.3 Proposed scheme for improvement of poling efficiency 148
5.4 Summary 150

Chapter 6 Conclusion and Future Work 151
6.1 Diacid architecture effect on the synthesis and microstructure of PBTs 151
6.2 Synthesis and characterization of novel nonlinear optical polyimides containing benzobisthiazole derived chromophores 151
6.3 Benzobisthiazole derived polymers 152
6.4 Future Work 152

References 154

Appendix 159
A-1 Control of polymerization variables for PBTs159
A-2 Calculation of inherent viscosity 160
A-3 Basic equations for calculation of r33 160
A-4 Conversion factors 166
A-5 Personal information 167
A-6 中文版個人資料 168
1.Wolfe, J. F. In Encyclopedia of Polymer Science and Engineering; Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G., Eds.; John Wiley & Sons, Inc.: New York, 1988, p 601-635.
2.Wolfe, J. F.; Arnold, F. E. Macromolecules 1981, 14, 909.
3.Cotts, D. B.; Berry, G. C. Macromolecules 1981, 14, 930.
4.Wolfe, J. F.; Loo, B. H.; Arnold, F. E. Macromolecules 1981, 14, 915.
5.Jenekhe, S. A.; Johnson, P. O.; Agrawal, A. K. Macromolecules 1989, 22, 3216.
6.Osaheni, J. A.; Jenekhe, S. A. Chem Mater 1992, 4, 1282.
7.Jenekhe, S. A.; Osaheni, J. A.; Meth, J. S. Chem Mater 1992, 4, 683.
8.Osaheni, J. A.; Jenekhe, S. A. Chem Mater 1995, 7, 672.
9.Osaheni, J. A.; Jenekhe, S. A. Macromolecules 1995, 28, 1172.
10.Deprra, P. A.; Gaudiello, J. G.; Marks, T. J. Macromolecules 1988, 21, 2295.
11.Kim, S.; Cameron, D. A.; Lee, Y. G.; Reynolds, J. R.; Savage, C. R. J Polym Sci, Part A: Polym Chem 1996, 34, 481.
12.Dang, T. D.; Bai, S. J.; Heberer, D. P.; Arnold, F. E.; Spry, R. J Polym Sci, Part B: Polym Phys 1993, 31, 1941.
13.Gieselman, M. B.; Reynold, J. R. Macromolecules 1993, 26, 5633.
14.Spry, R. J.; M. D. Alexander, J.; Bai, S. J.; Dang, T. D.; Price, G. E.; Dean, D. R.; Kumar, B.; Solomon, J. S.; Arnold, F. E. J Polym Sci, Part B: Polym Phys 1997, 35, 2925.
15.Tan, L. S.; Srinivasan, K. R.; Bai, S. J.; Spry, R. J. J Polym Sci, Part A: Polym Chem 1998, 36, 713.
16.Choe, E. W.; Kim, S. N. Macromolecules 1981, 14, 920.
17.Allen, S. R.; Filippov, A. G.; Farris, R. J.; Thomas, E. L. J Appl Polym Sci 1981, 26, 291.
18.Krause, S. J.; Haddock, T. B.; Price, G. E.; Adams, W. W. Polymer 1988, 29, 1959.
19.Roberts, M. F.; Jenekhe, S. A. Chem Mater 1994, 6, 135.
20.Evers, R. C.; Arnold, F. E.; Helminiak, T. E. Macromolecules 1981, 14, 925.
21.Yu, S. C.; Gong, X.; Chan, W. K. Macromolecules 1998, 31, 5639.
22.Roberts, M. F.; Jenekhe, S. A.; Cameron, A.; Mcmillan, M.; Perlstein, J. Chem Mater 1994, 6, 658.
23.Hattori, T.; Akita, H.; Kakimoto, M.; Imai, Y. J Polym Sci, Part A: Polym Chem 1992, 30, 197.
24.Hattori, T.; Akita, H.; Kakimoto, M.; Imai, Y. Macromolecules 1992, 25, 3351.
25.Hattori, T.; Kagawa, K.; Kakimoto, M.; Imai, Y. Macromolecules 1993, 26, 4089.
26.Nelson, D. S.; Soane, D. S. Polym Eng Sci 1994, 34, 965.
27.Lee, J. W.; Wang, C. S.; Song, H. H.; Price, G. E. Polymer 1995, 36, 955.
28.Lee, J. W.; Wang, C. S.; Price, G. E.; Husband, D. M. Polymer 1997, 38, 1403.
29.Hale, W. F.; Farnham, A. G.; Johnson, R. N.; Clendining, R. A. J Polym Sci Chem Ed 1967, 5, 2399.
30.Korshak, V. V.; Vinogradova, S. V.; Vygodskii, Y. S. J Macromol Sci Rev Macromol Chem Part C 1974, 11, 45.
31.Wilson. D., S. E., H. D., Hergerrother, P. M., Polyimides: Chapman and Hall : New York, 1990.
32.Ghosh, M. K.; Mittal, K. L. Polyimides, Fundamentals and Applications: New York, 1996.
33.Catharine, C. F.; Clair, A. K. S. J Appl Polym Sci 1998, 69, 2383.
34.Burland, D. M.; Miller, R. D.; Walsh, C. A. Chem Rev 1994, 94, 31.
35.Dalton, L. R.; Harper, A. W.; Ghosn, R. Chem Mater 1995, 7, 1060.
36.Wu, W.; Wang, D.; Zhu, P. W.; Wang, P.; Ye, C. J Polym Sci, Part A: Polym Chem 1999, 37, 3598.
37.Davey, M. H.; Lee, V. Y.; Wu, L.-M.; Moylan, C. R.; Volksen, W.; Knoesen, A.; Miller, R. D.; Marks, T. J. Chem Mater 2000, 12, 1679.
38.Broecka, K. V. D.; Verbiestb, T.; Degrysea, J.; Beylena, M. V.; Persoonsb, A.; Samyn, C. Polymer 2001, 42, 3315.
39.Leng, W. N.; Zhou, Y. M.; Xu, Q. H.; Liu, J. Z. Polymer 2001, 42, 9253.
40.Kajzar, F.; Lee, K.-S.; Jen, A. K.-Y. Adv Polym Sci 2003, 161, 1.
41.Kim, T. D.; Lee, K. S.; Lee, G. U.; Kim, O. K. Polymer 2000, 41, 5237.
42.Sakai, Y.; Ueda, M.; Fukuda, T.; Matsuda, H. J Polym Sci, Part A: Polym Chem 1999, 37, 1321.
43.Xie, H. Q.; Liu, Z. H.; Guo, J. S. Polymer 1998, 39, 2393.
44.Yu, D.; Gharavi, A.; Yu, L. J Am Chem Soc 1995, 117, 11680.
45.Marder, S. R.; Beratan, D. N.; Cheng, L. T. 1991, 252, 103.
46.Matsui, M.; Marui, Y.; Kushida, M.; Funabiki, K.; Muramatsu, H.; Shibata, K.; Hirota, K.; Hosoda, M.; Tai, K. Dyes and Pigments 1998, 38, 57.
47.Lee, S.-H.; Otomo, A.; Nakahama, T.; Toshiki Yamada; Kamikado, T.; Yokoyama, S.; Mashiko, S. J Mater Chem 2002, 12, 2187.
48.Eich, M.; Looser, H.; Yoon, D.; Twieg, R.; Bjorklund, G.; Baumert, J. J Opt Soc Am B 1989, 6, 1590.
49.Ling, H.; Holland, W.; H, G. J Appl Phys 1991, 70, 6669.
50.Dalton, L. Adv Polym Sci 2002, 158, 1.
51.Clays, K.; Coe, B. J. Chem Mater 2003, 15, 642.
52.Chen, C. C.; Wang, L. F.; Wang, J. J.; Hsu, T. C.; Chen, C. F. J Mater Sci 2002, 37, 4109.
53.Jenekhe, S. A.; Johnson, P. O. Macromolecules 1990, 23, 4419.
54.Jenekhe, S. A. Polym Eng Sci 1983, 713.
55.Jenekhe, S. A. Polym Eng Sci 1983, 23, 830.
56.Dang, T. D.; Tan, L. S.; Arnold, F. E. ACS Polym Mat Sci Eng Proc 1990, 62.
57.Wang, C. S.; Burkett, J.; Lee, C. Y.-C.; Arnold, F. E. J Polym Sci, Part B: Polym Phys 1993, 31, 1799.
58.Dang, T. D.; Arnold, F. E. Polym. Prep 1992, 33, 912.
59.S. J. Bai, M.; Dotrong; Evers, R. C. J Polym Sci, Part B: Polym Phys 1992, 30, 1515.
60.Dotrong, M.; Mehta, R.; Balchin, G. A.; Tomlinson, R. C.; Sinsky, M.; Lee, C. Y.-C.; Evers, R. C. J Polym Sci, Part A: Polym Chem 1993, 31, 723.
61.Srinivasan, K. R.; Tan, L.-S.; Bai, S. J.; Spry, R. J. Polym. Prep 1994, 35, 249.
62.Srinivasan, K. R.; Tan, L.-S.; Bai, S. J. J Polym Sci, Part A: Polym Chem 1997, 35, 1909.
63.Kimura, K.; Meurer, D. L.; Hutzler, R. F.; Fitch, J. W.; Cassidy, P. E. Macromolecules 1994, 24, 1303.
64.Hattori, T.; Kagawa, K.; Kakimoto, M.-A.; Imai, Y. Polymer J 1995, 27, 395.
65.Osaheni, J. A.; Jenekhe, S. A. J Am Chem Soc 1995, 117, 7389.
66.Hayes, D. M.; Harruna, I. I. J Polym Sci, Part A: Polym Chem 1998, 36, 277.
67.Dotrong, M.; Dotrong, M. H.; Song, H. H.; Santhosh, U.; Lee, C. Y.-C.; Evers, R. C. Polymer 1998, 39, 5799.
68.Rowlands, D. A. In Synthetic Reagents; Ellis Horwood Ltd.: Chichester, UK, 1985, p 156-414.
69.Wolfe, J. F.; Loo, B. H.; Arnold, F. E. Polym Prepr Am Chem Soc Div Polym Chem 1978, 19.
70.Volksen, W. Adv Polym Sci 1994, 117, 113.
71.Bogert, T. M.; Renshaw, R. R. J Am Chem Soc 1908, 30, 1135.
72.Edwards, W. M. In US Pat 3,179,614, 1965.
73.Economy, J. E.; Diller, R. D.; Volksen, W.; Yoon., D. Y. In US Pat 4,467,000, 1984.
74.Numata, S.; Fujisaki, K.; Kinfo, N.; Mikami., Y. In US Pat 4,690,999, 1987.
75.Hedrick, J. L.; Volksen, W.; Mohanty, D. K. Polym Bull 1993, 30, 33.
76.Auman, B. C. Macromolecules 1993, 26, 2779.
77.Mecham, S. I.; Roger, M. E.; Kim, Y.; Mcgrath, J. E. Polym Prep 1993, 34, 628.
78.Sato, N. In Japan Pat JP 04,109,222; Japan Kokai Tokkyo Koho, 1992.
79.Ishibashi, S.; Hyrayama, M. In Japan Pat JP 04,110,392; Japan Kokai Tokkyo Koho, 1992.
80.Mikroyannidis, J. A. J Polym Sci, Part A: Polym Chem 1999, 37, 15.
81.Bessonov, M. I.; Koton, M. M.; Kudryavtsev, V. V.; Laius, L. A. In Polyimides: Thermally stable polymers; Consultants Bureau: New York, 1987, p 23.
82.Volksen, W.; Cotts, P. M. In Polyimides: Synthesis, characterization and applications; Plenum: New York, 1984, p 163.
83.Bower, G. M.; Frost, L. W. J Polym Sci, Part A: Polym chem 1963, 1, 3135.
84.Walker, C. C. J Polym Sci, Part A: Polym Chem 1988, 26, 1649.
85.Dine-Hart, R. A.; Wright, W. W. J Appl Polym Sci 1967, 11, 609.
86.Volksen, W. In Recent advances in polyimide science and technology; Webber, W. D.; Gupta, M. R., Eds.; Poughkeepsie: New York, 1987, p 102.
87.Kim, Y. J.; Glass, T. E.; Lyle, G. D.; Mcgrath, J. E. Macromolecules 1993, 26, 1344.
88.Cotter, R. J.; Sauers, C. K.; Whelan, J. M. J Org Chem 1961, 26, 10.
89.Imai, Y. J Polym Sci, Polym Let 1970, 8, 555.
90.Stenzenberger, H. D. Adv Polym Sci 1994, 117, 167.
91.Clair, A. K. S.; Slemp, W. S. SAMPE J 1985, 21, 28.
92.Hasegawaa, M.; Horie, K. Prog Polym Sci 2001, 26, 259.
93.Clair, A. S.; Clair, T. S.; Shevket, K. Proc Div Polym Mater Sci Engng 1984, 51, 62.
94.Noda, Y.; Nakajima, T. Polym Prepr Jpn 1986, 35, 1245.
95.Ando, S.; Matsuura, T.; Sasaki, S. Polym J 1977, 29, 69.
96.Rogers, F. E. In US Pat 3,356,648, 1964.
97.Matsuura, T.; Hasuda, Y.; Nishi, S.; N.Yamada. Macromolecules 1991, 24, 5001.
98.Ando, S.; Matsuura, T.; Sasaki, S. Macromolecules 1992, 25, 5858.
99.Matsuura, T.; Ando, S.; Sasaki, S.; Yamamoto, F. Electron Lett 1993, 29, 2107.
100.Matsuura, T.; Ando, S.; Sasaki, S.; Yamamoto, F. Electron Lett 1993, 29, 269.
101.Matsuura, T.; Ando, S.; Sasaki, S.; Yamamoto, F. Macromolecules 1994, 27, 6665.
102.Matsuura, T.; Yamada, N.; Nishi, S.; Hasuda, Y. Macromolecules 1993, 26, 419.
103.Ando, S.; Sawada, T.; Inoue, Y. Electron Lett 1993, 29, 2143.
104.Hedrick, J. L. Adv Polym Sci 1999, 141, 1.
105.Cha, H. J.; Hedrick, J. L.; Dipietro, R. A.; Blume, T.; Beyers, R.; Yoon, D. Y. Appl Phys Lett 1996, 68, 1930.
106.Andraud, C.; Zabulon, T.; Collet, A.; Zyss, J. Chem Phys 1999, 245, 243.
107.Dalton, L.; Harper, A.; Ren, A.; Wang, F.; Todorova, G.; Chen, J.; Zhang, C.; Lee, M. Ind Eng Chem Res 1999, 38, 8.
108.Varanas, P. R.; Jen, A. K.-Y.; Chandrasekhar, J.; Namboothiri, I. N. N.; Rathna, A. J Am Chem Soc 1996, 118, 12443.
109.Albert, I. D. L.; Marks, T. J.; Ratner, M. A. J Am Chem Soc 1998, 120, 11174.
110.Breitung, E. M.; Shu, C.-F.; Mcmahon, R. J. J Am Chem Soc 2000, 122, 1154.
111.Shuto, Y.; Amano, M.; Kaino, T. Jpn J Appl Phys 1991, 30, 320.
112.Tsutsumi, N.; Matsumoto, O.; W.Sakai; Kiyotsukuri, T. Macromolecules 1996, 29, 592.
113.Tsutsumi, N.; Matsumoto, O.; Sakai, W. Macromolecules 1997, 30, 4584.
114.Woo, H. Y.; Shim, H.-K.; Lee, K.-S.; Jeong, M.-Y.; Lim, T.-K. Chem Mater 1999, 11, 218.
115.Zhou, Y.; Leng, W.; Liu, X.; Xu, Q.; Feng, J.; Liu1, J. J Polym Sci, Part A: Polym Chem 2002, 40, 2478.
116.Kima, E.-H.; Moona, I. K.; Kima, H. K.; Leeb, M.-H.; Seon-Gyu Hanb; Yic, M. H.; Choi, K.-Y. Polymer 1999, 40, 6157.
117.Leng, W.; Zhou, Y.; Xu, Q.; Liu, J. Macromolecules 2001, 34, 4774.
118.Sandhya, K. Y.; Pillai, C. K. S.; Sato, M.; Tsutsumi, N. J Polym Sci, Part A: Polym Chem 2003, 41, 1527.
119.Hayashi, A.; Goto, Y.; Nakayama, M.; Sato, H.; Watanabe, T.; Miyata, S. Macromolecules 1992, 25, 5094.
120.Chaumel, F.; Jiang, H.; Kakkar, A. Chem Mater 2001, 13, 3389.
121.Jeng, R.-J.; Chang, C.-C.; Chen, C.-P.; Chen, C.-T.; Su, W.-C. Polymer 2003, 44, 143.
122.Zhang, Y.; Prasad, P. N.; Burzynski, R. Chem Mater 1992, 4, 851.
123.Singer, K. D.; Kuzyk, M. G.; Holland, W. R.; Lalama, S.; Comizzoli, R. B.; Katz, H. E.; Schilling, M. L. Appl Phys Lett 1988, 53, 1800.
124.Sigelle, M.; Hierle, R. J Appl Phys 1981, 52, 4199.
125.Uchiki, H.; Kobayashi, T. J Appl Phys 1988, 64, 2625.
126.Dumont, M.; Levy, Y.; Morichere, D. In NATO ASI Series E; Messier, J.; Kajzar, F.; Prasad, P., Eds.; Kluwer: Dordrecht, 1991, p 461.
127.Levy, Y.; Dentan, V.; Dumont, M.; Robin, P.; Chastaing, E. In NATO ASI Series E; Messier, J.; Kajzar, F.; Prasad, P.; Ulrich, D., Eds.; Kluwer: Dordrecht, 1989.
128.Shuto, Y.; Amano, M. J Appl Phys 1995, 77, 4632.
129.Schildkraut, J. S. Appl Opt 1990, 29, 2839.
130.Teng, C. C.; Man, H. T. Appl Phys Lett 1990, 56, 1734.
131.Clays, K.; Schildkraut, J. S. J Opt Soc Am B 1992, 9, 2274.
132.Rohl, P.; Andress, B.; Nordmann, J. Appl Phys Lett 1991, 59, 2793.
133.Morichere, D.; Chollet, P.-A.; Fleming, W.; Jurich, M.; Smith, B. A.; Swalen, J. D. J Opt Soc Am B 1993, 10, 1894.
134.Chen, C. C.; Wang, L. F.; Wang, J. J.; Hsu, T. C.; Chen, C. F. J. Mater. Sci. 2002, 37, 4109.
135.Krause, S. J.; Haddock, T. B.; Vezie, D. L.; Lenhert, P. G.; Wang, W. F.; Price, G. E.; Heminiak, T. E.; O''''brien, J. F.; Adams, W. W. Polymer 1988, 29, 1354.
136.Song, H. H.; Hong, S. K. Polymer 1997, 38, 4241.
137.Yamazaki, N.; Matsumoto, M.; Kawabeta, J. J Polym Sci, Part A: Polym Chem 1972, 12, 2149.
138.Yang, C. P.; Yen, Y. Y. J Polym Sci, Part A: Polym Chem 1992, 30, 1855.
139.Forouhi, A. R.; Bloomer, I. In Handbook of optical constants of solid II; Academic Press, 1991, p 151.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top