跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許義龍
研究生(外文):Yi-long Hsu
論文名稱:非全共軛雜環芳香族之共聚高分子與多層奈米碳管複合材料之現場合成與螢光放射
論文名稱(外文):In-situ Synthesis and Luminescence Emission of Non-fully Conjugated Heterocyclic Aromatic Random Copolymers and Multi-wall Carbon Nanotube Composites
指導教授:白世榮
指導教授(外文):Shin-Jung Bai
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:91
中文關鍵詞:光致光非全共軛雜環芳香族共聚高分子現場合成多層奈米碳管高分子發光二極電致光
外文關鍵詞:Non-fully ConjugatedPolymer light emittingMulti-wall carbonIn-situ synthesisPhotoluminescenceElectroluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成了一系列蜷曲式非全共軛雜環芳香族共聚高分子poly{[2,2-(m-2-hydroxyl-phenylene)-4-4’-hexafluoroisopropane-bibenz- oxazoles]-co-[2,2’-(2-hydroxy-o-phenylene)-5,5’-bibenzimiazole]} (poly- [(6F-PBO-OH)m-co-(OH-Pbi)(1-m)]) 應用於發光二極體的製作和研究,並驗證了非全共軛的高分子也具有螢光效應。
非全共軛高分子結合了 6F-PBO-OH 與 OH-Pbi 經由化學鏈結可合成無序共聚合體,其吸收光譜可被考慮是由 6F-PBO-OH 與 OH-Pbi 個別光譜之相加,而共聚體薄膜的光致光與電致光光譜會隨著 OH-Pbi 比例的增加而往紅光位移,此現象歸因於 OH-Pbi 為一能使電荷更均勻分佈於分子鏈上而使能隙降低。在單層發光二極體應用方面,起始電壓大約在 2 V 到 3 V 之間,其電致光光譜隨著不同比例之共聚體展現出綠光的光色,雖然發光波長有些許的改變 (約 20 nm),但沒有觀察到可調變光色的現象。
本研究亦合成了非全共軛共聚合體與多層奈米碳管 (MWNT) 之複合材料,應用在單層發光二極體的製作和研究。為了使多層奈米碳管得以均勻的分佈,引用現場 (in-situ) 合成的方法,並在場發射式 (field emission) 掃瞄電子顯微鏡的實驗中,觀察到多層奈米碳管的聚結 (aggregation) 情形有大幅改善。在光致光與電致光光譜中發現多層奈米碳管的加入使得光譜有往紅光位移的趨勢,此現象歸因於多層奈米碳管本身為一高導電性的材料,現場合成後能幫助電荷在高分子間的傳遞而使電荷更均勻的分佈。可製作成單層發光二極體元件,其起使電壓大約在 2 V 到 5V 之間,本複合材料所發射的電致光光譜都展現出綠光。根據本研究之結果,在不高於 2 wt. % 的奈米碳管含量對於此非全共軛共聚合體的光致光與電致光放射效應影響並不顯著。
Opto-electronics of non-fully conjugated molecules was demonstrated successfully in this research as light emitting diodes (LEDs). A series of benzoxazole poly[2,2-(m-2-hydroxyl phenylene)-4-4’-hexafluoroisopro- pane-bibenzoxazoles] (6F-PBO-OH, Am) and benzimidazole poly[2,2’- (2-hydroxy-o-phenylene)-5,5’-bibenzimiazole] (OH-Pbi, B(1-m)) were copolymerized for coil-like non-fully conjugated poly-(Am-co-B(1-m)) for luminescence investigation.
UV-Vis absorption of the non-fully conjugated copolymers showed superposition of individual absorption response from the two chemical components of the copolymer. However, the photoluminescence (PL) and the electroluminescence (EL) emissions had a red shift with increasing OH-Pbi content. It seemed to suggest that OH-Pbi was more charge delocalized than 6F-PBO-OH. In mono-layer LEDs, the diode threshold voltages were about at 2 ~ 3 V and the EL showed a green emission. Tunable emission was not observed in varying the m value of the copolymers.
Composites of copolymer, poly(Am-co-B(1-m)) and multi-wall carbon nanotube (MWNT) were in-situ synthesized for mono-layer LED fabrication. Few MWNT aggregation was observed via the field-emission scanning electron microscopy. It was a success in dispersing MWNT in the copolymers. There was a red shift with MWNT addition in the PL and the EL emissions. The diode threshold voltages were about at 2 ~ 5 V and the EL emission still showed a green emission. According to this study, MWNT was inconsequential on the PL and the EL emissions of the copolymers up to 2 wt. %.
LIST OF CONTENTS
LIST OF CONTENTES I
LIST OF FIGURES
LIST OF TABLES XI
LIST OF SYNTHESIS SCHEMES.
CHAPTER 1 INTRODUCTION I
1.1 History of Light Emitting Diode 1
1.1.1 Semiconductor Light Emitting Diode 1
1.1.2 Organic LED 2
1.2 Molecular Light Emitting Diode 3
1.2.1 Conjugated Polymer 3
1.2.2 Structure of Molecular Light Emitting Diodes 3
1.2.2.1 Mono-layer Structure 3
1.2.2.2 Multi-layer Structure 4
1.2.3 Classification of Molecular Light Emitting Diode 5
1.3 Energy Band and Band Gap 6
1.3.1 Energy Band Theory 6
1.3.2 Work Function 7
1.4 Luminescence Emission 9
1.4.1 Emission 9
1.4.2 Fluorescence and Phosphorescence 10
CHAPTER 2 FUNDAMENTALS OF INSTRUMENTS 13
2.1 Polymer Synthesis 14
2.1.1 Material 14
2.1.2 Solution of Polymerization 14
2.1.2.1 Methanesulfonic Acid (MSA) Distillation 14
2.1.2.2 Phosphorus Pentoxide Methanesulfonic Acid (PPMA) Solution Preparation 14
2.2 Instruments and Measurements 16
2.2.1 Fourier Transform Infrared (FTIR) Spectrometer 16
2.2.2 Mass Spectrometry (MS) 16
2.2.4 Intrinsic Viscosity 16
2.2.5 UV-Vis Absorption Spectrum 17
2.2.6 Photoluminescence Emission Spectrum 19
2.2.7 Scanning Electron Microscopy 21
2.3 Light Emitting Diode Fabrication and Measurements 23
2.3.1 Spin Coating 23
2.3.2 Vacuum Thermal Evaporation Deposition 24
2.3.3 Current-Voltage (I-V) Measurement 26
2.3.4 Electroluminescence Emission 27
CHAPTER 3 EXPERIMENT 29
3.1 Material Preparation 29
3.1.1 Preparation of 2-Hydroxyterephthalic acid (MHT) 29
3.1.2 Homopolymer Synthesis from MHT and BAHH 30
3.1.3 Homopolymer Synthesis of from MHT and DBTD 31
3.1.4 Copolymer Syntheses from MHT, BAHH, and DBTD 32
3.1.5 Copolymers with Multi-Wall Carbon Nanotube (MWNT) 33
3.2 Chemical Analyses 33
3.2.1 Monomer Characterization 33
3.2.1 Polymers Characterization 33
3.3 PLED Device Fabrication 38
3.3.1 Polymer Solution Preparation 38
3.3.2 ITO Substrate Preparation 38
3.3.3 Thin Film Fabrication 40
3.3.4 Thermal Deposition of Cathode 40
3.3.5 Current-Voltage (I-V) Curve Measurement 41
3.3.6 Electroluminescence Spectrum 41
CHAPTER 4 NON-FULLY CONJUGATED COPOLYMER LEDS 43
4.1 Introduction 43
4.2 Material Synthesis 45
4.3 Experiment 45
4.3.1 Preparation of Solution 45
4.3.2 Process of Thin-film 46
4.3.3 Thin-film Characterization 46
4.3.3.1 UV-Vis Absorption 46
4.3.3.2 Photoluminescence Emission 47
4.3.4 Mono-layer LED Fabrication 47
4.3.4.1 Vacuum Thermal Evaporation 47
4.3.5 Mono-layer LED Characterization 48
4.3.5.1 I-V Measurement 48
4.3.5.2 Electroluminescence 48
4.4 Experimental Results 49
4.4.1 UV-Vis Absorption 49
4.4.2 Photoluminescence (PL) Spectra 51
4.4.3 I-V Curve 51
4.4.4 Electroluminescence (EL) Spectra 52
4.5 Summary 57
CHAPTER 5 POLYMER COMPOSITE LEDS 60
5.1 Introduction 60
5.2 Material Synthesis 61
5.3 Experiment 61
5.4 Experimental Results 62
5.4.1 UV-Vis Absorption 62
5.4.2 Photoluminescence (PL) Spectra 62
5.4.3 I-V Curve 67
5.4.4 Electroluminescence (EL) Spectra 70
5.5 Summary 81
CHAPTER 6 CONCLUSION 87
LIST OF REFERENCES 89
1.M. Popr and H. Kallmann, J. Chem. Phys, 1963, 38, 2042.
2.W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 1965, 14, 229.
3.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett, 1987, 51, 913.
4.C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 1989, 65, 3610.
5. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, P. L. Burn, K. Mackay, R. H. Friend, and A. B. Holmes, Nature, 1990, 347, 839.
6.D. Braun and A. J. Hegger, Appl. Phys. Lett., 1991, 58, 1982.
7.D. D. C. Bradley, Synth. Met., 1993, 54, 401.
8.L. Pauling, "Nature of the Chemical Bond," 1960, Cornell University Press, Ithaca, New York.
9.P. W. Atkins, "Physical Chemistry," 6th edition, 1998, Oxford University Press, Wellington Square, Oxford, England, 503~507.
10.P. E. Eaton, G. R. Carlson, and J. T. Lee, J. Org. Chem., 1973, 38, 4071.
11.G. Hougham, G. Tesora, and J. Shaw, Macromolecules, 1994, 27, 3642.
12.G. Hougham, G. Tesora, A. Viehbeck, and J. D. ChappleSokol, Macromolecules, 1994, 27, 5964.
13.G. Hougham, G. Tesora, and A. Viehbeck, Macromolecules, 1996, 29, 3453.
14.H. Vogel and C. S. Marvel., J. Polym. Sci., 1961. 50, 511.
15.Y. Iwakura, K.Uno, and Y. Imai,* J. Polym. Sci. Part A: Polym. Chem., 1964, 2, 2605-2615.
16.D. Hoel and E. Grunwald, J. Phys. Chem., 1977, 81, 2135.
17.K. C. Chang, E. Grunwald,* and L. R. Robinson, J. Am. Chem. Soc., 1977, 99, 3794.
18.K. C. Chang and E. Grunwald,* J. Am. Chem. Soc., 1976, 98, 3737.
19.C. C. Wu, "Lumincscence of Light Emitting Diodes of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymers," July 2003, Ph. D. Dissertation, National Sun Yat-Sen University, Kaohsiung, Taiwan.
20.Antonio Eduardo da Hora Machado, Jacques Antonio de Miranda, Silvana Guilardi, and Divinomar Severino, Spectrochimica Acta Part A, 2003, 59, 345-355.
21.S. Iijima, Nature, 1991, 354, 56.
22.J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Meenier, S. Bonnamy, F. Beguin, N. A. Burnham, and L. Forr, Adv. Mater., 1999, 11, 161.
23.E. W. Wong, P. E. Sheehan, and C. M. Liebe, Science, 1997, 277, 1971.
24.M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 1996, 381, 678.
25.Z. J. Jia, Z. Y. Wang, C. L. Xu, J. Liang, B. Q. Wei, and D. H. Wu et al., Mater. Sci. Eng. A, 1999, 1-2, 395-400.
26.C. A. Cooper, R. J. Young, and M. Halsall, Composites Part A, 2001, 3-4, 401-11.
27.I. Musa, M. Baxendale, G. A. J. Amaratunga, and W. Eccleston, Synth. Met., 1999, 1-3, 1250.
28.X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, and S. T. Lee et al., J. Am. Chem. Soc., 2002, 48, 14464-71.
29.Jae-Yoo Kim, Moonhee Kim, Heon Mo Kim, J. Joo, and Jong-Ho Choi,* Opti. Mater., 2002, 21, 147.
30.H. S. Woo,* R. Czerw, S. Webster, D. L. Carroll, J. W. Park, and J. H. Lee, Synth. Met., 2001, 116, 369.
31.Do-Hyung Kim,* Hoon-Sik Jang, Chang-Duk Kim, Dong-Soo Cho, Hee-Dong Kang, and Hyeong-Rag Lee,* Chem. Phys. Lett., 2003, 378, 232.
32.Yahachi Saito and Sashiro Uemura, Carbon, 2000, 38, 169.
33.E. P. Sheshin, Appl. Surf. Sci., 2003, 215, 191.
34.W. Zhu, C. Bower, G. P. Kochanski, and S. Jin, Soild-State Electronics, 2001, 45, 921.
35.G. S. Choi, K. H. Son, and D. J. Kim, Microelec. Eng., 2003, 66, 206.
36.M. S. Dresselhaus and M. Endo, Topics Appl. Phys., 2001, 80, 11-28.
37.M. A. Hamon, J. Chen, H. Hu, Y. S. Chen, M. E. Itkis, and A. M. Rao et al., Adv. Mater., 1999, 10, 834-7.
38.J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, J. Am. Chem. Soc., 2000, 24, 5879-80.
39.D. D. C. Bradley and R. H. Friend, J. Phys. Condens. Matter., 1989, 1, 3671.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top