跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/02 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭明裕
研究生(外文):Ming-Yu Kuo
論文名稱:二氧化鈦和有機發光材料的探討
論文名稱(外文):Investigations of Photocatalyst TiO2 and Organic Light-emitting Materials
指導教授:沈博彥沈博彥引用關係
指導教授(外文):Pouyan Shen
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:240
中文關鍵詞:噁二唑二氧化鈦高分子發光二極體
外文關鍵詞:Poly(phenylene vunylene)TitaniaOxadiazole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要可分為三個研究主題,第二章分別利用密度泛函數理論和共價鍵半經驗法則,來預測不同形態二氧化鈦的能隙和硬度,以提供二氧化鈦在光觸媒和硬膜運用上的重要參考。第三章則是利用分子動力模擬,探討不同聚對位亞苯乙烯衍生物之分子堆疊和發光效率的關係。第四章則利用氣相沉積法,探討不同側鏈取代基噁二唑衍生物和基材溫度對薄膜性質的影響。
二氧化鈦:經由密度泛函數理論的計算,得知瑩石(Fluorite)結構的二氧化鈦高壓相,有長的鈦氧鍵(Ti-O)和高對稱性的結構,所以,有較小的能隙。以實驗和理論值間的誤差校正後,推測瑩石結構的二氧化鈦可運用於吸收可見光的光觸媒上。由共價鍵半經驗法則得知高壓相二氧化鈦如��-PbO2態、斜鋯石(Baddeleyite)、瑩石(Fluorite)、氯鉛礦(Cotunnite)等結構有高於30 GPa的硬度,所以,可運用於切割工具的表面改質。
聚對位亞苯乙烯:藉由分子動力模擬,得知聚對位亞苯乙烯衍生物的主鏈是呈現螺旋狀或者鋸齒狀而不是完全剛直的,其共軛長度只有2到4個重複單位。模擬同時顯示出聚對位亞苯乙烯衍生物放光效率跟其分子堆疊有密切的關連,亦即苯環與苯環的面間距離在5埃附近的數目越多,則其放光效率就越高。這意味著電子的移動是經由分子間而非分子內的傳遞。
噁二唑:這個部分主要是探討不同側鏈的改質、膜的成長速率、基材溫度和升溫回火對噁二唑薄膜結構的影響。研究得知,高基材溫度和分子間氫鍵有助於規整膜的形成。在低基材溫度生長的膜,可經由升溫回火得到較規則的膜。
TiO2. Structural and electronic properties of TiO2 polymorphs denser than rutile, i.e. α-PbO2-, baddeleyite, fluorite, and cotunnite-type were calculated by a first-principle pseudo-potential method based on density functional theory with local density approximation. Using experimental and theoretical lattice parameters of ambient TiO2, i.e. anatase and rutile as standard, the fluorite-type TiO2 has the narrowest band gap among the post-rutile phases. This character is important for the potential applications as visible-light-responsive photocatalyst.
In additional to the bulk properties of dense TiO2 polymorphs the surface energies of ��-PbO2-type TiO2 were also calculated. The calculated surface energies were in the following decreasing order (100) > (001) > > (010). The calculation showed that the surface energy was affected by the undercoordination/distortion of the polyhedron upon relaxation beside the factor of atom packing density of the surface. The (010) surface has the lowest surface energy due to the exposure of highly symmetrical TiO4 polyhedra.
Another potential application for TiO2 polymorphs is hard coating for surface modification technology. Dense TiO2 polymorphs with theoretical hardness exceeding 30 GPa, 20 % higher than their ambient pressure polymorphs, i.e. rutile and anatase, are worthwhile to fabricate as coatings on suitable substrate for such application. This proposal is encouraged by the agreement of theoretical and experimental hardness of cotunnite-type TiO2 with strong linkage of 9-oxygen coordinated Ti polyhedra.
PPV. Molecular dynamics (MD) simulation was employed to investigate structure features and segment orientation of four poly(phenylene vinylene) (PPV) derivatives with long flexible side chains at room temperature. In the simulations, the main chains of the polymers were found to be semi-rigid and exhibit a tendency to coil into ellipsoidal helices or form zigzag conformations of only limited regularity. The simulations show that continuous quasi-coplanar segments along the backbone are in a range of 2~4 repeat units. The ordered orientation and coupling distance of interchain aromatic rings can be correlated to optical properties of materials. This work implies that long-range electron transfer along same backbones of these polymers may not happen but be mediated by interchain interactions.
Oxadiazole. The aim of this work is the investigation of the correlation between the chemical structure of a substance and its corresponding vapor deposition (VD) film structure. The influence of film preparation conditions on the film structure is also investigated in this work.
For a given molecule, the film structure could be controlled through the variation of the physical deposition parameters such as the film growth rate, the substrate temperature (Ts) and the vacuum. The study of the influence of these deposition parameters on film formation provides the possibility of controlling molecular arrangement and the subsequent physical properties of the films.
List of Figures…………………………………………………IV
List of Tables……………………………………………………IX

CHAPTER 1. INRODUCTION………………………………………………………1
1.1 Semiconductor Photocatalysis…………………………1
1.2 Organic Semiconductor…………………………………1
Reference………………………………………………………………4

CHAPTER 2. FISRT-PRINCIPLE CALCULATIONS OF ELECTRONIC AND GEOMETRICAL STRUCTURES OF TiO2…………………………………………6
2.1 Introduction……………………………………………………………6
2.2 Electronic Process in Photocatalysis and Quantum Size Effects………11
2.3 Crystal Structures. …………………………………………14
2.4 Calculation Method……………………………………………17
2.4.1 Introduction…………………………………………………………18
2.4.2 Density Functional Theory…………………………………………………18
2.4.3 Local-Density Approximation………………………………20
2.4.4 Plane Waves, Supercells and Pseudopotentials…………21
2.4.5 Computational Details……………………………………27
2.5 Results……………………………………………………………28
2.5.1 Bulk Properties………………………………………………………………28
2.5.1.1 TiO2 Polymorphs with cation in 6-fold coordination28
2.5.1.2 TiO2 Polymorphs with cation exceeding 6-fold coordination…………31
2.5.1.3 Hardness estimation of TiO2 Polymorphs………………………………32
2.5.2 Surface Structures and Energies of ��-PbO2 type TiO2………………………34
2.5.3 Electronic Properties for ��-PbO2 type TiO2………37
2.6 Implications……………………………………………………38
2.6.1 Photocatalysis………………………………………………………38
2.6.2 Hardness Applications………………………………………………………39
2.7 Concusions………………………………………………………41
Reference……………………………………………………………81

CHAPTER 3. MOLECULAR DYNAMICS SIMULATION OF SIDE-CHAIN GRAFTED POLY(PHENYLENE VINYLENE)S……………………………90
3.1 Conjugated Polymers……………………………………………90
3.2 Methods of Molecular Dynamics Simulation…………………95
3.2.1 GROMOS Force Field…………………………………………95
3.2.2 Basic Principle of MD………………………………………96
3.2.3 Numerical Methods…………………………………………96
3.2.4 Image Box Dimensions…………………………………………97
3.2.5 Cutoff Radius………………………………………………98
3.2.6 Nearest Image Convection…………………………………98
3.2.7 System Equilibrium……………………………………………99
3.2.8 Application of Reduced Unit…………………………100
3.2.9 Procedure of MD Simulation………………………100
3.2.10 Analytical Method……………………………………101
3.3 Results and Discussion…………………………………102
3.4 Conclusion………………………………………………108
Reference…………………………………………………125

CHAPTER 4. PREPARATION AND CHARACTERIZATION OF VD FILMS BASED ON SUBSTITUTITED 2,5-DIPHENYL-1,3,4-OXADIAZOLE DERIVATIVES……………………………………………………130
4.1 Introduction…………………………………………………130
4.2 Literature review……………………………………………132
4.2.1 Oxadiazole compounds………………………………132
4.2.2 Vacuum Deposited Films of other Organic Compounds…135
4.3 Experimental Methods……………………………………138
4.3.1 Vapor Deposition Films Preparation………………138
4.3.2 Bulk Material and Film Characterization……………142
4.3.3 Thermal Stability of the Studied Oxadiazoles……146
4.4 Influence of the Deposition Condition on the Film Formation…………………147
4.4.1 Introduction…………………………………147
4.4.2 Influence of the Vacuum……………………………………148
4.4.3 Influence of the Film Growth Rate………………………150
4.4.3.1 2-(4-Cyanophenyl)-5-(4-hexadecyloxyphenyl)-1,3,4-oxadiazole (pCEt16)………………………………………………151
4.4.3.2 4,4’-Bis(4-dodecanoylamino)-2,5-diphenyl-1,3,4-oxadiazole (11AA11)……………………………………………151
4.4.4 Influence of the Substrate Temperature (Ts)……153
4.4.4.1 2-(4-Cyanophenyl)-5-(4-hexadecyloxyphenyl)-1,3,4-oxadiazole (pCEt16)……………………………153
4.4.4.2 4,4’-Bis(4-dodecanoylamino)-2,5-diphenyl-1,3,4-oxadiazole (11AA11)………………………154
4.4.5 Summary………………156
4.5 Chemical Structure and Film Formation of Substituted Oxadiazoles…………156
4.5.1 Influence of the Aliphatic Chain Length………156
4.5.1.1 2-(4-Cyanophenyl)-5-(4-alkoxyphenyl)-1,3,4-oxadiazole (pCEtn).…157
4.5.1.2 4,4’-Bis(4-acylamino)-2,5-diphenyl-1,3,4-oxadiazole (nAAn)………160
4.5.2 Influence of the Head Group in Oxadiazoles with Ether Bridge Group…161
4.5.2.1 2-(4-Cyanophenyl)-5-(4-hexadecyloxyphenyl)-1,3,4-oxadiazole (pCEt16)………………………………161
4.5.2.2 2-Phenyl-5-(4-hexadecyloxyphenyl)-1,3,4-oxadiazole (HEt16)……166
4.5.2.3 Summary……………………………167
4.5.3 Influence of the Amide Bridge Group……………168
4.5.3.1 2-Phenyl-5-(4-dodecanoylaminophenyl)-1,3,4-oxadiazole (HA11)…169
4.5.3.2 2-(4-Cyanophenyl)-5-(4-dodecanoylaminophenyl)-1,3,4-oxadiazole (pCA11)……………………171
4.5.3.3 2,5-Bis(4-dodecanoylaminophenyl)-1,3,4-oxadiazole (11AA11)……174
4.5.3.4 An Analogous Oxadiazole without Amide Groups……179
4.5.4 Summary…………………………180
4.6 Effects of Structure Charge on the Optical Properties of the VD Film…………182
4.6.1 Absorption and PL Properties of the VD Films……………………………182
4.6.2 The Change of Optical Properties during the Film Structure Transformation……………………………………184
4.7 Summary and Future Work……………………………………………185
4.7.1 Summary…………………………………………………185
4.7.2 Future Work………………………………189
Reference……………………………………223
Appendix………………………………………233

CHAPTER 5. CONCLUSIONS…………………………………236
Chapter1
[1] J. Bardeen, W. H. Brattain, Phys. Rev. 1948, 74, 230.
[2] W. Shockley, Phys. Rev. 1950, 78, 173.
[3] W. Shockley, J. Bardeen, Phys. Rev. 1950, 77, 407.
[4] J. Bardeen, W. H. Brattain, Phys. Rev. 1949, 75, 1208.
[5] Photocatalytic Purification and Treatment of Water and Air, (Eds.: D. F. Ollis, H. Al-Ekabi), Elsevier, Amsterdam, 1993.
[6] A. Fujishima, K. Honda, Nature 1972,37, 238.
[7] A. J. Bard, J. Phys. Chem. 1982, 86, 172; J. Photochem. 1979, 10, 59; Science 1980, 207, 139.
[8] Energy Resources Through Photochemistry and Catalysis, (Ed.: M. Grätzel), Academic Press, New York, 1983.
[9] K. Kalyanasundaram, M. Grätzel, E. Pelizzetti, Coord. Chem. Rev. 1986, 69, 57.
[10] V. N. Parmon, K.I. Zamareav in Photocatalysis-Fundamentals and Applications, (Eds.: N. Serpone, E. Pelizzetti), Wiley Interscience, New York, 1989, pp. 565.
[11] Photochemical Conversion and Storage of Solar Energy, (Eds.: E. Pelizzetti, M. Schiavello), Kluwer Academic Publishers, Dordrecht, 1991.
[12] Photocatalysis and Environment, (Ed.: M. Schiavello), Kluwer Academic Publishers, Dordrecht, 1988.
[13] Photocatalytic Purification and Treatment of Water and Air, (Eds.: D. F. Ollis, H. Al-Ekabi), Elsevier, Amsterdam, 1993.
[14] J. R. Sheats, H. Antoniadis, M. Hueschen, M. Leonard, J. Miller, R. Moon, D. Roitman, A. Stocking, Sience 1996, 273, 884.
[15] J. Dresner, RCA Rev. 1969, 30, 322.
[16] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539.
[17] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
[18] Energy Resources Through Photochemistry and Catalysis, (Ed.: M. Grätzel), Academic Press, New York, 1983.
[19] K. Kalyanasundaram, M. Grätzel, E. Pelizzetti, Coord. Chem. Rev. 1986, 69, 57.
[20] V. N. Parmon, K.I. Zamareav in Photocatalysis-Fundamentals and Applications, (Eds.: N. Serpone, E. Pelizzetti), Wiley Interscience, New York, 1989, pp. 565.
[21] Photochemical Conversion and Storage of Solar Energy, (Eds.: E. Pelizzetti, M. Schiavello), Kluwer Academic Publishers, Dordrecht, 1991.
[22] Photocatalysis and Environment, (Ed.: M. Schiavello), Kluwer Academic Publishers, Dordrecht, 1988.
[23] Photocatalytic Purification and Treatment of Water and Air, (Eds.: D. F. Ollis, H. Al-Ekabi), Elsevier, Amsterdam, 1993.
[24] V. E. Henrich, A. F. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1993.
[25] G. L. Haller, D. E. Resasco, Adv. Catal. 1989, 36, 173.
[26] New Sci. 1998, 10, 11.
[27] P. Y. Simons, F. Dachille, Acta Crystallogr. 1967, 23, 334.
[28] H. Sato, S. Endo, M. Sugiyama, T. Kiewgawa, O. Shimomura, K. Kusaba, Science 1991, 25, 786.
[29] R. H. Friend, R. W. Gymer, A. B. Holmes, H. J. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
[30] Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature 1999, 397, 414.
[31] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 1992, 357, 477.
[32] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed. 1998, 37, 402.
Chapter2
[1] A. Fujishima, K. Honda, Nature 1972,37, 238.
[2] A. J. Bard, J. Phys. Chem. 1982, 86, 172; J. Photochem. 1979, 10, 59; Science 1980, 207, 139.
[3] Energy Resources Through Photochemistry and Catalysis, (Ed.: M. Grätzel), Academic Press, New York, 1983.
[4] K. Kalyanasundaram, M. Grätzel, E. Pelizzetti, Coord. Chem. Rev. 1986, 69, 57.
[5] V. N. Parmon, K.I. Zamareav in Photocatalysis-Fundamentals and Applications, (Eds.: N. Serpone, E. Pelizzetti), Wiley Interscience, New York, 1989, pp. 565.
[6] Photochemical Conversion and Storage of Solar Energy, (Eds.: E. Pelizzetti, M. Schiavello), Kluwer Academic Publishers, Dordrecht, 1991.
[7] Photocatalysis and Environment, (Ed.: M. Schiavello), Kluwer Academic Publishers, Dordrecht, 1988.
[8] Photocatalytic Purification and Treatment of Water and Air, (Eds.: D. F. Ollis, H. Al-Ekabi), Elsevier, Amsterdam, 1993.
[9] V. E. Henrich, A. F. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1993.
[10] G. L. Haller, D. E. Resasco, Adv. Catal. 1989, 36, 173.
[11] New Sci. 1998, 10, 11.
[12] P. Y. Simons, F. Dachille, Acta Crystallogr. 1967, 23, 334.
[13] H. Sato, S. Endo, M. Sugiyama, T. Kiewgawa, O. Shimomura, K. Kusaba, Science 1991, 25, 786.
[14] S. Endo, H. Takenaka, H. Arashi in High-Pressure Science and Technology 1993 (Eds.: S. C. Schmidt, J. W. Shaner, G. A. Samara, M. Ross), American Institute of Physics, New York, 1994, pp. 371.
[15] J. K. Dewhurst, J. E. Lowther, Phys. Rev. B 1996, 54, R3673.
[16] M. Latroche, L. Brohan, R. Marchand, M. Tournoux, J. Solid State Chem. 1989, 81, 78.
[17] R. Marchand, L. Brohan, M. Tournoux, Mater. Res. Bull. 1980, 15, 1129.
[18] D. T. Cromer, K. Herrington, J. Am. Chem. Soc. 1955, 77, 4708.
[19] W. H. Baur, Acta Crystallogr. 1961, 14, 214.
[20] S. D. Mo, W. Y. Ching, Phys. Rev. B 1995, 51, 13023.
[21] J. G. Liou, R. Y. Zhang, W. G. Ernst, D. Rumble III, S. Maruyama, Mineral. Soc. Am., Rev. Mineral. 1998, 37, 33.
[22] R. G. McQueen, J. C. Jamieson, S. P. Marsh, Science 1967, 155, 1401.
[23] K. Kusaba, M. Kikuchi, K. Fukuoka, Y. Syono, Phys. Chem. Miner. 1988, 15, 238.
[24] J. S. Olsen, L. Gerward, J. Z. Jiang, J. Phys. Chem. Solids 1999, 60, 229.
[25] H. J. Massonne in Proc. 7th Int. Kimberlite Conf. Vol. 2 (Eds.: J. J. Gurney, J. L. Gueney, M. D. Pascoe, S. H. Richardson), Univ. Cape Town, P. H. Nixon, 1998, pp533.
[26] S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, Science 2000, 288, 321.
[27] S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, C. C. Lin, Earth Planet. Sci. Lett. 2001, 188, 9.
[28] H. Arashi, J. Phys. Chem. Solids 1992, 53, 355.
[29] K. Lagarec, S. Desgreniers, Solid State Commun. 1995, 94, 519.
[30] H. Sato, S. Endo, M. Sugiyama, T. Kikegawa, O. Shimomura, K. Kusaba, Science 1991, 251, 786.
[31] S. Endo, I. Takenaka, H. Arashi, AIR Conf. Proc. 1979, 309, 371.
[32] Y. Syono, K. Kusaba, M. Kikuchi, K. Fukuoka, Geophys. Monogr. 1987, 39, 385.
[33] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, B. Johansson, Nature 2001, 410, 653.
[34] S. Y. Chen, P. Shen, Phys. Rev. Lett. 2002, 89, 096106-1.
[35] B. G. Hyde, S. Andersson, Inorganic Crystal Structures, Wiley, New York, 1989, pp14, 69.
[36] M. Y. Yan, W. W. Rhodes in Grain Boundaries in Semiconductors, (Eds.: H. J. Leamy, G. E. Pike, C. H. Seager), North-Holland, New York, 1981.
[37] J. Reintjes, M. B. Schltz, J. Appl. Phys. 1968, 39, 5254.
[38] J. B. Goodenough, J. M. Longo in Landolt-Börnstein Tabellen, (Eds.: K. H. Hellwege, A. M. Hellwege), Springer-Verlag, Berlin, 1970.
[39] J. Tauster, S. C. Fung, R. L. Garten, J. Am. Chem. Soc. 1978, 100, 170.
[40] D. J. Dwyer, S. D. Cameron, J. Gland, Surf. Sci. 1985, 159, 430.
[41] R. I. Bickley, R. Soc. Chem. 1982, 5, 308.
[42] R. H. Tait, R. V. Kasowski, Phys. Rev. B 1979, 20, 5478.
[43] W. Göpel, J. A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J. A. Schäfer, G. Rocker, Surf. Sci. 1984, 139, 333.
[44] K. Tsutsumi, O. Aita, K. Ichikawa, Phys. Rev. B 1977, 15, 4638.
[45] A. F. Carley, P. R. Chalker, J. C. Riviere, M. W. Roberts, J. Chem. Soc. Faraday Trans. 1987, 83, 351.
[46] B. W. Veal, A. P. Paulikas, Phys. Rev. B 1985, 31, 5399.
[47] R. Brydson, H. Sauer, W. Engel, J. M. Thomas, E. Zeitler, N. Kosugi, H. Kuroda, J. Phys. Condens. Matter 1989, 1, 797.
[48] L. A. Grunes, R. D. Leapman, C. N. Wilker, R. Hoffman, A. B. Kunz, Phys. Rev. B 1982, 25, 7157.
[49] M. L. Knotek, P. J. Feibelman, Phys. Rev. Lett. 1978, 49, 964.
[50] B. Poumellec, P. J. Durham, G. Y. Guo, J. Phys. Condens. Matter 1991, 3, 8195.
[51] N. Daude, C. Gout, L. Jouanin, Phys. Rev. B 1977, 15, 3229.
[52] K. Vos, J. Phys. C 1977, 10, 3917.
[53] L. B. Lin, S. D. Mo, D. L. Lin, J. Phys. Chem. Solids 1993, 54, 907.
[54] A. Hagfeldt, H. Siegbahn, S. E. Lindquist, S. Lunell, Int. J. Quantum Chem. 1992, 44, 477.
[55] K. M. Glassford, J. R. Chelikowsky, Phys. Rev. B 1992, 46, 1284.
[56] K. M. Glassford, J. R. Chelikowsky, Phys. Rev. B 1993, 47, 12550.
[57] D. Vogtenhuber, R. Podloucky, A. Neckel, S. G. Steinemann, A. J. Freeman, Phys. Rev. B 1994, 49, 2099.
[58] S. D. Mo, L. B. Lin, D. L. Lin, J. Phys. Chem. Solids, 1994, 55, 1309.
[59] J. W. Halley, M. T. Michalewicz, N. Tit, Phys. Rev. B 1990, 41, 10165.
[60] A. Fahmi, C. Minot, B. Silvi, M. Causà, Phys. Rev. B 1993, 47, 11717.
[61] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, Jr. J. V. Smith, J. V. Smith, J. Am. Chem. Soc. 1987, 109, 3639.
[62] M. Ramammoorthy, D. Vanderbilt, R. D. King-Smith, Phys. Rev. B 1994, 49, 16721.
[63] P. M. Oliver, G. W. Watson, E. T. Kelsey, S. C. Parker, J. Mater. Chem. 1997, 7, 563.
[64] M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, X. Gonze, Jpn. J. Appl. Phys. 2000, 39, L847.
[65] M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B 2001, 63, 155409-1.
[66] J. Muscat, V. Swamy, N. M. Harrison, Phys. Rev. B 2002, 65, 224112.
[67] Y. Suda, T. Morimoto, Langmuir 1987, 3, 786.
[68] T. Bredow, K. Jug. Surf. Sci. 1995, 327, 398.
[69] P. J. D. Lindan, N. M. Harrison, J. M. Holender, M. J. Gillan, Chem. Phys. Lett. 1996, 261, 246.
[70] P. J. D. Lindan, N. M. Harrison, M. J. Gillan, Phys. Rev. Lett. 1998, 80, 762.
[71] A. Vittadini, A. Selloni, F. P. Rotzinger, M. Grätzel, Phys. Rev. Lett. 1998, 81, 2954.
[72] I. M. Brookes, C. A. Muryn, G. Thornton, Phys. Rev. Lett. 2001, 87, 266103-1.
[73] R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J. K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 2001, 87, 266104-1.
[74] D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 1980, 45, 566.
[75] M. Mikami, S. Nakamura, Phys. Rev. B 2002, 66, 155213.
[76] Y. Nosaka, M. A. Fox, J. Phys. Chem. 1988, 92, 1893.
[77] A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev. 1995, 95, 735.
[78] R. W. Matthewa, J. Catal. 1988, 113, 549.
[79] H. Fröhlich, Physica 1937, 6, 406.
[80] R. Kubo, A. Kawabata, S. Kabayashi, Annu. Rev. Mater. Sci. 1984, 14, 49.
[81] L. L. Chang, L. Esaki, W. E. Howard, R. J. Ludeke, J. Vac. Sci. Technol. 1973, 10, 11.
[82] A. Y. Cho, J. R. J. Arthur, Prog. Solid State Chem. 1975, 10, 157.
[83] R. Dingle, A. C. Gossard, W. Wiegmann, Phys. Rev. Lett. 1975, 34, 1327.
[84] D. S. Chemla, D. A. B. Miller, J. Opt. Soc. Am. B: Opt. Phys. 1985, 2, 1155.
[85] G. v. Z. Taeckel, Tech, Phys. 1926, 7, 301.
[86] J. K. Inmau, A. M. Mraz, W. A. Wely, Solid Luminescent Materials, Wiley, New York, 1948, pp182.
[87] L. E. Brus, J. Chem. Phys. 1983, 79, 5566.
[88] L. E. Brus, J. Chem. Phys. 1984, 80, 4403.
[89] R. Wyckoff, Crystal Structures, 2nd ed., Vol. 1, Interscience, New York.
[90] K. V. K. Rao, S. V. N. Naidu, L. Iyengar, J. Am. Ceram. Soc. 1970, 53, 124.
[91] C. J. Howard, T. M. Sabine, F. Dickson, Acta Crystallogr., Sect. B: Struct. Sci. 1991, 47, 462.
[92] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, J. Am. Chem. Soc. 1987, 109, 3639.
[93] S. Y. Chen, P. Shen, Jpn. J. Appl. Phys. 2004, 43, 1519.
[94] H. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
[95] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
[96] M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045.
[97] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. payne, J. Phys.: Condens. Matter 2002, 14, 2717.
[98] J. C. Phillips, Phys. Rev. 1958, 112, 685.
[99] M. L. Cohen, V. Heine in Solid State Physics, Vol. 4 (Eds.: F. Seitz, D. Turnbull, H. Ehrenreich), Academic, New York, 1970, pp. 37-249.
[100] M. T. Yin, M. L. Cohen, Phys. Rev. B 1982a, 25, 7403.
[101] D. R. Hartree, Proc. Cambridge Phil. Soc. 1928, 24, 89.
[102] V. Fock, Z. Physik 1930, 61, 126; 1930, 62, 795.
[103] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry-Introduction to Advanced Electronic Structure Theory, McGraw-Hill, New York, 1989.
[104] R. G. Parr, Annu. Rev. Phys. Chem. 1983, 34, 631.
[105] E. Wimmer in New Trends in Materials Chemistry, (Eds.: C. R. A. Catlow, A. K. Cheetham), Kluwer, NATO ASI Series C498. Dordrecht, Kluwer, 1997.
[106] J. Harris, R. O. Jones, J. Phys. F 1974, 4, 1170.
[107] O. Gunnarsson, B. I. Lundqvist, Phys. Rev. B 1976, 13, 4174.
[108] D. C. Langreth, J. P. Perdew, Phys. Rev. B 1977, 15, 2884.
[109] R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471.
[110] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt Saunders, Philadelphia, 1976, pp. 113.
[111] D. J. Chadi, M. L. Cohen, Phys. Rev. B 1973, 8, 5747.
[112] D. J. Joannopoulos, M. L. Cohen, J. Phys. C 1973, 6, 1572.
[113] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
[114] R. A. Evarestov, V. P. Smirnov, Phys. Status Solidi 1983, 119, 9.
[115] J. S. Lin, A. Oteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174.
[116] A. M. Rappe, J. D. Joannopoulos in Computer Simulation in Materials Science, (Eds.: M. Meyer, V. Pontikis), Kluwer, Dordrecht, 1991, pp. 409.
[117] D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.
[118] C. Y. Lee, D. Vanderbilt, K. Laasonen, R. Car, M. Parrinello, Phys. Rev. B 1993, 47, 4863.
[119] M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, X. Gonze, Jpn. J. Appl. Phys. 2000, 39, L847.
[120] L. Gerward, J. S. Olsen, J. Appl. Crystallogr. 1997, 30, 259.
[121] Properties of Complex Inorganic Solids, (Ed.: V. Milman), Plenum Press, New York, 1997.
[122] J. Pascual, J. Camassel, H. Mathieu, Phys. Rev. Lett. 1977, 39, 1490; Phys. Rev. B 1978, 18, 5606.
[123] F. Arntz, Y. Yacoby, Phys. Rev. Lett. 1966, 17, 857.
[124] S. P. Kowlczyk, F. R. Mcfeely, L. Ley, V. T. Gritsyna, D. A. Schirley, Solid State Commun. 1977, 23, 161.
[125] D. W. Fisher, Phys. Rev. B 1972, 5, 4219.
[126] R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Lévy, J. Appl. Phys. 1994, 75, 2945.
[127] H. Tang, H. Berger, P. E. Schmid, F. Lévy, G. Burri, Solid State Commun. 1993, 87, 847.
[128] P. I. Sorantin, K. Schwarz, Inorg. Chem. 1992, 31, 567.
[129] R. Asahi, Y. Taga, W. Mannstadt, A. J. Freeman, Phys. Rev. B 2000, 61, 7459.
[130] S. Y. Zhang, Chin. J. Chem. Phys. 1991, 109, 4.
[131] F. M. Gao, J. L. He, E. D. Wu, S. M. Liu, D. C. Li, S. Y. Zhang, Y. J. Tian, Phys. Rev. Lett. 2003, 91, 015502.
[132] F. M. Gao, D. C. Li, S. Y. Zhang, J. Phys.: Condens. Matter 2003, 15, 5079.
[133] F. M. Gao, D. C. Li, J. L. He, Y. J. Tian, D. L. Yu, S. Y. Zhang, Physica C 2002, 371, 151.
[134] B. F. Levine, J. Chem. Phys. 1973, 59, 1463.
[135] B. F. Levine, Phys. Rev. B 1973, 7, 2591.
[136] L. C. Ming, M. H. Manghnani, J. Geophys. Res. 1979, 84, 4777.
[137] O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, Surf. Coat. Technol. 2004, 180-181, 538.
[138] A. Bendavid, P. J. Martin, H. Takikawa, Thin Solid Films, 2000, 360, 241.
[139] T. Arlt, M. Bermejo, M. A. Blanco, L. Gerward, J. Z. Jiang, J. Staun Olsen, J. M. Recio, Phys. Rev. B 2000, 61, 14414.
[140] R. Q. Zhang, K. S. Chan, H. F. Cheung, S. T. Lee, Appl. Phys. Lett. 1999, 75, 2259.
[141] V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, D. C. Rubie, Appl. Phys. Lett. 2001, 78, 1385.
[142] R. A. Andrievski, Int. J. Refract. Met. Hard Mater. 2001, 19, 447.
[143] V. E. Henrich, R. L. Kurtz, Phys. Rev. B 1981, 23, 6280.
[144] W. Li, Y. Wang, H. Lin, S. I. Shah, C. P. Huang, D. J. Doren, S. A. Rykov, J. G. Chen, M. A. Barteau, Appl. Phys. Lett. 2003, 83, 4143.
[145] J. C. Phillips, J. A. Van Vechten, Phys. Rev. B 1970, 2, 2147.
[146] H. A. Jahn, E. Teller, Proc. R. Soc. London, Ser. A 1937, 161, 220.
[147] Quantum Thoery of Solids, (Ed.: R. E. Peierls), Clarendon Press, Oxford, 1955.
[148] T. Hughbanks, J. Am. Chem. Soc. 1985, 107, 6851.
[149] R. A. Wheeler, M. Whangbo, T. Hughbanks, R. Hoffmann, J. K. Burdett, T. A. Albright, J. Am. Chem. Soc. 1986, 108, 2222.
[150] S. K. Kang, H. Tang, T. A. Albright, J. Am. Chem. Soc. 1993, 115, 1971.
[151] S. Lee, R. Hoffmann, J. Am. Chem. Soc. 2002, 124, 4811.
Chapter3
[1] J. C. W. Chien, Polyacetylene: Chemistry, Physics, and Material Science, Academic press, Orlando, 1984.
[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc. Chem. Commun. 1977, 16, 578.
[3] Handbook of Conducting Polymers (Eds.: T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds) 2nd ed., Marcel Dekker, New York, 1998.
[4] S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, S. G. Boxer, Science 1997, 276, 1233.
[5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539.
[6] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 1992, 357, 477.
[7] R. A. Wessling, R. G. Zimmermann, US Pat. 1986, 3401152.
[8] R. A. Wessling, J. Polymer. Sci., Polym. Symp. 1985, 72, 55.
[9] S. Doi, M. Kuwabara, T. Noguchi, Syn. Met. 1993, 55, 4174.
[10] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 914.
[11] K. R. Chuang Studies on Structur-/properties of Poly(p-phenylene vinylene)s and Their Application in Light-Emitting Diode. Ph. D. Thesis, National Tsing Hua University, 1996.
[12] A. B. Holmers, A. C. Grimsdale, A. Kraft, Angew. Chem. Int. Ed. 1998, 37, 402.
[13] D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
[14] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N, Colaneri, A. J. Heeger, Nature 1992, 357, 477.
[15] A. J. Heeger, D. Braun (UNIAX), WO-B 92/16023, 1992 [Chem. Abstr. 1993, 118, 157401j].
[16] G. J. Sarnecki, P. L. Burn, A. Kraft, R. H. Friend, A. B. Holmers, Syn. Met. 1993, 55, 914.
[17] F. Wudl, P. M. Allemand, G. Srdanov, Z. Ni, D McBranch, ACS Symp. Ser. 1991, 455; F. Wudl (University of California), US-B 5189136, 1990 [Chem. Abstr. 1993, 118, 255575p].
[18] D. Braun, E. G. J. Staring, R. C. J. E. Demandt, G. L. J. Rikken, Y. A. R. R. Kessener, A. H. J. Venhuizen, Syn. Met. 1994, 66, 75.
[19] J. L. Brédas, A. J. Heeger, Chem. Phys. Lett. 1994, 217, 507.
[20] Y. Z. Lee Structure-properties Relationship in Oxadiazole-modified Poly(p-phenylene vinylene)s and Their Application in Light-Emitting Diode. Ph. D. Thesis, National Tsing Hua University, 1999.
[21] J. C. Carter, I. Grzzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O. R. de los Paňos, K. Pichler, C.R. Towns, H. F. Wittmann, Appl.Phys. Lett. 1997, 71, 34.
[22] G. Yu, Syn. Met. 1996, 80, 143.
[23] E. C. Chang Studies on Structur-properties of Poly(p-phenylene vinylene) Derivatives and Their Application in Light-Emitting Diode. Ph. D. Thesis, National Tsing Hua University, 1998.
[24] N. C. Greenham, R. H. Friend, D. D. C. Bradley, Adv. Mater. 1994, 6, 491.
[25] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature 1993, 365, 628.
[26] S. H. Chen, A. C. Su, Y. F. Huang, C. H. Su, G. Y. Peng, S. A. Chen, Macromolecules 2002, 35, 4229.
[27] S. N. Yaliraki, R. J. Silbey, J. Chem. Phys. 1996, 104, 1245.
[28] D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, P. F. Barbara, Nature 2000, 405, 1030.
[29] J. Yu, W. S. Fann, F. J. Kao, D. Y. Yang, S. H. Lin, Synth. Met. 1994, 66, 143.
[30] J. Yu, J. H. Hsu, K. R. Chuang, C. L. Chao, S. A. Chen, F. J. Kao, W. S. Fann, S. H. Lin, Synth. Met. 1995, 74, 7.
[31] J. Cornil, D. Beljonne, R. H. Friend, J. L. Brédas, Chem. Phys. Lett. 1994, 223, 82.
[32] R. Chang, J. H. Hsu, W. S. Fann, K. K. Liang, C. H. Chang, M. Hayashi, J. Yu, S. H. Lin, E. C. Chang, K. R. Chuang, S. A. Chen, Chem. Phys. Lett. 2000, 317, 142.
[33] B. Schwartz, F. Hide, M. R. Andersson, A. J. Heeger, Chem. Phys. Lett. 1997, 265, 327.
[34] L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. F. Galvin, E. K. Kwock, T. M. Miller, Synth. Met. 1996, 80, 41.
[35] J. W. Blatchford, S. W. Jessen, L. B. Lin, J. J. Lih, T. L. Gustafsson, A. J. Epstein, D. K. Fu, M. J. Marsella, T. M. Swager, A. G. MacDiarmid, H. Hamaguchi, Phys. Rev. Lett. 1996, 76, 1513.
[36] S. V. Frolov, W. Gellermann, Z. V. Vardeny, M. Ozaki, K. Yoshino, Synth. Met. 1997, 84, 493.
[37] I. D. W. Samuel, G. Rumbles, C. J. Collison, Phys. Rev. B, 1995, 1995, R11573.
[38] E. M. Conwell, J. Perlstein, S. Shaik, Phys. Rev. B, 1996, 54, R2308.
[39] J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey, J. L. Brédas, J. Am. Chem. Soc. 1998, 120, 1289.
[40] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Brédas, M. Loegdlund, W. R. Salaneck, Nature 1999, 397, 121.
[41] S. Tretiak, A. Saxena, R. L. Martain, A. R. Bishop, J. Phys. Chem. B 2000, 104, 7029.
[42] J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci. USA 2002, 99, 5804.
[43] Å. Johansson, S. Stafström, S. Phys. Rev. B, 2002, 66, 085208.
[44] P. F. van Hutten, V. V. Krasnikov, G. Hadziioannou, Acc. Chem. Res. 1999, 32, 257.
[45] M. P. Allen, D. J. Tildesley, Computer Simulation of liquids, Clarendon Press, Oxford, 1987.
[46] B. Dunweg, K. Kremer, J. Chem. Phys. 1993, 99, 6983.
[47] D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York 1987.
[48] W. F. Van Gunsteren, H. J. C. Berendson, GROSMOS BIOMOS n. v. Njenborg 4, 9747 AG Groningen, 1987.
[49] D. J. Beeman, J. Comput. Phys. 1976, 20, 130.
[50] M. Levitt, H. Meirovitch, J. Mol. Biol. 1983, 168, 617.
[51] L. Velert, Phys. Rev. 1968, 165, 201.
[52] (a) G. R. Meredith, J. G. van Dusen, D. J. Williams, Macromolecules 1982, 15, 1385. (b) H. Wang, R. C. Jarnagin, E. T. Samulski, Macromolecules 1994, 27, 4705.
[53] C. L. Chen, H. L. Chen, C. L. Lee, J. H. Shih, Macromolecules 1994, 27, 2087.
[54] C. L. Chen, C. L. Lee, H. L. Chen, J. H. Shih, Macromolecules 1994, 27, 7872.
[55] J. H. Shih, C. L. Chen, Macromolecules 1995, 28, 4509.
[56] C. X. Cui, M. Kertesz, Phys. Rev. B 1989, 40, 9661.
[57] S. A. Chen, E. C. Chang, Macromolecules 1998, 31, 4899.
[58] D. Chen, M. J. Winokur, M. A. Masse, F. E. Karasz, Polymer 1992, 33, 3116.
[59] K. E. Aasmundtviet, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Inganäs, R. Feidenhan’l, S. Ferrer, Macromolecules 2000, 33, 3120.
[60] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature 1993, 365, 628.
[61] N. C. Greenham, R. H. Friend, D. D. C. Bradley, Adv. Mater. 1994, 6, 491.
[62] Y. Z. Lee, X. W. Chen, S. A. Chen, P. K. Wei, W. S. Fann, J. Am. Chem. Soc. 2001, 123, 2296.
[63] A. Köhler, D. A. dos Santos, D. Beljonne, Z. Shuai, J. L. Brédas, A. B. Holmes, A. Kraus, K. Müllen, R. H. Friend, Nature 1998, 392, 903.
[64] S. Doi, M. Kuwabara, T. Noguchi, Synth. Met. 1993, 55-57, 4174.
[65] D. Beljonne, G. Pourtois, C. Silva, E. Hennebicq, L. M. Herz, R. H. Friend, G. D. Scholes, S. Setayesh, K. Müllen, J. L. Brédas, Proc. Natl. Acad. Sci. USA 2002, 99, 10982.
[66] R. J. O. M. Hoofman, M. P. de Hass, L. D. A. Siebbeles, R. Demandt, J. M. Warman, Nature 1998, 392, 54.
[67] B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, Appl. Phys. Lett. 1998, 73, 3162.
[68] L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, P. J. Brock, Appl. Phys. Lett. 1998, 74, 1132.
[69] L. S. Yu, H. E. Tseng, H. H. Lu, S. A. Chen, Appl. Phys. Lett 2002, 81, 2014.
Chapter4
[1] O. Inganäs in Organic Electroluminescent Materials and Devices, (Eds.: S. Miyata; H. S. Nalwa), Gordon and Breach, Amsterdam, 1996, pp. 147-176.
[2] E. Z. Faraggi, H. Chayet, G. Cohen, R. Neumann, Y. Avny, D. Davidov, Adv. Mater. 1995, 7, 742.
[3] B. Schulz, Y. Kaminorz, L. Brehmer, Synth. Met. 1997, 84, 449.
[4] B. Schulz, M. Bruma, L. Brehmer, Adv. Mater. 1997, 9, 601.
[5] B. Schulz, L. Brehmer, G. Knochenhauer, G. Mat. Sci. and Engin.-Biomim. Mat. Sensors and Systems, 1995, C3, 169.
[6] B. Schulz, Mol. Cryst. Liq. Cryst. Sci. Technol. A: Mol. Cryst. Liq. Cryst. 1994, 240, 135.
[7] B. Schulz, E. Leibnitz, Acta Polym. 1992, 43, 343.
[8] V. Salimgareeva, R. Polevoi, V. Ponomareva, N. Sannikova, S. Kolesov, G. Leplyanin, Russ. J. Appl. Chem. 2003, 76, 1655.
[9] G. Malimath, G. Chikkur, Appl. Rad. Isot. 1994, 45, 143.
[10] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater. 1998, 10, 680.
[11] J. F. Wang, G. E. Jabbour, E. A. Mash, J. Anderson, Y. Zhang, Adv. Mater. 1999, 11, 1266.
[12] J. P. Chen, D. Markiewicz, V. Y. Lee, G. Klaerner, R. D. Miller, J. C. Scott, Synth. Met. 1999, 107, 203.
[13] Z. Bao, J. A. Rogers, A. Dodabalapur, A. J. Lovinger, H. E. Katz,V. R. Raju, Z. Peng, M. E. Galvin, Opt. Mater. 1999, 12, 177.
[14] C. Xu, Y. Kaminorz, J. Reiche, B. Schulz, L. Brehmer, Synth. Met. 2003, 137, 963.
[15] Y. Kaminorz, C. Xu, B. Schulz, B. Stiller, J. Reiche, W. Regenstein, L. Brehmer, Synth. Met. 2002, 127, 217.
[16] J. Reiche, B. Schulz, G. Knochenhauer, B. Dietzel, A. Freydank, T. Zetzsche, L. Brehmer, Thin Solid Films 1997, 295, 241.
[17] R. Giebler, B. Schulz, J. Reiche, L. Brehmer, M. Wu, C. Woell, A. P. Smith, S. G. Urquhart, H. W. Ade, W. E. S. Unger, Langmuir 1999, 15, 1291.
[18] A. Freydank Synthese neuer amphiphiler aromatischer 1,3,4-oxadiazole und ihre anwendung aufbau supramolekularer architekturen. Ph. D. Thesis, University Potsdam, 1998.
[19] S. R. Forrest, Chem. Rev. 1997, 97, 1793.
[20] H. An, J. Hou, B. Chen, J. Shen, S. Liu, Thin Solid Films 1998, 326, 201.
[21] M. E. Azim-Araghia, D. Campbell, Thin Solid Films 1998, 320, 320.
[22] M. Cocchi, D. Virgili, G. Giro, V. Fattori, P. D. Marco, Appl. Phys. Lett. 2002, 80, 2401.
[23] A. Yang, M. Kuroda, Y. Shiraishi, T. Kobayashi, J. Chem. Phys. 1998, 109, 8442.
[24] M. Muccini, M. Murgia, F. Biscarini, C. Taliani, Adv. Mater. 2001, 13, 355.
[25] J. Fraxedas, Adv. Mater. 2002, 14, 1603.
[26] D. Ammermann, A. Boehler, C. Rompf, W. Kowalsky, Personal Communication, 1995.
[27] R. W. Saalfrank, B. Weiss, K. Peters, H. G. v. Schnering, Chemische Berichte-Recueil 1985, 118, 4026.
[28] O. Franco, G. Reck, I. Orgzall, B. Schulz, J. Phys. Chem. Solids 2002, 63, 1805.
[29] I. Orgzall, O. Franco, G. Reck, B. Schulz, J. Mol. Struct. 2003, 649, 219.
[30] G. Reck, B. Schulz, I. Orgzall, CCDC: Vol. 152152.
[31] G. Reck, B. Schulz, I. Orgzall, CCDC: Vol. 160022.
[32] S. Stockhause, B. Schulz, CCDC: Vol. 151852.
[33] V. P. Kuznetsov, L. D. Patsenker, A. I. Lokshin, A. V. Tolmachev, Crystallog. Reorts. 1998, 43, 430.
[34] S. Stockhause, M. S. Wickleder, M. Meyer, I. Orgzall, B. Schulz, J. Mol. Struct. 2001, 561, 175.
[35] J. Mikat, O. Franco, W. Regenstein, G. Reck, G. Knochenhauer, B. Schulz, I. Orgzall, High Pressure Res. 2000, 18, 311.
[36] I. Orgzall, B. Lorenz, J. Mikat, G. Reck, G. Knochenhauer, B. Schulz, J. Phys. Chem. Solids 1999, 60, 1949.
[37] G. Reck, B. Schulz, I. Orgzall, B. Schulz, CCDC: Vol. 152146.
[38] G. Reck, B. Schulz, I. Orgzall, B. Schulz, CCDC: Vol. 152147.
[39] G. Reck, B. Schulz, I. Orgzall, B. Schulz, CCDC: Vol. 152148.
[40] G. Reck, B. Schulz, I. Orgzall, B. Schulz, CCDC: Vol. 152149.
[41] G. Reck, B. Schulz, I. Orgzall, B. Schulz, CCDC: Vol. 152150.
[42] G. Reck, B. Schulz, I. Orgzall, B. Schulz, CCDC: Vol. 152151.
[43] B. Schulz, B. Stiller, T. Zetzsche, G. Knochenhauer, R. Dietel, L. Brehmer, Chem. Mater. 1995, 7, 1041.
[44] B. Schulz, B. Stiller, T. Zetzsche, G. Knochenhauer, R. Dietel, L. Brehmer, Mol. Cryst. Liq. Cryst. 1994, 248, 35.
[45] O. Franco Mathematisch-Naturwissenschaftlichen Fakultät. Ph. D. Thesis, University Potsdam, 2002.
[46] Crystal Structure Analysis for Chemists and Biologists, (Eds,: J. P. Glusker, M. Lewis, M. Rossi), VCH, 1994.
[47] M. Berggren, G. Gustafsson, O. Inganäs, M. R. Andersson, T. Hjertberg, O. Wennerström, J. Appl. Phys. 1994, 76, 7530.
[48] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Jpn J. Appl. Phys., Part 1 1992, 31, 1812.
[49] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Optoelectr. 1992, 7, 83.
[50] T. Tsutsui, E. I. Aminaka, Y. Fujita, Y. Hamada, S. Saito, Synth. Met. 1993, 55-57, 4157.
[51] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Jpn J. Appl. Phys. 1992, 31, 1812-1816.
[52] F. Liang, L. Wang, D. Ma, X. Jing, F. Wang, Appl. Phys. Lett. 2002, 81, 4.
[53] M. Zheng, L. Ding, E. E. Gurel, P. M. Lahti, F. E. Karasz, Macromolecules 2001, 34, 4124.
[54] J. H. Kim, J. H. Park, H. Lee, Chem. Mater. 2003, 15, 3414.
[55] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1990, 56, 799.
[56] J. G. Lee, B. Park, H. S. Woo, Y. Kim, C. S. Ha, C. M. Lee, K. Jeong, J. H. Ha, Y. R. Kim, Solid State Commun. 1997, 102, 895.
[57] S. J. Chung, K. Y. Kwon, S. W. Lee, J. I. Jin, C. H. Lee, C. E. Lee, Y. Park, Adv. Mater. 1998, 10, 1112.
[58] X. Jiang, Y. Liu, X. Song, D. Zhu, Solid State Commun. 1996, 99, 183.
[59] R. G. Sun, T. Masuda, T. Kobayashi, Jpn J. Appl. Phys., Part 2 1996, 35, L1434.
[60] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, K. Nagai, Jpn J. Appl. Phys. Part 2, 1993, 32, L917.
[61] H. An, B. Chen, J. Hou, J. Shen, S. Liu, J. Phys. D: Appl. Phys. 1998, 31, 1144.
[62] N. Johansson, J. Salbeck, J. Bauer, F. Weissörtel, P. Bröms, A. Andersson, W. R. Salaneck, Adv. Mater. 1998, 10, 1136.
[63] J. Reiche, A. Freydank, A. Helms, T. Geue, B. Schulz, L. Brehmer, B. Stiller, G. Knochenhauer, Mater. Sci. Eng., C 1999, 8-9, 237.
[64] J. Reiche, G. Knochenhauer, R. Dietel, A. Freydank, T. Zetzsche, T. Geue, T. A. Barberka, U. Pietsch, L. Brehmer, Supramol. Sci. 1997, 4, 455.
[65] K. Dimitrowa, J. Hauschild, H. Zaschke, H. Schubert, J. Prakt. Chem. 1980, 322/6, 933.
[66] M. Parra, G. Fuentes, V. Vera, S. Villouta, S. Hernandez, Bol. Soc. Chil. Quim. 1995, 40, 455.
[67] M. Parra, J. Belmar, H. Zunza, C. Zuniga, G. Fuentes, R. Martinez, J. Prakt. Chem. 1995, 337, 239.
[68] A. Hetzheim, C. Wasner, J. Werner, H. Kresse, C. Tschierske, Liq. Cryst. 1999, 26, 885.
[69] L. A. Karamysheva, I. F. Agafonova, Mol. Cryst. Liq. Cryst. 1999, 332, 2527.
[70] C. Aguilera, M. Parra, G. Fuentes, Zeitschrift für Naturforschung B, J. Chem. Sci. 1998, 53, 367.
[71] M. Sato, S. Ujiie, Adv. Mater. 1996, 8, 567.
[72] T. J. Dingemans, E. T. Samulski, Liq. Cryst. 2000, 27, 131.
[73] J. Bechhoefer, J. L. Hutter, Physica A 1998, 249, 82.
[74] A. Itaya, K. Watanabe, T. Imamura, H. Miyasaka, Thin Solid Films 1997, 292, 204.
[75] A. Itaya, T. Imamura, M. Hamaguchi, Y. Tsuboi, H. Miyasaka, T. Asahi, H. Masuhara, Thin Solid Films 1997, 311, 277.
[76] T. Imamura, K. Watanabe, Y. Tsuboi, H. Miyasaka, A. Itaya, Thin Solid Films 1999, 338, 243.
[77] T. Sumiyoshi, I. Takahashi, Y. Tsuboi, H. Miyasaka, A. Itaya, T. Asahi, H. Masuhara, Thin Solid Films 2000, 370, 285.
[78] L. Athouel, G. Froyer, M. T. Riou, M. Schott, Thin Solid Films 1996, 274, 35.
[79] G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, F. Garnier, Chem. Mater. 1995, 7, 1337.
[80] G. Horowitz, F. Kouki, P. Valat, S. Romdhane, H. Bouchriha, P. Delannoy, J. L. Monge, Synth. Met. 1997, 90, 187.
[81] B. Servet, S. Ries, M. Trotel, P. Alnot, G. Horowitz, F. Garnier, Adv. Mater. 1993, 5, 461.
[82] W. Porzio, S. Destri, M. Mascherpa, S. Brueckner, Acta Polym. 1993, 44, 266.
[83] T. Siegrist, R. M. Fleming, R. Haddon, R. A. Laudise, A. J. Lovinger, H. E. Katz, P. Bridenbaugh, D. D. Davis, J. Mater. Res. 1995, 10, 2170.
[84] H. Kouji, K. Tetsuyuki, S. Kubota, H. Koezuka, Jpn. J. Appl. Phys. 1994, 33, L1031.
[85] S. Timpanaro, A. Sassella, A. Borghesi, W. Porzio, P. Fontaine, M. Goldmann, Adv. Mater. 2001, 13, 127.
[86] B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, Chem. Mater. 1994, 6, 1809.
[87] S. Tavazzi, F. Meinardi, A. Borghesi, A. Sassella, R. Tubino, Synth. Met. 2001, 124, 71.
[88] Y. Kanemitsu, N. Shimizu, K. Suzuki, Y. Shiraishi, M. Kuroda, Phys. Rev. B, 1996, 54, 2198.
[89] P. Lang, R. Hajlaoui, F. Gamier, B. Desbat, T. Buffeteau, G. Horowitz, A. Yassar, J. Phys. Chem. 1995, 99, 5492.
[90] P. Lang, M. El Ardhaoui, G. Horowitz, F. Garnier, J. C. Wittmann, B. Lotz, C. Straupe, T. P. Dallas, Synth. Met. 1997, 84, 605.
[91] A. J. Lovinger, D. D. Davis, R. Ruel, L. Torsi, A. Dodabalapur, H. E. Katz, J. Mater. Res. 1995, 10, 2958.
[92] E. Mena-Osteritz, Adv. Mater. 2002, 14, 609.
[93] M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 9414.
[94] S. Hotta, Y. Ichino, Y. Yoshida, M. Yoshida, J. Phys. Chem. B, 2000, 104, 10316.
[95] A. Sassella, A. Borghesi, E. Pinotti, R. Tubino, S. Destri, W. Porzio, J.Cryst. Growth 1999, 201-202, 1044.
[96] W. Kern, J. Electrochem. Soc. 1990, 137, 1887.
[97] Molecular Beam Epitaxy, (Eds.: M. A. Herman, H. Sitter), Springer, 1996.
[98] Oberflächenphysik des Festkörpers, (Eds.: M. Henzler, G. Wagner), Teubner, Stuttgart, 1991.
[99] J. A. Venables, G. D. T. Spiller, M. Hanbucken, Rep. Prog. Phys. 1984, 47, 399.
[100] M. Maroncelli, S. P. Qi, H. L. Strauss, R. G. Snyder, J. Am. Chem. Soc. 1982, 104, 6237.
[101] I. Pelletier, I. Laurin, T. Buffeteau, B. Desbat, M. Pézolet, Langmuir 2002, 19, 1189.
[102] C. D. Bain, G. M. Whitesides, R. G. Nuzzoj, E. B. Troughton, Y. T. Tao, J. Evall, J. Am. Chem. Soc. 1989, 111, 321.
[103] M. J. Hostetler, J. J. Stokes, R. W. Murray, Langmuir 1996, 12, 3604.
[104] M. J. Hostetler, S. J. Green, J. J. Stokes, R. W. Murray, J. Am. Chem. Soc. 1996, 118, 4212.
[105] Crystal Engineering: The Design of Organic Solids, (Ed.: G. R. Desiraju) Elsevier, Amsterdam 1989.
[106] G. R. Desiraju, A. Gavezzotti, Acta Crystallogr., Sect. B 1989, 45, 473.
[107] G. R. Desiraju, Angew. Chem. Int. Ed. 1995, 34, 2311.
[108] F. Biscarini, R. Zamboni, P. Samorí, P. Ostoja, X. Taliani, Phys. Rev. B 1995, 52, 14868.
[109] C. Rovira, J. J. Novoa, Chem. Phys. Lett. 1997, 279, 140.
[110] K. Heuzé, M. Fourmigué, P. Batail, E. Canadell, P. Auban-Senzier, Chem. Eur. J. 1999, 5, 2971.
[111] C. C. Mattheus, University of Groningen, 2002.
[112] V. A. Schoonveld, V. A.; Uiversity of Groningen, 1999.
[113] Y. Yoshida, H. Takiguchi, T. Hanada, N. Tanigaki, E. M. Han, K. Yase, Appl. Surf. Sci. 1998, 130-132, 651.
[114] C. Seidel, J. Poppensieker, H. Fuchs, Surf. Sci. 1998, 408, 223.
[115] R. Staub, M. Toerker, T. Fritz, T. Schmitz-Huebsch, F. Sellam, K. Leo, Surf. Sci. 2000, 445, 368.
[116] A. Podesta, T. Toccoli, P. Milani, A. Boschetti, S. Innotta, Surf. Sci. 2000, 464, L673.
[117] D. Schlettwein, H. Tada, S. Mashiko, Thin Solid Films 1998, 331, 117.
[118] A. Sassella, A. Borghesi, R. Tubino, S. Destri, W. Porzio, G. Barbarella, Synth. Met. 2000, 115, 69.
[119] K. Tanigaki, S. Kuroshima, T. Ebbesen, T. Ichihashi, Mol. Cryst. Liq. Cryst. 1992, B2, 179.
[120] A. Böhler, S. Dirr, D. Ammermann, H. H. Johannes, W. Kowalsky, Synth. Met. 1997, 91, 95.
[121] C. Botta, S. Destri, W. Porzio, A. Sassella, A. Borghesi, R. Tubino, Opt. Mater. 1999, 12, 301.
[122] P. S. Vincett, Z. D. Popovic, L. McIntyre, Thin Solid Films 1981, 82, 357.
[123] Y. Yoshida, H. Takiguchi, T. Hanada, N. Tanigaki, E. M. Han, K. Yase, J. Cryst. Growth, 1999, 198-199, 923.
[124] H. Fuchigami, S. Tanimura, Y. Uehara, T. Kurata, S. Tsunoda, Jpn J. Appl. Phys. 1995, 34, 3852.
[125] B. Schulz, B. Stiller, T. Zetzsche, G. Knochenhauer, R. Dietel, L. Brehmer, Chem. Mater. 1995, 7, 1041.
[126] A. J. Leadbetter, J. C. Frost, J. P. Gaughan, G. W. Gray, A. Mosley, J. de Physique, 1979, 40, 375.
[127] K. Hori, M. Kuribayashi, M. Iimuro, Phys. Chem. Chem. Phys. 2000, 2, 2863.
[128] K. Hori, H. Wu, Liq. Cryst. 1999, 26, 37.
[129] I. orgzall, unpublished results.
[130] K. Hori, M. Kurosaki, H. Wu, K. Itoh, Acta Crystallogr., Sect. C 1996, 52, 1751.
[131] K. Hori, Y. Koma, A. Uchida, Y. Ohashi, Mole. Cryst. Liq. Cryst. 1993, 225, 15.
[132] X. L. Zhang, R. K. Gilpin, Mole. Cryst. Liq. Cryst. 1993, 231, 57.
[133] T. I. Shabatina, E. V. Vovk, T. V. Khasanova, G. N. Andreev, G. B. Sergeev, Supramole. Sci. 1997, 4, 485.
[134] M. Kuribayashi, K. Hori, Liq. Cryst. 1999, 26, 809.
[135] E. Matsui, K. Nito, A. Yasuda, Liq. Cryst. 1994, 17, 311.
[136] The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, (Eds.: D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli), Academic press 1991.
[137] IR-spektroskopie, (Eds.: H. Günzler, H. Böck), VCH 1983.
[138] Introduction to Infrared and Raman Spectroscopy, (Eds.: N. B. Colthup, L. H. Daly, S. E. Wiberley), Academic Press 1990.
[139] I. Suzuki, Bull. Chem. Soc. Jpn 1960, 33, 1359.
[140] I. Suzuki, Bull. Chem. Soc. Jpn 1962, 35, 1279.
[141] Y. Maeda, T. Higuchi, I. Ikeda, Langmuir 2000, 16, 7503.
[142] Y. Maeda, T. Nakamura, I. Ikeda, Macromolecules 2001, 34, 1391.
[143] Y. Maeda, T. Nakamura, I. Ikeda, Macromolecules 2001, 34, 8246.
[144] Y. Urai, C. Ohe, K. Itoh, Langmuir 2000, 16, 3920.
[145] Y. Katsumoto, T. Tanaka, H. Sato, Y. Ozaki, J. Phys. Chem. A 2002, 106, 3429.
[146] Bottino, F. A.; Pasquale, G. D.; Iannelli, P. Macromolecules, 2001, 34, 33-37.
[147] Kaminorz, Y. In Mathematisch-Naturwissenschaftlichen Fakultät Universität Potsdam: Potsdam, 1998, pp. 100.
[148] H. Tokuhisa, M. Era, T. Tsutsui, Appl. Phys. Let. 1998, 72, 2639.
[149] F. Biscarini, P. Samorí, O. Greco, R. Zamboni, Phys. Rev. Lett. 1997, 78, 2389.
[150] P. Lang, G. Horowitz, P. Valat, F. Garnier, J. C. Wittmann, B. Lotz, J. Phys. Chem. B 1997, 101, 8204.
[151] N. A. Popova, É. G. Yushko, B. M. Krasovitskii, V. I. Minkin, A. É. Lyubarskaya, M. L. Gol’dberg, M. L. Chim. Geterotsikl. Soedin. 1983, 1, 22.
[152] V. M. Feygelman, J. K. Walker, A. R. Katritzky, Z. Dega-Szafran, Chimica Scripta, 1989, 29, 241.
[153] Puschnig, P.; Ambrosch-Draxl, C. Physical Review B, 1999, 60, 7891-7898.
[154] S. C. Yang, W. Graupner, S. Guha, P. Puschnig, C. Martin, H. R. Chandrasekhar, M. Chandrasekhar, G. Leising, C. Ambrosch-Draxl, U. Scherf, Phys. Rev. Lett. 2000, 85, 2388.
[155] P. Puschnig, C. Ambrosch-Draxl, G. Heimel, E. Zojer, R. Resel, G. Leising, M. Kriechbaum, W. Graupner, Synth. Met. 2001, 116, 327.
[156] Photophysics of Aromatic Molecules, (Ed.: J. B. Birks), John Wiley and Sons, New York, 1970.
[157] S. Guha, W. Graupner, R. Resel, M. Chandrasekhar, H. R. Chandrasekhar, R. Glaser, G. Leising, J. Phys. Chem. A, 2001, 105, 6203.
[158] M. Chandrasekhar, S. Guha, W. Graupner, Adv. Mater. 2001, 13, 613.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top