跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李哲奇
研究生(外文):Che-chi Lee
論文名稱:介穩高溫六方相鈦酸鋇之微結構分析
論文名稱(外文):An analysis hexagonal phase retention in BaTiO3
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-yang Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:157
中文關鍵詞:還原處理添加氧化鎂晶域相變化鈦酸鋇雙晶氧空缺
外文關鍵詞:MgO-dopedreducedphase-transitionoxygen-vacancydomaintwinsBaTiO3
相關次數:
  • 被引用被引用:9
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用還原燒結與受體添加,研究非計量式組成(TiO2過賸)之鈦酸鋇的微結構發展。以X-ray繞射分析結晶相。微結構之分析則採用掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)。
低氧氛壓進行還原處理是為了使氧氣缺乏。依據缺陷化學的理論,受體添加也能在無壓燒結下達到與還原處理相同的目的。我們將觀察與分析燒結後的試片,驗證氧空缺的形成使介穩高溫六方相鈦酸鋇保留至室溫。
在添加鎂離子的實驗中,研究在鋇離子與鈦離子兩者中,鎂離子優先替代鈦離子的可能性,是否如同理論上優先選擇相似離子半徑一般。根據穿透式電子顯微鏡(TEM)的分析,找到鎂離子也替代鋇離子的證據。
在氫氣還原處理下,鈦酸鋇轉變為深色導體(high dark conductivity)。鈦離子由四價轉為三價是變深色的原由。其缺陷化學方程式可寫為 。試片上巨觀的體積變化,證明了在控制氧氛壓下,產生了多種微結構。
藉由穿透式電子顯微鏡(TEM)的繞射分析(reciprocal lattices),推導出一轉置矩陣(transformation matrix)來描述雙晶(twinning)的關係。在反晶格(reciprocal lattices)的研究上,分析出在雙晶(twinning)的晶界上(BaO3層)形成氧空缺。並利用X-ray的鑑定與表面能(surface energy) 的分析,確定了在低氧氛壓下雙晶(twinning)越來越多的趨勢。根據雙晶晶界(twin boundary)處形成氧空缺的論點,越低的氧氛壓造成越多的雙晶(lamellae twins)。經由模擬,高溫六方相鈦酸鋇的原子結構確實可以以常溫正方相鈦酸鋇以每三層產生一個雙晶(twinning)的方式表達。這證明了氧空缺的形成使介穩高溫六方相鈦酸鋇保留至室溫。
Non-stoichiometric barium titanate (BaTiO3) powder of TiO2-excess compositions has been investigated using both reducing sintering and acceptor-doping. Crystalline phases were analysed by XRD. Attention has been paid to the analysis of the corresponding sintered microstructure by adopting scanning and transmission electron microcopy.
Reducing sintering was in the low oxygen partial pressure, so as to dominate the oxygen-deficient. According to the defect chemistry, the purpose of acceptor-doping was the same as reducing sintering. We look out for phenomena which may be indicative that oxygen vacancies generated by acceptor-doping and reducing sintering have resulted in the metastable retention of high temperature hexagonal-BaTiO3 to an ambient temperature.
In the Mg-doped study investigated the possibility that Mg2+ substitutes on Ti4+ site rather than the Ba2+ site, as expected from the radii. According to the unknown phase was indexed a supercell of MgTiO3, that showed evidence of Mg2+ dissolves in BaTiO3 and occupies the Ba2+ site.
To reduce in a hydrogen atmosphere was a high dark conductivity. The Ti3+ content was determined via colorimetry. Because of the defect chemistry led to oxygen-deficient h-BaTiO3, i.e.BaTi1-xTixO3-x/2. The observed volume expansion behavior under Ar-H2 atmosphere demonstrates the possibility of having various microstructures via control of oxygen partial pressure.
The transformation matrix described the relation between the two reciprocal lattices of the twinning. Investigation of reciprocal lattices was shown that ordering oxygen deficient on the BaO3 layer in the twin boundary. There was evidence of XRD patterns and surface energy that explained more and more twins in the microstructure via control of the low oxygen partial pressure. According to this theory, lamellae twins were generated by oxygen-deficient. The hexagonal phase might be also expressed as the cubic BaTiO3 containing twin boundary at BaO3 planes every three layers. That demonstrates the possibility of hexagonal phase retention in BaTiO3 was oxygen vacancies.
Abstract ………………………………………………………………………….. I
Contents ………………………………………………………………………... III
List of Tables …….………………………………………………………….... VII
List of Figures …………….……………………………………………….... VIII

Chapter 1 Introduction ………..…………………………………………... 1

Chapter 2 Survey of relevant literature .……………………………… 2
2.1 Perovskite - Basic Information ……...………………….............. 2
2.2 Crystal structure of BaTiO3 .............……………………...…….... 5
2.2.1 Structure of tetragonal-BaTiO3 ………………….......... 6
2.2.2 Structure of hexagonal-BaTiO3 …………………..…… 9
2.3 Equilibrium phase diagrams of the BaO-TiO2 system ………….. 12
2.4 Abnormal grain growth in BaTiO3 ..…………………….……… 18
2.5 Hexagonal related perovskite (polytypes) ……………………… 18
2.6 Defect reaction for MgO-doping ……………………………….. 21
2.6.1 Compensation effect in semiconducting Barium Titanate (Mg-doped) …………………………………………….
22
2.7 Properties of BaTiO3 ……………………………………………. 23
2.8 Diffraction contrast ……………………………………………... 24
2.8.1 �� Boundaries …………………………………………... 25
2.8.2 �� Boundaries …………………………………………... 26
2.8.3 �� Boundaries …………………………………………... 26
2.8.4 ���{�� Boundaries ……………………………………….. 27
2.9 Twinning ………………………………………………………… 27
2.9.1 Deformation twin ……………………………………… 28
2.9.2 Crystallography of (111) twin in BaTiO3 (growth twin)…. 29
2.9.3 Domain structure of BaTiO3 (transformation twin) …… 29

Chapter 3 Experimental Procedures ………………………………… 34
3.1 Initial powder ..………………………………………………….. 34
3.2 Specimens preparation ………………………………………….. 34
3.2.1 Prepared specimens of undoped BaTiO3 …………….... 34
3.2.2 Prepared specimens of Mg-doped BaTiO3 …………...... 36
3.2.3 Prepared specimens of Ar-reduced BaTiO3 …………… 38
3.2.4 Prepared specimens of H2-reduced BaTiO3 …………… 39
3.3 Characterization the materials …………………………….…….. 40
3.3.1 X-ray diffractometry ………………………...………… 40
3.3.2 Scanning electron microscopy ………...…………......... 40
3.3.3 Grain size measurement ……………..……………........ 41
3.3.4 Transmission electron microscopy ……………….......... 42
3.3.4.1 Thin foils preparation ………………………. 42
3.3.4.2 BF and CDF imaging techniques …………... 44
3.3.4.3 weak-beam dark-field imaging …………….. 44

Chapter 4 Results ……………………………………………………… 47
4.1 A specimen of undoped BaTiO3 ……….……………………….. 47
4.1.1 Phase identification ………………………………......... 47
4.1.2 Microstructure observations …….……………………... 50
4.1.2.1 SEM observation …………………………… 50
4.2 A specimen of MgO-doped BaTiO3 …………………………….. 55
4.2.1 Phase identification ……………………………………. 55
4.2.2 Microstructure observations ……..…………………….. 57
4.2.2.1 SEM observation ………………………….... 57
4.2.2.2 TEM observation …………………………... 61
4.3 A specimen of H2-reduced BaTiO3 …………………………...… 69
4.3.1 Phase identification ……………………………………. 69
4.3.2 Microstructure observations ……..…………………….. 70
4.3.2.1 SEM observation ………………………….... 70
4.2.2.2 TEM observation …………………………... 74
4.4 A specimen of Argon-reduced BaTiO3 …………………..…...… 86
4.4.1 Phase identification ……………………………………. 86
4.4.2 Microstructure observations ……..…………………….. 87
4.4.2.1 SEM observation ………………………….... 87
4.4.2.2 TEM observation …………………………... 93

Chapter 5 Discussion ………………………....……………………...….. 115
5.1 MgO-doped BaTiO3 ……………….….………………………... 115
5.1.1 Homogeneous magnesium dissolution ……………....... 115
5.1.2 Inhomogeneous magnesium dissolution …..…………... 116
5.2 Hydrogen-reduced BaTiO3 …………………….……………….. 117
5.2.1 Amorphous and polycrystalline …….…………………. 118
5.2.2 Volume expansion ………...……..…………………….. 119
5.2.3 Stacking fault ……………..……..…………………….. 119
5.3 Argon-reduced BaTiO3 …………………………………………. 120
5.3.1 Oxygen vacancies in ��3{111} twin boundaries ……….. 120
5.3.2 Domains ………...………...……..…………………….. 127

Chapter 6 Conclusions ………………………....……………………...... 129

Chapter 7 Suggestions to future work ………………………………. 132

References ………………………………………………………..................... 133


Appendix 1 JCPDS-ICDD diffraction data cards for related crystal structures
in this study …………..………………………………………….
138
Appendix 2 Hexagonal system …………………………………...………….. 145
Appendix 3 Lattice Geometry ……………………….……………….……… 146
Appendix 4 Calibration of 3010AEM …………………………..………........ 147
Appendix 5 The stereographic projection for hexagonal-BaTiO3 with a [0001] normal …………………………………………………………...
148
Appendix 6 Kikuchi SADPs for hexagonal-BaTiO3 ……………………….... 149
Appendix 7 Twenty-three standard simulated diffraction patterns for hexagonal-BaTiO3 ……………………………………………….
150
Appendix 8 The stereographic projection for tetragonal-BaTiO3 with a [001] normal …………………………………………………………...
153
Appendix 9 Thirteen standard simulated diffraction patterns for tetragonal-BaTiO3 ……………………………………………….
154
Appendix 10 Reflection conditions of tetragonal-BaTiO3 by MacTempas® (version X, Totalresolution, Berkeley CA, USA) ……………….
156

Vita …………………………………………………………………. 157
Akimoto, J., Gotoh, Y. & Oosawa, Y., “Refinement of Hexagonal BaTiO3, ”Acta Cryst., 1994, C50, pp. 160-161.

Akishigue, Y., Yamazaki, Y., Nakanishi, T. & Mori, N., J. Korean Phys. Soc., 1998, 32, S386.

Amelinckx, S., Gevers, R., &Van Landuyt, J., “Diffraction and Imaging Techniques in Material Science”, Ch. 2 (North-Holland, Oxford) 1978.

Berglund, C. N. & Braun, H. J., Phys. Rev., 1967, 164, p. 790.

Boulesteix, C., Van Landuyt, J. & Amelinckx, S., “Identification of Rotation and Reflection Twin by Diffraction and Contrast Experiments in the Electron Microscope,” Phys. Stat. Sol. (a), 1976, 33, pp. 595-606.

Burbank, R. D. & Howard T. Evans, JR., “The Crystal Structure of Hexagonal Barium Titanate,” Acta Cryst., 1948, 1, pp. 329-336.

Chan, N. H. & Smyth, D. M., “Defect Chemistry of Donor-doped BaTiO3,” J. Am. Ceram. Soc., 1984, 67[4], pp. 285-288.

Chen, C. Y., MS. thesis, National Sun Yat-Sen University, 2003.

Chiang, Y. M., Birnie III, D. P. & Kingery, W. D., “Physical Ceramics,” 1976, J. Wiley, pp. 38-41.

Chou, J. F., Lin, M. H. & Lu, H. Y., “Ferroelectric domains in pressureless-sintered Barium Titanate,” Acta Mater, 2000, 48, pp. 3569-3579.

Daniels, J., Hardtl, K. H., Hennings, D. & Wernicke, R., “Defect chemistry and electrical conductivity of doped barium titanate ceramics, Part I. electrical conductivity at high temperature of donor-doped barium titanate ceramics,” Philips Res. Rep., 1976, 31(part 1), pp. 487-504.

Dickson, J. G., Katz, L. & Ward, R., J. Am. Chem. Soc., 1961, 83, p. 3026.

Edington, J. W., “Section 3.5: Interpretation of transmission electron micrographs. Practical Electron Microscopy in Materials Science,” (Ed. N. Philips), 1974, Gloeilampenfabrieken, Eindhoven, pp. 109-200.

Eibl, O., Pongratz, P. & Skalicky, P., “Crystallography of (111) twins in BaTiO3,” Philosophical Magazine B, 1988, 57[4], pp. 521-534.

Eibl, O., Pongratz, P., Skalicky, P. & Schmelz, H., “Extended defects in hexagonal BaTiO3,” Philosophical Magazine A, 1989, 60[5], pp. 601-612.

Galasso, F. S., “Structure and properties of inorganic solid,” Pergamon, Oxford, 1970.

Gevers, R., Blank, H. & Amelinckx, S., “Extension of the Howie-Whelan Equations for Electron Diffraction to Non-Centro Symmetrical Crystals,” Phys. Stat. Sol., 1966, 13, pp. 449-465.

Glaister, R.M. & Kay, H. F., Proc. Phys. Soc., 1960, 76, p. 763.

Goodhew, P.J., “Thin foil preparation for electron microscopy,” Elsevier, Amsterdam, The Netherlands, 1985.

Grey, I. E., Li, C., Cranswick, L. M. D., Roth, R. S. & Vanderah, T. A., “Structure Analysis of the 6H-Ba(Ti,Fe3+,Fe4+)O3-�� Solid Solution,”J. Solid State Chem.,” 1998, 135, pp. 312-321.

Hamada, E., Cho, W. S. & Takayanagi, K., “Nanotwins in BaTiO3 nanocrystals,” Philosophical Magazine A, 1998, 77[5], pp. 1301-1308.

Hu, Y. H., Chan, H. M., Wen, Z. X. & Harmer, M. P., “Scanning Electron Microscopy and Transmission Electron Microscopy Study of Ferroelectric Domains in Doped BaTiO3,” J. Am. Ceram. Soc., 1986, 69[8], pp. 594-602.

Huang, P-N. & Petric, A., “Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium,” J. Electrocem. Soc., 1996, 143[5], pp. 1644-1647.

Javadpour, J. & Eror, N. G., “Raman spectroscopy of higher titanate phase in the BaTiO3-TiO2 system,” J. Am. Ceram. Soc., 1988, 71[4], pp. 206-213.
Jaffee, B., Cook, W. R. & Jaffee, H., “Barium titanate,” Peizoelectric ceramics, 1971, Academic Press, NY, pp. 49-114.

Jia, C. L. & Urban, K., “Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials,” Science, 2004, 303, pp. 2001-2004.

Johari, O. & Thomas, G., “The Stetrographic Projection and its Applications in Techniques of Metals Research,” (Ed. R.F. Bunshah), 1969, Interscience, NY.

Kingery, W. D., Bowen, H. K. & Uhlmann, D. R., “Introduction to ceramics,” 1976, Wiley, J., N. Y.

Kirby, K. W. & Wechsler B. A., “Phase relations in the barium titanate-titanium oxide system,” J. Am. Ceram. Soc., 1991, 74[8], pp. 1842-1847.

Klepeis, S. J., Benedict, J. P. & Anderson, R. M., “A grinding/polishing tool for TEM sample preparation,” Mat. Res. Soc. Symp. Proc., 1988, 115, pp. 179-184.

Lewis, G. V. & Catlow, C. R. A., “Computer Modelling of Barium Titanate,” Radia. Eff., 1983, 73, pp. 307-314.

Lewis, G. V. & Catlow, C. R. A., “Defect studies of doped and undoped barium titanate using computer simulation techniques,” J. Phys. Chem. Solids, 1986, 47[1], pp. 89-97.

Lin, M. H., Ph.D. thesis, National Sun Yat-Sen University, 1998.

Lines, M. E. & Glass, A. M., “Principles and Applications of Ferroelectric and Related Material,” Ch. 4 (Clarendon, Oxford) 1977.

Liou, J. K., MS. thesis, National Sun Yat-Sen University, 1999.

Matsuo, Y., Fujimura, M., Sasaki, H., Nagase, K. & Hayakawa, S., “Semiconducting BaTiO3 with Additions of Al2O3, SiO2 and TiO2,” Amer. Ceram. Soc. Bull., 1968, 47 [3], pp. 292-297.

Negas, T., Roth, R. S., Parker, H. S. & Minor, D., “Subsolidus phase relations in the BaTiO3-TiO2 system,” J. Am. Ceram. Soc., 1974, 9, pp. 297-307.
O''Bryan, H. M. & Thomson, J., “Phase equilibria in the TiO2-rich region of the system BaO-TiO2” J. Am. Ceram. Soc., 1974, 66[6], pp. 444-446.
Park, B. M. & Chung, S. J., J. Am. Ceram. Soc., 1994, 77, p. 3193.

Peng, C. J. & Lu, H. Y., “Compensation Effect in Semiconducting Barium Titanate,” J. Am. Ceram. Soc., 1988, 71[1], C-44-C-46.

Tien, T. Y.& Carlson, W. G., “Influence of Oxygen Partial Pressure on the Properties of Semiconducting BaTiO3,” J. Am. Ceram. Soc., 1963, 46[6], pp. 297-298.

Rao, C. N. R. & Gopalakrishnan, J., “New Directions in Solid State Chemistry,” 1997, pp. 52-57, 268-277.

Rase, D. E. & Roy, R., “Phase equlibria in the system BaO-TiO2,” J. Am. Ceram. Soc., 1955, 38[3], pp. 102-103.

Rečnik, A., Bruley, J., Mader, W., Kolar, D. & Rühle, M., ”Structural and spectroscopic investigation of (111) twins in barium titanate,” Philosophical Magazine B, 1994, 70[5], pp. 1021-1034.

Rečnik, A. & Kolar, D., “Exaggerated Growth of Hexagonal Barium Titanate under Reducing Sintering Conditions,” J. Am. Ceram. Soc., 1996, 79[4], pp. 1015-1018.
Ritter, J. J., Roth, R. S. & Blendell, J. E., “Alkoxide precursor synthesis and characterization of phase in the barium-titanium oxide system,” J. Am. Ceram. Soc., 1986, 69[2], pp. 155-162.

Rogan, R. C., Tamura, N. Swift, G. A. & Üstündag, E., “Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction,” Nature Materials, 2003, 2, pp. 379-381.

Schmelz, H. & Meyer, A., “The evidence for anomalous grain frouth below the eutectice temperature in BaTiO3 ceramics,” Ceram. Forum Int., 1982, 59, pp. 436-440.

Shriane, G., Jona, F. & Pepinsky, R., Proc. I.R.E., 1955, 42, p. 1738.



Sinclair, D. C., Skakle, J. M., Morrision, F. D., Smith, R I. and Beales, T. P., “Structure and electrical properties of oxygen-deficient hexagonal BaTiO3,” J. Mater. Chem., 1999, 9, pp. 1327-1331.

Strawn, R. S., “Investigation and application of PLZT ferroelectric ceramics,” 1976, Ph.D. Thesis, Arizona State University.

Suzuki, T., Ueno, M. Nishi, Y. & Fujimoto, M., “Dislocation loop formation in nonstoichiometric (Ba,Ca)TiO3 and BaTiO3 ceramics,” J. Am. Ceram. Soc., 2001, 84[1], pp. 200-206.

Ting, C. J., Ph.D. thesis, National Sun Yat-Sen University, 1997.

Verwey, E. J. W., Haayman, P. W. & Van Oosterhout, G. W., “Controlled Valency Semiconductor,” Philips Res. Rep., 5[6], 1950, pp. 173-187.

Virkar, Anil V. & Matsumoto, Roger L. K., “Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia,” J. Am. Ceram. Soc., 1986, 69[10], pp. C-224-C-226.

Wakamatsu, M. N., Takeuchi, N., Lai, G. C. & Ishida, S., “Influence of Firing Atmosphere on the Cubic-Hexagonal Transition and the Chemical State of Titanium in BaTiO3,” Yogyo Kyokaishi (Engl. abstract), 1987, 95, pp. 1181-1185.

Wu,Y. C., Ph.D. thesis, National Sun Yat-Sen University, 2004.

Wurst, J. C. & Nelson, J. A., “Lineal Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics,” J. Am. Ceram. Soc., 1972, p. 109.

Xue, L. A., Ph.D. thesis, University of Leeds, 1987.

Yakunin, S. I. Sharkmanov, V. V., Spinvak, G. V. & Vasil’eva, N. V., “Microstructure of domains and domain walls in single-crystal films of barium titanate,” Soviet Phys.-Solid Stat., 1972, 14[2], pp. 310-313.

Yoon, S. H., Lee, J. H., Kim, D. Y. & Hwang, N. M., “Core-Shell Structure of Acceptor-Rich, Coarse Barium Titanate Grains,” J. Am. Ceram. Soc., 2002, 85[12], pp. 3111-3113.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 11. 陳心田(2002),「學歷、經歷與網絡:軍人晉升至上校等待時間之分析」,人力資源管理學報,第2卷,第4期,頁33-56。
2. 7. 黃英忠、林營松、余德成(1995),「組織氣候、工作特性、人格特質、家庭因素、領導行為與組織承諾間關係之研究-以楠梓加工出口區員工為例」,人力資源學報,第5期,頁15-40。
3. 10. 張晉芬(1993),「企業組織中升遷機會的決定及員工的期望:兼論內部勞動市場理論的應用」,人文及社會科學集刊,第6卷,第1期,頁205-230。
4. 8. 黃英忠、鍾昆原、溫金豐(1998),「台商派駐大陸人員跨文化訓練模式初探:重要事例法與社會學習理論之應用」,輔仁管理評論,第5卷,第1期,頁19-47。
5. 2. 江豐富(1995),「以文憑還是以人力資本取才-台灣地區實證研究」,教育研究資訊,第3 卷,第5 期,頁17-35。
6. 12. 陳心田(2003a),「人際網絡、網絡利益與事業生涯成功」,管理評論,第22卷,第4期,頁101-127。
7. 13. 陳心田(2003b),「雇用員工型態與員工流動:一個組織人口學的觀點」,亞太經濟管理評論,第6卷,第2期,頁59-82。
8. 14. 陳心田(2003c),「關係人口與利社會組織行為:軍事後勤服務型組織的一項探索性研究」,人力資源管理學報,第3卷,第3期,頁107-125。
9. 15. 陳心田、蘇國賢、葉匡時(1999),「影響企業人口組成的組織因素探討:台灣企業之實證」,管理學報,第16卷,第4期,頁581-612。
10. 20. 蔡敦浩、葉匡時、俞慧芸(1993),「從社會資本學說論我國產業政策之發展方向」,研考雙月刊,第17 卷,第1 期,頁44-56。