跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙建博
研究生(外文):Chien-po Chao
論文名稱:以雙離子束濺鍍法成長氮化鋁薄膜之特性研究
論文名稱(外文):Growth and Characterization of AlN Thin Films Deposition Using Dual Ion Beam Sputtering System
指導教授:甘德新
指導教授(外文):Der-shin Gan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:87
中文關鍵詞:薄膜成長雙離子束濺鍍法氮化鋁
外文關鍵詞:Dual ion beam sputteringAluminum nitrideThin film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來氮化鋁薄膜愈來愈受到重視,原因在於其具有光電及通訊方面的應用。除了可用來作為成長藍光二極體GaN的緩衝層(buffer layer)外,最主要的通訊應用就是用來製備高頻表面聲波元件(SAW)與薄膜體波共振器(FBAR),其頻率可達GHz以上。氮化鋁為六方晶系結構 (hexagonal),由於C軸指向具有較低能量,且有良好的壓電特性,因此對於C軸指向特性的好壞有一定的要求。
本研究的目的在使用雙離子束濺鍍法(Dual Ion Beam Sputtering, DIBS)在矽基板(100)上沉積氮化鋁薄膜。雙離子束濺鍍法結合Kaufman與End-Hall兩種不同形式作為薄膜沉積的離子源。由於離子濺鍍法具有實驗參數可獨立操作及高真空度等優點,因此可藉由改變離子束能量、氮氣含量比與基板溫度作為獲得C軸指向與表面平整的氮化鋁薄膜之參數條件。
本實驗成功利用雙離子束濺鍍法成長C軸氮化鋁薄膜。使用鋁靶作濺鍍來源時,在固定工作壓力為4X10 –4 torr且基板未加熱情況下,將離子束電壓控制在700ev,氮氣濃度與氬氣濃度比為5:4,可得到一高平整性的氮化鋁薄膜﹔若薄膜中含有相當成份的氧化鋁,會大大影響氮化鋁的成長。由於氧化鋁的成長速率較氮化鋁快,因此基板的加熱會導致氧化鋁抑制氮化鋁的成長,使得氮化鋁之C軸取向的結晶性變差。
本實驗在薄膜成長後利用X-Ray繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、二次離子質譜儀(SIMS)以及化學分析電子質譜儀 (ESCA)分析薄膜成長結果。
Aluminum nitride (AlN) thin film is a promising material as buffer layer in GaN-based optoelectronic and electronic devices or as a substrate to fabricate Surface Acoustic Wave (SAW) and Film Bulk Acoustic wave Resonant (FBAR) devices in high frequency in wireless (>1GHz) communication technology. Aluminum nitride, thin film with the c-axis normal to the film is favored in a low energy deposition condition because it places the packed hexagonal basal plane parallel to the substrate surface. Grains of this orientation have a low surface energy which favors rapid growth in a columnar structure.

In this experiment r.f. dual ion beam sputtering (DIBS) system is used to prepare the AlN films on Si (100) substrate. Various processing variable were tested to deposit AlN films with desirable properties. After systematic testing, a high quality film with preferred c-axis orientation was grown successfully on Si (100) substrate with Al target under the process parameters of 700 ev energy flux; 55% N2 / (N2+Ar) ratio; 4X10 - 4 torr working pressure with no heating of substrate. The AlN target is also used. The results show the great sensitivity of the films to oxygen-containing environments. Only under low residual oxygen pressure, could aluminum nitride be grown well.

The deposited AlN thin film characteristic were studied by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Electron Spectroscopy for Chemical Analysis (ESCA).
Contents

中文摘要 I

Abstract II

Contents III

Table caption V

Figure caption VI

Chapter 1 Introduction 1

Chapter 2 Theoretical background 3
2.1 The structure and properties of aluminum nitride 3
2.2 Deposition of thin films 4
2.3 Sputtering 5
2.3.1 Plasma and sputtering 5
2.3.2 Ion beam sputtering 7
2.3.3 Dual ion beam sputtering 9
2.4 Reference research 9

Chapter 3 Experiments 12
3.1 Substrate cleaning process 12
3.2 AlN thin film deposition 12
3.3 Characteristic methods of thin films 13
3.3.1 X-Ray diffraction 13
3.3.2 Field emission scanning electron microscopy 13
3.3.3 Transmission electron microscopy 13
3.3.4 Secondary ion mass spectrometry 14
3.3.5 Electron spectroscopy for chemical analysis 14

Chapter 4 Results and Discussion 15
4.1 Sputtering parameters for AlN films deposition 15

Experiments I 17
4.2 The effects of growth parameters on crystal structure 17
4.2.1 Effect of energy flux 17
4.2.2 Effect of substrate temperature 18
4.2.3 Effect of nitrogen concentration 19
4.3 The effects of growth parameters on microstructure by SEM 19
4.3.1 Plane-view 19
4.3.2 The effects of growth parameters on thickness 20
4.4 SIMS analysis 20
4.5 ESCA 21
4.6 TEM analysis 22

Experiments II 24
4.7 The effects of growth parameters on crystal structure 24
4.7.1 Effect of substrate temperature 24
4.7.2 Effect of energy flux 25
4.7.3 Effect of beam current 25
4.8 The effects of growth parameters on microstructure by SEM 25
4.9 TEM analysis 25

Chapter 4 Conclusions 27

References 28
Table caption

Table 2.1 The properties of aluminum nitride 33
Table 2.2 The materials of thin films commonly used in SAW devices 33
Table 2.3 The relationship between the AlN and different coating of substrates 34
Table 2.4 The visual appearance of the films changes with the variation of the composition and its microstructure 34
Table 2.5 The optical constants of AlN prepared by different deposition systems 35

Table 3.1 The sputtering conditions for preparing AlN films 36
Table 3.2 JCPDS dates of AlN with hexagonal structure 37
Table 3.3 JCPDs data of Al 37
Table 3.4 JCPDs data of Al2O3 38

Table 4.1 The relative to other references for effects of growth parameters 39
Table 4.2 The deposition parameter using Al target of experiments I 40
Table 4.3 The deposition parameter using AlN target of experiments I 41
Table 4.4 The deposition parameter using AlN target of experiments II 41

Figure caption

Fig. 2.1 The crystal structure of AlN: (a) the structure of distorted tetrahedron, (b) unit cell, (c) hexagonal wurtzite structure 42
Fig. 2.2 The stage of structure evolution in polycrystalline thin films: (a) nucleation, (b) grain growth, (c) coalescence, (d) filling of channels and (e) film growth 43
Fig. 2.3 The schematic diagram of free energy change and mean radius 43
Fig. 2.4 The layer growth the deposit wets the substrate 44
Fig. 2.5 Coalescence of islands due to (a) Ostwald ripening, (b) sintering, (c) cluster migration 44
Fig. 2.6 The voltage distribution and discharge characteristic across dc glow discharge 45
Fig. 2.7 The typical glow discharge appearance 45
Fig. 2.8 A schematic diagram of gridded, broad-beam ion source and its controller 46
Fig. 2.9 A broad beam ion source with power supplies 46
Fig. 2.10 The principle of plasma bridge neutralizer 47
Fig. 2.11 The relationship between the sputtering yield and incident beam 47
Fig. 2.12 The relationship between ion current densities and two grids 48
Fig. 2.13 The illustration of the aperture of two grids 48
Fig. 2.14 A schematic diagram of the End-Hall ion source 49

Fig. 3.1 The dual ion beam sputtering deposition system 50
Fig. 3.2 The flow chart of deposition process 50
Fig. 3.3 Experiments process of AlN films 51
Fig. 3.4 The principle of secondary ion mass spectrometry 52
Fig. 3.5 The principle of electron spectroscopy 53

Fig. 4.1 The XRD patterns of AlN films synthesized at various energy fluxes using Al target 54
Fig. 4.2 The XRD patterns of AlN films synthesized at various energy fluxes using AlN target 55
Fig. 4.3 The XRD patterns of AlN films synthesized at R.T and Tsub=300℃ using Al target 56
Fig. 4.4 The XRD patterns of AlN films synthesized at R.T and Tsub=300℃ using AlN target 57
Fig. 4.5 The XRD patterns of AlN films synthesized at various N2 % and R.T using Al target 58
Fig. 4.6 The XRD patterns of AlN films synthesized at various N2 % and Tsub=300℃ using Al target 59
Fig. 4.7 SEM micrograph of AlN films prepared at 55% N2, 700 ev and R.T using Al target 60
Fig. 4.8 SEM micrograph of AlN films prepared at 55% N2, 700 ev and Tsub=300℃ using Al target 60
Fig. 4.9 SEM micrograph of AlN films prepared at 700 ev and R.T using AlN target 61
Fig. 4.10 SEM micrograph of AlN films prepared at 700 ev and Tsub=300℃ using AlN target 61
Fig. 4.11 The relationship between deposition rate and energy flux at time=180 min 62
Fig. 4.12 The relationship between deposition rate and N2 % at time=180 min 62
Fig. 4.13 SIMS depth profile of AlN films formed at 55% N2, 700 ev and R.T using Al target 63
Fig. 4.14 SIMS depth profile of AlN films formed at 55% N2, 700 ev and Tsub=300℃ using Al target 63
Fig. 4.15 SIMS depth profile of AlN films formed at 700 ev and R.T using AlN target 64
Fig. 4.16 SIMS depth profile of AlN films formed at 700 ev and Tsub=300℃ using AlN target 64
Fig. 4.17 A typical ESCA spectrum of AlN films on Si (100) at R.T and Tsub=300℃ using Al target 65
Fig. 4.18a The binding energy of Al 2p AlN films formed at 55% N2, 700 ev and R.T using Al target 66
Fig. 4.18b The binding energy of N 1s AlN films formed at 55% N2, 700 ev and R.T using Al target 66
Fig. 4.19a The binding energy of Al 2p AlN films formed at 55% N2, 700 ev and Tsub=300℃ using Al target 67
Fig. 4.19b The binding energy of N 1s AlN films formed at 55% N2, 700 ev and Tsub=300℃ using Al target 67
Fig. 4.20 TEM micrograph of AlN films synthesized at 55% N2, 700 ev and R.T using Al target 68
Fig. 4.21 Cross-sectional TEM photograph of AlN films synthesized at 55% N2, 700 ev and R.T using Al target 71
Fig. 4.22 TEM micrograph of AlN films synthesized at 55% N2, 700 ev and Tsub=300℃ using Al target 75
Fig. 4.23 TEM micrograph of AlN films synthesized at 700 ev and R.T using AlN target 77
Fig. 4.24 The XRD patterns of AlN films synthesized at R.T and T=300℃as deposited Al layer using AlN target 79
Fig. 4.25 The XRD patterns of AlN films synthesized at various substrate temperatures using AlN target 80
Fig. 4.26 The XRD patterns of AlN films synthesized at various energy fluxes using AlN target 81
Fig. 4.27 The XRD patterns of AlN films synthesized at various beam current using AlN target 82
Fig. 4.28 SEM micrograph of AlN films prepared at 650 ev and R.T using AlN target 83
Fig. 4.29 SEM micrograph of AlN films prepared at 650 ev and Tsub=300℃ using AlN target 83
Fig. 4.30 SEM micrograph of AlN films prepared at 650 ev and Tsub=453℃ using AlN target 84
Fig. 4.31 TEM micrograph of AlN films synthesized at 650 ev and Tsub=453℃ using AlN target 85

Fig. 5.1 A schematic diagrams showing formation mechanism of the AlN films 87
【1】 C. Caliendo, G. Saggio, P. Verardi and E. Verona, “Piezoelectric AlN film for SAW devices applications”, IEEE, Vol. 1 (1993) pp. 249-252
【2】 V. Dumitru, E. Cimpoiasu, C. Morosanu, C. Nenu, D. Necsoiu, “Aluminum nitride films for optical applications”, IEEE, Vol. 2 (1996) pp. 641-644
【3】 N. D. Kerness, T. Z. Hossain, S. C. McGuire, “Impurity study of alumina and aluminum nitride ceramics-microelectronics packaging applications”, Appl. Radiat. Isot., Vol. 48 No. 1 (1997) pp. 5-9
【4】 J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, “Synthesis of compound thin films by dual ion beam deposition: I. Experimental approach”, J.Appl. Phys., Vol. 58 (1985) pp. 550-555
【5】 Kato Shuji, Yamada Yoichi Taguchi, Tsunemasa, “Structural properties and intense ultraviolet emission of polycrystalline GaN films on AlN ceramics grown by N plasma-excited CVD”, Journal of Crystal Growth, Vol. 189/190 (1998) pp. 223-226
【6】 Sun Jian, Wu Jiada, Ling Hao, Shi Wei, Ying Zhifeng, Li Fuming, “Photoluminescence and its time evolution of AlN thin films”, Phys. Letts A, Vol. 280 issue 5-6 (2001) pp. 381-385
【7】 K. Uehara, H. Nakamura, H. Nakase, K. Tsubouchi, “AlN epitaxial film with atomically flat surface for GHz-band SAW devices”, IEEE, Vol. 1 (2002) pp. 135-138
【8】 F. Nakamura, S. Hashimoto, M. Hara, S. Imanaga, M. Ikeda, H. Kawai, “AlN and AlGaN growth using pressure metalorganic chemical vapor deposition”, Journal of Crystal Growth, Vol. 195 (1998) pp. 280-285
【9】 T. Ogawa, M. Okamoto, Y. Mori, T. Sasaki, “Aluminum nitride thin films grown by plasma-assisted pulsed laser deposition”, Appl. Surf. Sci., Vol. 113-114 (1997) pp.57-60
【10】L.L. Cheng, Y.H. Yu, B. Sundaravel, E.Z. Luo, S. Lin, Y.M. Lei, “Compositional and morphological study of reactive ion beam deposited AlN thin films”, Nucl. Instr. and Meth. B, Vol. 169 (2000) pp. 94-97
【11】Jie Yang, Chen Wang, Xinshui Yan, Kun Tao, Baixin Liu and Yudian Fan, “Polycrystalline AIN films of fine crystallinity prepared by ion beam assisted deposition”, Appl. Phys. Lett., Vol. 62 (1993) pp. 2790-2791
【12】R. P. Netterfield, K.-H. Müller; D. R. McKenzie; M. J. Goonan; P. J. Martin, “Growth dynamics of aluminum nitride and aluminum oxide thin films synthesized by ion-assisted deposition”, J.Appl. Phys., Vol. 63 (1988) pp. 760-769
【13】B. Aspar, R. Rodriguez Clemente, A. Figueras, B. Armas and C. Combescure, “Influence of the experimental conditions on the morphology of CVD AlN films”, Journal of Crystal Growth, Vol. 129 (1993) pp. 56-66
【14】Lee W. J., Soh J. W., Jang S. S., Jeong I. S., “C-axis orientation of AlN films prepared by ECR PECVD”, Thin Solid Films, Vol. 279 (1996) pp. 17-22
【15】W. J. Meng, J. A. Sell, T. A. Perry, L. E. Rehn, and P. M. Baldo, “Growth of aluminum nitride thin films on Si(111) and Si(001): Structural characteristics and development of intrinsic stresses”, J.Appl. Phys., Vol. 75 (1994) pp. 3446-3455
【16】Ronnen A. Roy, Dennis S. Yee and Jerome J. Cuomo, “Control of metal film properties by ion assisted deposition”, Mat. Res. Soc. Symp. Proc., Vol. 128 (1989) pp. 23-28
【17】J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films”, Appl. Phys. Lett., Vol. 43 (1983) pp. 547-549
【18】C. T. M. Ribeiro and F. Alvarez; A. R. Zanatta, “Structural properties of aluminum–nitrogen films prepared at low temperature”, Appl. Phys. Lett., Vol. 81 (2002) pp. 1005-1007
【19】James H. Edgar and W. J. Meng, Properties of group III nitrides, London: INSPEC, Institution of Electrical Engineers, 1994
【20】H. Amano, N. Sawaki, and I. Akasaki, Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., Vol. 48 No. 5 (1986) pp. 353-355
【21】L. J. Schowalter, J. C. Rojo., G. A. Slack, Y. Shusterman, R. Wang, I. Bhat, G. Arunmozhi, “Epitaxial growth of AlN and Al0.5Ga0.5N layers on aluminum nitride substrates”, Journal of Crystal Growth, Vol. 211 (2000) pp. 78-81
【22】Caliendo C., Saggio G., Verardi P. and Verona E., “Piezoelectric AlN film for SAW devices applications”, IEEE, Vol. 1 (1993) pp. 249-252
【23】Hiroshi Okano, Yusuke Takahashi, Toshiharu Tanaka, Kenichi Shibata and Shoichi Nakano, “Preparation of c-axis oriented AlN thin films by low-temperature reactive sputtering”, Jpn. J. Appl. Phys. Vol. 31 (1992) pp. 3446-3451
【24】L. Eckertova and T. Ruzicka, Diagnostics and Applications of Thin Films, Bristol, UK; Philadelphia: Institute of Physics Pub., 1992
【25】David A. Glocker, S. Ismat Shah, Handbook of Thin Film Process Technology, Bristol, UK; Philadelphia: Institute of Physics Pub., 1995
【26】 F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering”, J. Appl. Phys., Vol. 46 No. 8 (1975) pp. 3381-3384
【27】Milton Ohring, The Materials Science of Thin Films, Academic Press, 1992
【28】John L. Vossen, Werner Kern, Thin Film Process, Boston: Academic Press, 1991
【29】Brian Chapman, Glow Discharge Process, New York : Wiley, 1980
【30】李正中等, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心 2000.
【31】C. Weissmantel, “Ion beam deposition of special film structures”, J. Vac. Sci. Technol., Vol. 18 (1981) pp. 179-185
【32】Jerome J. Cuomo and Stephen M. Rossnagel, Harold R. Kaufman, Handbook of Ion Beam Processing Technology, Park Ridge, N.J., U.S.A.: Noyes Publications, 1989
【33】D. Manova, P. Huber, S. Sienz, J. W. Gerlach, S. Mandl, and B. Rauschenbach, “Dependence of ion beam induced nitrogen diffusion in aluminum on oxygen impurities”, J. Vac. Sci. Technol. A, Vol. 20 (2002) pp. 206-213
【34】X. Wang, A. Kolitsch, F. Prokert and W. Möller, “Ion beam assisted deposition of AlN monolithic films and Al/AlN multilayers-a comparative study”, Surf. Coat. Technol., Vol. 103/104 (1998) pp. 334-339
【35】Kaufman H. R., R. S. Robinson, Operation of Broad-Beam Sources, Commonwealth Scientific Corporation, 1987
【36】H. Fetz. Z., phys. Vol. 119 (1942) pp.590
【37】E. John Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons, Inc. 2000
【38】H. R. Kaufman, R. S. Robinson and R. L. Seddon, “End-Hall ion source”, J. Vac. Sci. Technol. A, Vol. 5 No. 4 (1987) pp. 2081-2084
【39】Won Taeg Lim, Byoung Keun Son, Dong Hae Kang, Chang Hyo Lee, “Structural properties of AlN films grown on Si, Ru on Si and ZnO on Si substrates”, Thin Solid Films, Vol. 382 (2002) pp. 56-60
【40】R. Evans, A. Salifu, G. Zhang, E. Evans, S.I. Hariharan, G.W Young, “Development of experimental techniques and an analytical model for aluminum nitriding”, Surf. Coat. Technol., Vol. 157 (2002) pp. 59-65
【41】J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, “Synthesis of compound thin films by dual ion beam deposition: II. Properties of aluminum nitrogen films”, J. Appl. Phys., Vol. 58 (1985) pp. 556-563
【42】Takikawa Hirofumi, Kawakami Naoya, Sakakibara Tateki, “Synthesis of a-axis oriented AlN film by a shielded reactive vacuum arc deposition method”, Surf. Coat. Technol. Vol. 120-121 (1999) pp. 383-387
【43】H. Y. Joo, H. J. Kim, S. J. Kim, S. Y. Kim, “The optical and structural properties of AlN thin films characterized by spectroscopic ellipsometry”, Thin Solid Films, Vol. 368 (2000) pp. 67-73
【44】Drusedau Tilo P., Blasing Jurgen, “Optical and structural properties of highly c-axis oriented aluminum nitride prepared by sputter-deposition in pure nitrogen”, Thin Solid Films, Vol. 377-378 (2000) pp. 27-31
【45】T. L. Chu, and R. W. Kelm, J. Electrochem. Soc., Vol. 122 (1975) pp. 995
【46】J. Bauer, L. Biste, and D. Bolze, Phys. Status Solidi, Vol.39 (1973) pp. 173-81
【47】A. Cachard, R. Fillit, I. Kadad, and J. C. Pommier, Vacuum, Vol. 41 (1990) pp. 1151
【48】H.Y. Joo and H. J. Kim, “Spectrophotometric analysis of aluminum nitride thin films”, J. Vac. Sci. Technol. A Vol. 17 No. 3 (1999) pp. 862
【49】H. Windischmann, Thin Solid Films, Vol. 154 (1987) pp. 159
【50】A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends, New York: J. Wiley, 1987
【51】C. J. Allan and K. Siegbahn, Electron Spectroscopy for Chemical Application, Uppsala, Uppsala University, Institute of Physics, 1971
【52】Y. N. Zhao, B. Wang, Z. He, “The effects of deposition parameters on the crystallographic orientation of AlN films prepared by RF reactive sputtering”, Vacuum, Vol. 48 No. 5 (1997) pp. 427-429
【53】Kikuo Tominaga, Hiroshi Imai and Masaki Shirai, “AlN sputtered film properties prepared at low gas pressures by facing target system”, Jpn. J. Appl. Phys., Vol. 30 (1991) pp. 2574-2580
【54】Lee Hwan Chul, Kim Guen Hong, Hong Soon Ku, Lee Ki Young, Yong Yoon Joong, Chun Chang Hwan, Lee Jai Young, “Influence of sputtering pressure on the microstructure evolution of AlN thin films prepared by reactive sputtering”, Thin Solid Films, Vol. 261 (1995) pp. 148-153
【55】S. Uchiyama, Y. Ishigami, M. Ohta, M. Niigaki, H. Kan, Y. Nakanishi, T. Yamaguchi, “Growth of AlN films by magnetron sputtering” Journal of Crystal Growth, Vol. 189/190 (1998) pp. 448-451
【56】M. Penza, M. F. De Riccardis, L. Mirenghi, M. A. Tagliente, E. Verona, “Low temperature growth of r.f reactively planar magnetron sputtered AlN films”, Thin Solid Films, Vol. 259 (1995) pp. 154-162
【57】Callus. P.J., Berndt. C.C., “Relationships between the mode II fracture toughness and microstructure of thermal spray coatings”, Surf. Coat. Technol., Vol. 114 (1999) pp. 269-277
【58】Y. Nakamura, Y. Watanabe, S. Hirayama, Y. Naota, “Synthesis of aluminium nitride thin films by ion-vapour deposition method” Surf. Coat. Technol., Vol. 68/69 (1994) pp. 203-207
【59】A. Nylund, I. Olefjord, Surf. Interface Anal. Vol. 21 (1994) pp.283
【60】M. W. Chase, C. A. Davies, J. R. Wowney, D. J. Frurip, R. A. MacDonald, A. N. Syverud, J. Phys. Chem. Ref. Data Vol. 14 (1986) pp. 156
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鐘啟泉(1998)。教師的「教學能力」與「自我教育力」。教育資料文摘,251,181-190。
2. 蘇裕惠(2000)。實施平衡計分卡的七大迷思與三大要點。會計研究月刊,179,29-34。
3. 蔡崇建(1994)。特殊教育教師專業知識發展的需求評估。特殊教育研究學刊,10,103-117。
4. 溫玲玉(1995)。美國工作崗位基本技能之探討。商業職業教育季刊,59,62-66。
5. 楊思偉(2000)。談基本能力與基本學力。研習資訊,17(6),16-24。
6. 陳美紀(1996)。美國職業教育課程制訂新趨勢─以辦公室系統教育課程模式為例。商業職業教育,64,53-56。
7. 林文雄(1998)。經營績效平衡卡。管理會計,45,1-12。
8. 李聲吼(1997)。人力資源發展的能力內涵。就業與訓練,2,51-58。
9. 李翠蓮(1991)。臺灣地區大學國貿系學生基本能力之研究─兼論國貿課程之改進。商業職業教育,46,36-49。
10. 李大偉(1983)。能力本位教學與職業教育。家政教育,9(1),56-58。
11. 吳裕益(1998)。廿一世紀國民中小學學生所需具備之關鍵能力。國教天地,129,24-27。
12. 吳怡銘(2001)。組織變革管理指標—平衡計分卡。能力雜誌,546,46-51。
13. 吳京(1997)。重整技職教育提昇國家競爭力。技術及職業教育雙月刊,37,27-31。
14. 王逸慧(2001)。基本學力測驗之實施:問題與展望。教育研究資訊,9(1),15-31。
15. 王素芸(2001)。「基本能力指標」之發展與概念分析。教育研究資訊雙月刊,9(1),1-14。