跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃莉貞
研究生(外文):Li-jen Huang
論文名稱:生物活性玻璃之結構,彈性與相變化
論文名稱(外文):Structure, Elasticity & Phase Change of Bioactive Glasses
指導教授:沈博彥沈博彥引用關係
指導教授(外文):Pou-yan Shen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:69
中文關鍵詞:彈性相變化生物活性玻璃拉曼結構
外文關鍵詞:structurephase changeRamanbioactive glasseselasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在生物活性玻璃之合成及經回火或去玻璃化後之微結構與彈性變化之分析。我們合成兩種生物活性玻璃,一富含磷(P)之45S5及較少磷之55S4.3。在經過回火後,所製備的生物活性玻璃為透明狀,其中55S4.3為無色而45S5呈現淡粉紅色。經DTA分析後,發現45S5與55S4.3分別在620oC與680oC開始結晶。在715oC去玻璃化後,兩種生物活性玻璃皆變乳白,且其不透明度隨著熱處理的時間延長而增加。45S5的結晶相為由Na2CaSiO4所衍生之Na2Ca2Si3O9或Na4CaSi3O9。藉由XRD及偏光顯微鏡的觀察,我們推論此結晶為立方體結構,空間族群為P213 (198)且晶格參數a=7.5054Å。較少磷的55S4.3因其結晶速率較慢,故本文並未詳細探討。但因去玻璃化的45S5與55S4.3在Raman光譜中有類似的結果,我們推論兩者結晶有相似的結構。
Raman光譜指出,經回火的45S5主要的譜帶為Q2及Q3且Q3/ Q2隨著在715oC熱處理的時間增加而變小。至於回火後的55S4.3,主要譜帶為Q3,而其強度較在45S5中要高。隨著Na+/Si4+比例增加,在946(或947)cm-1譜帶增加而接近1100 cm-1的譜帶則減弱。經比較去玻璃化的45S5與55S4.3的Raman光譜,我們發現在兩種玻璃中的結晶有一共同的結構單元,SiO32-(Q2)。藉由布里洛散射所量測的結果,我們發現去玻璃化的45S5彈性常數比未去玻璃化(即僅經回火處理)的45S5與55S4.3高。而此生物活性玻璃之彈性又比氫氧基磷灰石及氟基磷灰石小。
The objective of this research is to synthesize and characterize microstructures and some elastic properties of bioactive glasses subject to relaxation and/or devitrification treatments. We synthesize two kinds of bioglasses, i.e. P-richer 45S5 and P-poorer 55S4.3. After tempering, the as-prepared bioactive glasses are transparent, 55S4.3 being colorless while 45S5 pale pink in color. The thermal events in DTA analysis indicated that the crystallization of 45S5 and 55S4.3 starts at 620oC and 680oC, respectively. The two bioactive glasses became ivory upon heating at 715oC, and the degree of being opaque increases with dwelling time.
The crystalline phase for 45S5 is Na2CaSiO4 -derived Na2Ca2Si3O9 or Na4CaSi3O9. By XRD traces and polarizing optical micrographs, we conclude that the crystal is based on simple cubic structure with a=7.5054Å and space group P213 (198). Due to poor crystallization rate, the crystal in P-poor 55S4.3 glass was not investigated in detail. However, according to the similarity of Raman spectra for devitrified 45S5 and 55S4.3, we suggest that the crystal is similar for the two devitrified glasses.
Raman spectra indicated that the relaxed 45S5 has predominant Q2 and Q3 species and the Q3/Q2 ratio decreases with firing time at 715oC. As for relaxed 55S4.3, the major structural unit is Q3, and the intensity of Q3 is higher for 55S4.3 than 45S5. As the Na+/Si4+ ratio increases, the intensity of 946 (or 947) cm-1 increases while bands near 1100 cm-1 decrease. Based on the Raman spectra of devitrified 45S5 and 55S4.3, the crystals in the two glasses have a common structural unit of SiO32- (Q2).
The elasticity measurement by Brillouin scattering indicated that the moduli for devitrified glass 45S5 are greater than undevitrified 45S5 and 55S4.3 glass. The elasticity of the present bioactive glasses is lower than hydroxyapatite and fluorapatite.
Contents
Abstract I
List of Tables III
List of Figures IV
Chapter 1. Introduction 1
Chapter 2. Literature Review 4
2-1 Hydroxyapatite 5
2-2 Crystallization Behavior of Some Bioactive Glass-ceramics 6
2-3 Bioactive Glass Used in This Study 6
2-4 Raman Spectra Analysis 8
2-5 Elastic modulus 10
Chapter 3. Experimental 11
3-1 Powder batches of glasses 11
3-2 Preparation of Glasses 11
3-3 Differential thermal analysis 12
3-4 Devitrification treatment 12
3-5 X-ray diffraction 13
3-6 Raman spectroscopy 13
3-7 Polarizing optical microscopy and electron microscopy 13
3-8 Brillouin scattering measurements 14
Chapter 4. Results 16
4-1 DTA 16
4-2 Devitrification 16
4-2-1 X-Ray diffraction 16
4-2-2 Raman spectra 17
4-2-3 Polarizing optical microscopy 19
4-2-4 SEM and TEM 20
4-2-5 Brillouin scattering 21
Chapter 5. Discussion 22
5-1 Structures of the bioactive glasses 22
5-2 Crystallization behavior 25
5-3 Elasticity change 26
Chapter 6. Conclusion 28
References 29
Appendix 63

List of Tables

Table 1. Requirements for Biomaterials 34
Table 2. Main composition of apatite in dentin and bone 34
Table 3. Raman frequencies of the stretch vibrations of silicate anionic structural units 35
Table 4. Composition of 45S5 35
Table 5. Composition of 55S4.3 36
Table 6. Firing conditions for bioactive glasses 36
Table 7. Devitrification treatment time for bioactive glasses at 715oC 37
Table 8. DTA data of 45S5 and 55S4.3 at 10oC/min 37
Table 9. XRD analysis of 45S5 devitrified at 715oC for 45min 38
Table 10. Raman bands of bioactive glasses devitrified at 715oC 39
Table 11. EDX of Fig. 15 (45S5 heat-treated for 15 min) 39
Table 12. Elasticity of bioactive glasses 39



List of Figures

Fig. 1. System Na2O-CaO-SiO2 (mol %) 40
Fig. 2. System Na2O-SiO2-P2O5 (mol %) 40
Fig. 3. An Ashby diagram with the modulus of sintered hydroxylapatite, porous hydroxylapatite and polymer-apatite composites 41
Fig. 4. DSC traces of the as-prepared bioactive glasses 42
Fig. 5. DTA traces of the as-prepared bioactive glasses 43
Fig. 6. XRD pattern (CuKα)of the as-prepared 45S5 showing broad diffraction maxima with 2θ at 32o 44
Fig. 7. XRD pattern (CuKα)of the as-prepared 55S4.3 showing broad diffraction maxima with 2θat 29.8o . 44
Fig. 8. XRD patterns (CuKα) for 45S5 treated at 715oC for (a) 15 minutes, (b) 30 minutes, (c) 45 minutes, and (d) 1 h. 45
Fig. 9. XRD patterns (CuKa) for 55S4.3 treated at 715oC for (a) 30minutes, (b) 45 minutes, (c) 1 hr, and (d) 1.5 hr. 47
Fig. 10. Raman spectrum of (a) 45S5 glass (tempered at 535oC for 1 hr) (b) 55S4.3 glass (tempered at 575oC for 1 hr). 49
Fig. 11. Raman spectra of partially devitrified 45S5 (with crystals) after heat-treatment at 715oC for (a) 15minutes, (b) 30minutes, (c) 45minutes, and (d) 1hr. 50
Fig. 12. Raman spectra of partially devitrified 55S4.3 (with small clusters and/ or crystalline particles) after heat-treatment at 715oC for (a) 30min, (b) 45min, (c) 1 hr, and (d) 1.5 hr. 52
Fig. 13. Polarizing optical micrographs (open and crossed nicol) of 45S5. 54
Fig. 14. Polarizing optical micrographs of 55S4.3 56
Fig. 15. SEM images (SEI) of 45S5 after devitrification treatment at 715oC for 15min. 58
Fig. 16. TEM image of 45S5 after aging at 715oC for 1 hr 59
Fig. 17. TEM image of 45S5 after aging at 715oC for 1 hr 60
Fig. 18 Diagram of Brillouin scattering 62
Appendix I Sketch of NBO/Si ratio 63
Appendix II Diagram of Brillouin scattering 64
Appendix III Pictures of 45S5 and 55S4.3 65
Appendix IV Sketch of space group P213 (198), JCPDS file 24-1069 67
Appendix V Spectra of Fig. 15 69
Abe Y. and Fukui H. (1975) J. Dent. Appar. Mater. Japan vol. 16, p. 196
Abe Y. and Fukui H. (1979) Jap. Pat. No.1024701
Abe Y. and Saito H. (1977), J. Ceram. Soc. Japan, vol. 85, p. 45
Abe Y. and Hosono H. (1989) Phosphate Glasses and Glass-ceramics. Inorganic phosphate Materials. Elsevier, New York
Abu-Hammad O. A., Harrison A., Williams D. (2000) The effect of a hydroxylapatite-reinforced polyethylene stress distributor in a dental implant on compressive stress levels in surrounding bone. Intl J. Oral Maxillofac Implants vol. 15, p. 559-564
Albee F. H. and Morrison H. F. (1920) Studies in bone growth- triple calcium phosphate as a stimulus to osteogenesis. Ann. Surg. vol. 71, p. 32-39
Andersson Ö. H. and Karlsson K. H. (1991) On the bioactivity of silicate glass Journal of Non-Crystalline Solids vol. 129, p.145-151
Babcock C. L. (1977) Silicate Glass Technology Methods. Wiley, New York
Bass J. D. (1995) Mineral Physics and Crystallography (A Handbook of Physical Constants, vol. 2), ed. TJ Ahrens, p. 45-63 Am. Geophys. Union, Washington DC
Bartholomew R. F. (1972) Structure and properties of silver phosphate glasses-infrared and visible spectra. Journal of Non-Crystalline Solids vol. 7, p. 221-235
Brawer S. A. and White W. B. (1975) Raman spectroscopic investigation of the structure of silicate glasses I. The binary silicate glasses. Journal of Chemical Physics vol. 63, p. 2421-2432
Chen Q. Z., Wong C. T., Lu W. W., Cheung K. M. C., Leong J. C. Y., Luk K. D. K. (2004) Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo Biomaterials vol. 25, p. 4243-4254
Elliott J. C. (2002) Calcium Phosphate Biominerals. Reviews in Mineralogy & Geochemistry vol. 48, p. 427-448
Furukawa T. and White W. B. (1980) Vibrational spectra and glass structure. Journal of Non-Crystalline Solids vol. 38-39, p. 87-92
González P., Serra J., Liste S., Chiussi S., León B. and Pérez-Amor M. (2003) Raman spectroscopic study of bioactive silica based glasses Journal of Non-Crystalline Solids vol. 320, p. 92-99
Gross K. A., Berndt C. C. (2002) Biomedical Application of Apatites. Reviews in Mineralogy & Geochemistry vol. 48, p. 631-672
Gross K. A., Ezerietis E. (2003) Juniper wood as an important material. J. Biomed. Mater. Res. vol. 64, p. 672-683
Hench L. L., Splinter R. J., Allen W. C., and Greenlee T. K. (1971) Bonding Mechanisms at the Interface of Ceramic prosthetic Materials. J. Biomed. Mater. Res. Symposium NO. 2 (part 1) p. 117-141
Hench L. L. and Paschall H. A. (1974) Histochemical Responses at a Biomaterial’s Interface J. Biomed. Mater. Res. Symposium No. 5 (part 1), p. 49-64,
Hench L. L. (1991), in: Ceramics: Toward the 21st Century, ed. N. Soga and S. Kato (Ceramics Society of Japan, Tokyo) p. 519
Hench L. L., Wilson J. (1993) An Introduction to bioceramics. World Scientific, Singapore
Hench L. L., West J. K. (1996) Biological applications of bioactive glasses. Life Chem Rep vol. 13, p. 187-241
Ho C. T., LaCourse W. C., Condrate R. A. Sr. and Jillavenkatesa A. (1995) A Raman spectral investigation of structural variations in thin silicate glass fibers Materials Letters 23, p. 237-240
Jarcho M., Bolen C. H., Thomas M. B., Bobick J., Kay J. F. and Doremus R. H. (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mat. Sci., vol. 11, p. 2027-2035
Kay M. I.,Young R. A. and Posner (1964) Crysral structure of hydroxyapatite Nature, vol. 204, p.1050-1052
Leonor I. B., Sousa R. A., Cunha A. M., Reis R. L., Zhong Z. P., and Greenspan D. (2002) Novel starch thermoplastic/Bioglass composites: Mechanical properties, degration behavior and in-vitro bioactivity Journal of Materials Science: Materials In medicine vol. 13, p. 939-945
Marghussian V. K. and Mesgar A. S. M. (2000) Effects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system Ceramics international vol. 26, p. 415-420
Mysen B. O., Virgo D. and Scarfe C. M. (1980) Relations between the anionic structure and viscosity of silicate melts- a Raman Spectroscopic study. The American Mineralogist, vol. 65, p. 690-710
Mysen B.O., Ryerson F. J. and Virgo D. (1981) The structural role of phosphorous in silicate melts. The American Mineralogist vol. 66, p. 106-117
Mysen B. O. (1988) Structure and properties of silicate melts Developments in Geochemistry 4 Elsevier Science Publishers B. V.
Nelson C. and Tallent D. R. (1984) Raman studies of sodium silicate glasses with low phosphate contents. Physics and Chemistry of glasses vol. 25, p. 31-39
Neo M., Kotani S., Nakamura T., Yamamura T.,Ohtsuki C., Kokubo T., Bando Y. (1992) A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. J. Biomed. Mater. Res. vol. 26, p. 1419-1432
Ohtsuki C., Kokubo T. and Yamamuro T. (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids vol. 143, p. 84-92
Ohtsuki C., Aoki Y., Kokubo T., Bando Y., Neo M. and Nakamura T. (1995) Transmission Electron Microscopic Observation of Glass-ceramic A-W and Apatite Layer Formed on Its Surface in a Simulated Body Fluid Journal of the Ceramic Society of Japan, vol. 103, No. 5, p. 449-454
Peitl O., La Torre G., Hench L. L. (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. vol. 30, p. 509-514
Peitl O., Zanotto E. D. and Hench L. L. (2001) Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics Journal of Non-Crystalline Solids vol. 292, p. 115-126
Posner A. S., Perloff A. and Dioro A. F. (1958) Refinement of the hydroxyapatite structure Acta Cryst. vol. 11, p. 308-309
Rawson H. (1991) in: Zarzycki (Ed.) Glasses and Amorphous Materials Materials Science and Technology vol. 9, VCH, Weinheim, p. 279
Rehman I., Knowles J. C. and Bonfield W. (1998) Analysis of in vitro Reaction Layers Formed on Bioglass® Using Thin Film X-ray Diffraction and ATR-FTIR Microspectroscopy J. Biom. Mater. Res. vol. 41, p.162-166
Riebling E. F. (1968) Structural similarities between a glass and its melt. J. Am. Ceram. Soc. vol. 51, p.143-149
Ryerson F. J. and Hess P.C. (1978) The partitioning of trace elements between immiscible silicate melts. EOS vol. 56, p. 470
Ryerson F. J. and Hess P.C. (1980) The role of P2O5 in silicate melts. Geochimica Cosmochimica Acta. vol. 44, p. 611-625
Segnit E. R. (1953) Further data on the system Na2O-CaO-SiO2 Am. J. Sci., vol. 251 [8], p. 586-601
Sepulveda P., Jones J. R., Hench L. L. (2001) Characterization of Melt-Derived 45S5 and sol-gel-derived 58S Bioactive Glasses John Wiley &Sons, Inc p. 734-740
Sepulveda P., Jones J. R., Hench L. L. (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses Wiley Periodicals, Inc p.301-311
Strnad Z. (1986) Glass-ceramic materials: liquid phase separation, nucleation, and crystallization in glasses Elsevier, Amsterdam; New York
Sun L., Berndt C. C., Gross K. A. (2002) Hydroxylapatite-polymer composite flame sprayed coating for bone bonding. J. Biomater Sci- Polymer Ed, vol.13 (9), p. 977-990
Takadama H., Kim H., Kokubo T., and Nakamura T. (2001) Mechanism of Biomineralization of Apatite on a Sodium Silicate Glass: TEM-EDX Study In Vitro Chem. Mater. vol. 13, p. 1108-1113
Taylor M., Brown G. E. and Fenn P. H. (1980) Structure of silicate mineral glass. III. NaAlSi3O8 supercooled liquid at 805oC and the effects of thermal history. Geochim. Cosmochim. Acta. vol. 44, p. 109-119
Turkdogan E. T. and Maddocks W. R. (1952) J. Iron and steel Inst. vol.172, p. 13
Virgo D., Mysen and Kushiro I. (1980) Anionic constitution of silicate melts quenched at 1 atm from Raman spectroscopy: implications for the structure of igneous melts. Science vol. 208, p. 1371-1373
Wolff J., Maquet P., Furlong R. (1986) The Law of Bone Remodelling. Springer-Verlag, Berlin
Wong J. (1976) Vibrational spectra of vapor-deposited binary phosphosilicate glasses. Journal of Non-Crystalline Solids vol. 20, p. 83-100
Yamashita K. and Kanazawa T. (1989) Hydroxyapatite. Inorganic phosphate Materials. Elsevier, Tokyo ; Kodansha ; Amsterdam ; New York
Zhang K., Ma Y. and Francis L. F. (2002) Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces Wiley Periodicals, Inc. p. 551-563
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊