跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志溢
研究生(外文):Chih-yi Chang
論文名稱:摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究
論文名稱(外文):Grain Size Refinement in AZ31 Magnesium Alloy by Friction Stir Processing
指導教授:黃志青黃志青引用關係
指導教授(外文):J. Chih-Ching Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:185
中文關鍵詞:鎂合金摩擦旋轉攪拌製程微結構組織熱機處理製程
外文關鍵詞:thermomechanical processingmicrostructuremagnesium alloyfriction stir processing
相關次數:
  • 被引用被引用:10
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本論文介紹了摩擦旋轉攪拌技術之原理機構及最新發展,並研究探討摩擦旋轉攪拌製程用於AZ31鎂合金的基礎性質及摩擦旋轉攪拌製程對AZ31鎂合金的改質和晶粒細化;並系統性的探討摩擦旋轉攪拌製程所得之晶粒大小與其工作應變速率及溫度之相關性,並使用Zener-Holloman參數來量化其關係,以及使用X光繞射分析研究銲道之晶粒取向。
摩擦旋轉攪拌製程(Friction Stir Process, FSP)為一良好之晶粒細化技術,在本實驗中可發現FSP對AZ31鎂合金有明顯晶粒細化效果,最佳可達原本母材之0.8%大小,並可使得銲道區硬度值上升73%;而製程參數設定對銲後材料性質有顯著影響,隨著轉速上升(製程熱量上升),於銲道動態再結晶區晶粒大小亦上升。經FSP之AZ31鎂合金,銲道區之晶粒大小與硬度值可以Hall-Petch關係式解釋。在AZ31鎂合金,FSP之應變數率與溫度區間與擠型所得相近,且其Zener-Holloman參數與晶粒大小(d)間的相互關係與擠型、拉伸等變形機制之基本趨勢相符合,故可驗證FSP過程實為一塑性變形之過程。
FSP對銲後材料之晶粒取向有決定性影響,對於柱狀HCP鎂合金,經FSP後為平躺在銲道上,其(0002)面恰平行於銲道之橫截面,與銲接時凸梢前進方向垂直。而具析出物之AZ91D鎂合金因受析出物影響,在FSP後,其晶粒取向呈現較random之趨勢。比較AZ31鎂合金鑄錠材與擠型材,雖為同種合金,但起始母材性質不同,經FSP所得結果亦約略不同。因此材料經FSP後性質無絕對固定性,而是隨著不同之母材而不同。
對於鎂合金之晶粒細化,可以降低轉速即應變速率與提高前進速度以降低製程所產生之溫度與熱量;及配合適當的冷卻方式以快速排出製程熱量或減少變形過程中的熱循環過程達到晶粒細化之目的。
This book has the introduction of the friction stir welding and friction stir processing, and introduces the newest development in FSW.Finding out the appropriate paraments of the grain size refinement in AZ31 Mg. The relationship between the resulting grain size and the applied working strain rate and temperature for the friction stir processing in AZ31 Mg is systemically examined. The Zener-Holloman parameter is utilized in rationalizing the relationship. The grain orientation distribution is also studied using the X-ray diffraction.
目錄……………………………………………………………I
表目錄…………………………………………………………IV
圖目錄…………………………………………………………V
論文摘要………………………………………………………XIV
第一章 研究背景與方向……………………………………1
1.1 鎂合金的發展與應用……………………………1
1.2 鎂合金的基本特性………………………………2
1.2.1 鎂合金的分類與特性…………………………………2
1.2.2 鎂合金的銲接性質…………………………………5
1.3 傳統銲接技術……………………………………………5
1.3.1 氣體銲接法…………………………………………6
1.3.2 被覆金屬電弧銲法…………………………………6
1.3.3 摩擦銲接………………………………………………7
1.3.4 惰性氣體電弧銲接……………………………………7
1.3.5 電子束銲接與雷射銲接………………………………8
1.4 摩擦旋轉攪拌銲接法(FSW)……………………………10
1.4.1 摩擦旋轉攪拌銲接原理與機構…………………10
1.4.2 摩擦旋轉攪拌銲接特性……………………………12
1.4.3 摩擦旋轉攪拌銲接優劣………………………………18
1.4.4 摩擦旋轉攪拌銲接之應用……………………………19
1.5 晶粒細化技術……………………………………………22
1.6 摩擦旋轉攪拌製程(FSP)………………………………24
1.6.1 利用FSP以製造極微細晶粒…………………………25
1.6.2 FSP在銲道區的超塑性質………………………………26
1.6.3 FSP在金屬基複合材料(MMC)上的應用與異質材料的接合27
1.6.4 工具頭的磨耗現象………………………………………28
1.7 織構分析……………………………………………………29
1.7.1 X-ray 繞射法…………………………………………29
1.7.2 背向繞射微織構分析法(EBSD) ……………………29
1.8 研究動機與規劃……………………………………………30
第二章 實驗方法………………………………………………32
2.1 實驗材料及處理……………………………………………32
2.2 摩擦旋轉攪拌製程…………………………………………32
2.3 微硬度試驗…………………………………………………33
2.4 拉伸試驗……………………………………………………33
2.5 光學顯微鏡之觀察…………………………………………34
2.6 掃瞄式電子顯微之觀察…………………………………34
2.7 X光繞射分析………………………………………………34
2.8 穿透式電子顯微鏡之觀察…………………………………35
第三章 實驗結果……………………………………………36
3.1 摩擦旋轉攪拌製程銲道外觀與型態………………………36
3.2 微晶粒組織觀察……………………………………………37
3.3 溫度量測觀察………………………………………………39
3.4 微硬度試驗…………………………………………………40
3.5 拉伸測試結果……………………………………………42
3.6 X光繞射分析……………………….………………………43
3.7 製程設定及工具頭黏滯問題之改善………………………44
第四章 討論……………………………………………………46
4.1 AZ31鑄錠材與擠型材FSP之差異……………………………46
4.2 應變速率與溫度………………………………………………46
4.3 Zener-Holloman參數與晶粒大小之關係…………………47
4.4 晶粒取向關係………………………………………………49
第五章 結論…………………………………………………51
參考文獻…………………………………………………………53
表…………………………………………………………………60
圖………………………………………………………………70
[01]王木琴, 工程材料, 復文, 台南市, 1996.
[02]陳錦修, 工業材料186期 (2002) 148.
[03]蔡幸甫, 工業材料154期 (1999) 116.
[04]蔡幸甫, 工業材料166期 (2000) 165.
[05]林鉉凱, 析出型AZ91鎂合金低溫超塑性之研究,中山大學碩士論文, 2001.
[06] B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37.
[07] R. W. Cahn, P. Haasen and E. J. Kramer, Materials Science and Technology
Structure and Properties of Nonferrous Alloys, VCH, New York, 1996.
[08]曾寶貞, 工業材料156期 (1999) 153.
[09]范光堯, 工業材料162期 (2000) 139.
[10]馬寧元, 鍛造, 第十卷第三期 (2001) 25.
[11] A. A. Nayeb-Hashemi and J. B. Clark, Phase Diagrams of Binary Magnesium
Alloys, ASM International, Ohio, 1988.
[12] S. Celotto, Acta Mater. 48 (2000) 1775.
[13] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy
Phase Diagrams, ASM International, Ohio, 1990.
[14]蘇勢方, 鎂基材料電子束銲接之冶金特性與織構研究, 中山大學碩士論文,
2001.
[15]中華民國鑄造學會, 鑄造手冊 (1999) 111.
[16]邱六合, 林信安, 工業材料186期 (2002) 118.
[17] H. E. Boyer and T. L. Gall, Metals Handbook, Desk edition, 1985.
[18]王振欽, 銲接學, 登文, 高雄市, 1985.
[19]陳盛祺, 鋁鋰合金電子束與雷射束銲道之微組織與機性分析, 中山大學博
士論文,1998.
[20]李玉振, 鋁合金加工叢書:鋁及鋁合金銲接, 工研院工材所, 新竹市, 1985.
[21] K. Knipstrom and B. Pekkari, Welding J. (1997) 55.
[22]林偉邦, 摩擦銲接強度之研究, 中山大學碩士論文, 1988.
[23]董基良, 銲接學, 三民, 台北市, 1991.
[24]胡少荃, 實用焊工手冊, 航空工業, 北京市, 1998.
[25]吳信輝, 電子束或電弧銲接鎂合金之微織構與機性分析, 中山大學碩士論文, 2003.
[26] E.H. Bradbrum, R.A. Huber and P.W. Turner, Weld. J. 50 (1971) 190.
[27]黃儒瑛, 6061/SiC鋁基複合材料之高能束銲接性質研究, 中山大學碩士論
文, 2000.
[28] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. TempleSmith and C.J. Dawes, The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.
[29] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. TempleSmith and
C.J. Dawes, The Welding Institute, TWI, U.S. Patent No. 5, 460, 317, 1995.
[30] Ying Li, L.E. Murr and J.C. McClure, Mater. Sci. Eng. A 271 (1999) 213.
[31] C.J. Dawes and W.M. Thomas, Welding J. 75 (1996) 41.
[32] S.W. Williams, Air & Space Furopf. 3, No. 3/4 (2001).
[33] M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr and A.C. Nunes, Mater. Characterization 49 (2003) 95.
[34] A.P. Reynold, W.D. Lockwood and T.U. Seidel, Mater. Sci. Forum 331-337 (2000) 1719.
[35] W.B. Lee, Y.M. Yeon, S.B. Jung and Scripta Mater. 49 (2003) 423.
[36] K.N. Krishnan, Mater. Sci. Eng. A 327 (2002) 246.
[37] L. Karlsson, E.L. Bergqvist and H. Larsson, Eorojoin 4, Dubrovnik-Cavtat, Croatia, May (2001) 24.
[38]陳志鵬、曾天佑、何扭今, 中華民國銲接協會92年論文發表研討會, 2003.
[39] A.P. Reynold, Sci. Technol. Weld 5 (2) (2000) 104.
[40] M. Skinner and Edwards, Mater. Sci. Forum 426-432 (2003) 2849.
[41] S.H.C. Park, Y.S. Sato, H. Kokawa, Metall. Mater. Trans. 34A (2003) 987.
[42] M.W. Mahoney, C.G. Rhodes, J.C. Flintoff, R.A. Spurling, W.H. Bingel, Matall. Mater. Trans. 29A (1998) 1955.
[43] A. Denquin, D. Allehaux, M.H. Campagnac, G. Lapasset, Mater. Sci. Forum 426-432 (2003) 2921.
[44] S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall. 30 (1982) 1909.
[45] S.H.C. Park, Y.S. Sato and H. Kokawa, Scripta Mater. 49 (2003) 161.
[46] J.A. Esparza, W.C. Davis, E.A. Trillo and L.E. Murr, J. Mater, Sci. Lett. 21 (2002) 917.
[47] S. Juttner, Weld. Met. Fabr. 66 (1998) 11.
[48] K.V. Jata and S.L. Semiatin, Scripta Mater. 43 (2000) 743.
[49] J.Q. Su, T.W. Nelson, R. Mishra and M. Mahoney, Acta Mater. 51 (2003) 713.
[50] C.G. Rhodes, M.W. Mahoney, W.H. Bingel and M. Calabrese, Scripta Mater. 48 (2003) 1451.
[51] Y.S. Sato, Mitsunori Urata and H. Kokawa, Metall. Mater. Trans. 33A (2002) 625.
[52] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling and C.C. Bampton, Scripta Mater. 36 (1997) 69.
[53] J.B. Lumsden, M.W.Mahoney, G. Pollock and C.G. Rhodes, Corrosion 55 (1999) 1127.
[54] J.Q. Su, T.W. Nelson and C.J. Sterling, J. Mater. Res. 18 (2003) 1757.
[55] H. Liu, H. Fujii, M. Maeda and K. Nogi, J. Mater. Sci. Lett., 22 (2003) 1061.
[56] K.V. Jata, K.K. Sankaran and J.J. Ruschau, Metall. Mater. Trans. 31A (2000) 2181.
[57] G. Liu, L.E. Murr, C.S.Niou, J.C. McClure and F.R. Vega, Scripta Mater. 37 (1997) 355.
[58] L.E. Murr, G. Liu and J.C. McClure, J. Mater, Sci. 33 (1998) 1243.
[59] Y.S. Sato, H. Kokawa, M. Enomoto and S. Jorgan, Metall. Mater. Trans. 30A (1999) 2429.
[60] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jorgan and J. Hashimoto, Metall. Mater. Trans. 30A (1999) 3125.
[61] W.B. Lee, Y.M. Yeon and S.B. Jung, Mater. Sci. Eng. A 355 (2003) 154.
[62] L.E. Svensson, L. Karlsson, H. Larsson, B. Karlsson, M. Fazzini and J. Karlsson, Sci. Technol. Weld. Joining 5 (2000) 285.
[63] Y.S. Sato, S.H. C. Park and H. Kokawa, Metall. Mater. Trans. 32A (2001) 3033.
[64] G. Kohn, Weld. J. Feb (2002) 46.
[65] M. Song and R. Kovacevic, Inter. J. Machine & Manu. 43 (2003) 605.
[66] Kh. A.A. Hassan, A.F. Norman, D.A. Price and P.B. Prangnell, Acta Mater. 51 (2003) 1923.
[67] Y.S. Sato, Mitsunori Urata, H. Kokawa and K. Ikeda, Mater. Sci. Eng. A 354
(2003) 298.
[68] H.G. Salem, A.P. Reynolds and J.S. Lyons, Scripta Mater. 46 (2002) 337.
[69] S. Benavides, Y. Li, L.E. Murr, D. Brown and J.C. McClure, Scripta Mater. 41 (1999) 809.
[70] Y.J. Kwon, N. Saito and I. Shigematsu, J. Mater. Sci. Lett. 21 (2002) 1473.
[71] Y.J. Kwon, I. Shigematsu and N. Saito, Scripta Mater. 49 (2003) 785.
[72] Z.Y. Ma, S.R. Sharma, R.S. Mishra and M.W. Mahoney, Mater. Sci. Forum 426-432 (2003) 2891.
[73] W.M. Thomas and E.D. Nicholas, Mater. & Design 18, No. 4/6 (1997) 269.
[74] S.W. Kaller, J.Davenport, and E.D. Nicholas, Weld. J., 81, 47 (2002).
[75]黃志青, 工業材料198期 (2003) 114.
[76] J.W. Yeh, S.Y. Yuan and C.H. Pen, Metall. Mater. Trans. 30A (1999) 1249.
[77] P. Berbon, M. Furukawa, Z. Valiev and T.G. Langdon, Mater. Sci. Forum, 217-22 (1996) 1013.
[78] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Mater. 36 (1997) 681.
[79] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, Scripta Mater. 45
(2001) 89.
[80] T.R. McNelley, R. Crooks, P.N. Kalu and S.A. Rogers, Mater. Sci. Eng. A166 (1993) 135.
[81] H.P. Pu, F.C. Liu and J.C. Huang, Metall. Mater. Trans. 26A (1995) 1153.
[82] I.C. Hsiao, S.W. Su and J.C. Huang, Metall. Mater. Trans. 31A (2000) 2550.
[83] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong, Scripta Mater. 39 (1998) 1221.
[84] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara and A.K. Mukherjee, Scripta Mater. 42 (2000) 163.
[85] Z.Y. Ma, R.S. Mishra and M.W. Mahoney, Acta Mater. 50 (2002) 4419.
[86] I. Charit, R.S. Mishra and Mater. Sci. Eng. A 359 (2003) 290.
[87] N.E. Paton, C.H. Hamilton, J. Wert and M. Mahoney, J. Metals 34 (1982) 21.
[88] X. Jiang, Q. Wu, J. Cui and L. Ma, Metall. Trans. 24A (1993) 2596.
[89] J. Xianggang, C. Jiangzhong and M. Longxiang, Acta Matell. Mater. 41 (1993) 2721.
[90] Z.Y. Ma, R.S. Mishra, M.W. Mahoney and R. Grimes, Mater. Sci. Eng. A 351 (2003) 148.
[91] I. Charit, R.S. Mishra, Murray and M.W. Mahoney, Scripta Mater. 47 (2002) 631.
[92] R.S. Mishra and M.W. Mahoney, Mater. Sci. Forum 357-359 (2001) 507.
[93] A.F. Norman, I. Brough and P.B. Prangell, Mater. Sci. Forum 331-337 (2000) 1713.
[94] R.S. Mishra, Z.Y. Ma and I. Charit, Mater. Sci. Eng. A 341 (2003) 307.
[95] P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton and M.W. Mahoney, Scripta Mater. 44 (2001) 61.
[96] K. Nakata, S. Lnoki, Y. Nagano and M. Ushio, Mater. Sci. Forum 426-432 (2003) 2873.
[97] John A. Wert, Scripta Mater. 49 (2003) 607.
[98] R.A. Prado, L.E. Murr, D.J. Shindo and K.F. Soto, Scripta Mater. 45 (2001) 75.
[99] D.J. Shindo, A.R. Rivera and L.E. Murr, J. Mater. Sci. 37 (2002) 4999.
[100] D. J. Dingley and V. Randle, J. Mater. Sci. 27 (1992) 4545.
[101] D. B. Williams and C. B. Carter, Transmission Electron Microscopy,
Plenum Press, New York (1996) 291-295.
[102]廖忠賢, 黃志青, 科儀新知, 第十九卷第五期 (1998) 43.
[103] H.J. Liu, H. Fujii, M. Maeda and K. Nogi, J. Mater. Processing Tech. 142 (2003) 692.
[104] B. Mustafa and A. Kurt, Mater Design 25 (2004) 343.
[105] A.J. Ardell, Metall. Trans. 16A (1985) 2131.
[106] H.K. Lin and J.C. Huang, Mater. Trans. 43 (2002) 2424.
[107] Y.N. Wang, C.J. Lee, H.K. Lin, C.C. Huang and J.C. Huang, Mater. Sci. Forum 426-432 (2003) 2655.
[108] C.C. Huang, J.C. Huang, I.K. Lin and Y.M. Hwang, Key Eng. Mater. 2004 (in press).
[109] Y.N. Wang and J.C. Huang, Mater. Chem. Phys. 81 (2003) 11.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top