跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝佩汝
研究生(外文):Pei-Ju Hsieh
論文名稱:鋯基合金於累積滾壓製程中之奈米細晶化與非晶質化研究
論文名稱(外文):Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bondin
指導教授:黃志青黃志青引用關係
指導教授(外文):J. Chih-Ching Huang
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:196
中文關鍵詞:奈米鋯基非晶質累積滾壓
外文關鍵詞:AmorphizationZrNanocrystallizationARB
相關次數:
  • 被引用被引用:1
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以累積滾壓製程達成將鋯基合金晶粒尺寸奈米化甚至非晶質化,以期得到良好之機械性質,磁性,耐腐蝕性. 並在其後添加輕量元素,例如鋁, 鈦等純元素.使該合金更適於工業上之應用.
The amorphous alloys have attracted great attention due to their characteristics and future potential. This research is intended to synthesis new amorphous alloy with high glass forming ability as well as low density. The addition of lighter-weight elements such as Al, Ti, Zr, Ni and Cu are tried. The selected vitrification methods in this study are solid-state accumulated roll bonding (ARB) and arc-melting of multi-element alloys. Although the procedures of solid-state reaction are more complicated than that of casting, the influence of cooling rate on amorphization process is not important.
Various Zr based binary, ternary, and pentanary alloys are synthesized by the ARB method. Besides, two pentanary alloys are also developed by arc melting method for the properties comparison with those made by ARB.
The evolutions of hardness, strain accumulation, the enhanced diffusion, nanocrystalline phase size, amorphous volume fraction, elastic modulus, and relative energy states in various Zr based alloy systems during ARB are characterized and analyzed by transmission electron microscopy (TEM), in correlation with X-ray diffraction results. It appears that compatible initial foil hardness would be most beneficial to the nanocrystallization and amorphization processes during the room temperature ARB; the influence would overwhelm the atomic size effect (i.e., the anti-Hume-Rothery rule) applicable for solidification processing such as drop casting or melt spinning. Meanwhile, the estimated diffusion rates during ARB are higher by several orders of magnitude than the lattice diffusion in bulk materials and the hardness is seen to increase with increasing ARB cycles. The last stage for the nanocrystalline phase to suddenly transform into the amorphous state is examined, coupled with thermodynamic analysis. From the experimental observations and interfacial energy calculations for multilayered films, it is demonstrated that the rapid increase of interfacial free energy of the nanocrystalline phases with increasing ARB cycles appears to be a determining role in enhancing amorphization process. The local spatial distributions of the nanocrystalline and amorphous phases are seen under TEM to be non-uniform, varying significantly in size and quantity in different regions. The diffraction spots and rings in the TEM diffraction patterns are still originated from the pure elements, meaning that the nanocrystalline phases are those unmixed hard particles left from the previous severe deformation and diffusion processes. A critical size of the nanocrystalline phases around 3 nm is consistently observed in all binary, ternary, and pentanary Zr-X based alloys, below the critical size a sudden transformation from the nanocrystalline to amorphous state would occur. Finally, the hardness and Young’s modulus of the nanocrystalline and amorphous materials are estimated based on the microhardness results.
On the other hand, a pentanary alloy (according to the composition of the synthesized ARB specimens) is also made by the arc melting method for comparison. The sharp peaks are still observed in XRD pattern of the as-melted alloys. Hence, the melt spinning method is followed. A nearly completely amorphous state is obtained in the melt spun alloy. The hardness readings of the prepared alloys are all significantly higher than those typically for metallic alloys. Moreover, the resulting Zr based amorphous alloys made by ARB possess glass transition and crystallization temperatures similar to those processed by melt spinning or drop casting.
Content I
Tables List V
Figures List VII
Abstract XV
1 Introduction and Background …1
1.1 Introduction 1
1.2 Methods to prepare the amorphous metallic alloys 3
1.2.1 Rapid quenching from the melt 3
1.2.2 Vapor quenching 4
1.2.3 Particle bombardment methods 5
1.2.4 Solid-state reaction 5
1.2.5 Casting of multi-element alloys 7
1.3 The systems of glassy metal 8
1.3.1 The evolution of amorphous alloys component 8
1.3.2 The glass forming ability 9
1.3.3 Three empirical rules for the synthesization of amorphous alloys 10
1.4 Characterization of amorphous alloys 13
1.4.1 Mechanical properties 13
1.4.2 Chemical properties 14
1.4.3 Magnetic properties 15
1.5 The metallic glass containing nanocrystalline second phase 15
1.6 The aims in this research 16
2 Experimental Procedures ..20
2.1 The amorphous alloy systems 20
2.2 Synthesization methods 21
2.2.1 The ARB method 21
2.2.2 Arc melting and melt spinning methods for multi-element alloys 23
2.3 Phase identification by XRD 25
2.4 SEM characterizations 25
2.5 Microhardness testing 26
2.6 TEM characterizations 27
2.7 DSC thermal stability analysis 27
3 Results ..29
3.1 Sample preparation 29
3.1.1 Specimens made by ARB 29
3.1.2 Specimens made by arc melting 30
3.2 Some results for alloys made by the preliminary try-and-error ARB methods 30
3.3 X-ray diffraction analyses 32
3.4 Grain size evaluations 34
3.5 SEM observations 36
3.6 EDS analyses 38
3.7 Microhardness test 39
3.8 TEM results 40
3.9 Thermal analyses 44
3.10 Analyses on the specimens prepared by arc melting and melt spinning 44
4 Discussions ..47
4.1 Evolution of nanocrystallization and amorphization in ARB specimen 47
4.1.1 Strain accumulation 47
4.1.2 Grain size refinement 49
4.1.3 Diffusion during ARB 51
4.2 Evolution of hardness and modulus 54
4.2.1 Hardness effect 54
4.2.2 Hall-Petch plot of vitrified Zr50Ti50 alloy 55
4.2.3 Modulus evolution 56
4.3 Composition effect 58
4.3.1 Zr-Ti alloy systems (1:3/1:1/3:1) 58
4.3.2 Ternary alloy systems 59
4.4 Nanocrystallization and amorphization mechanism 60
4.4.1 TEM evolution of Zr50Ti50 after various ARB cycles 60
4.4.2 Atomic spacing of nearest neighbors 63
4.4.3 Transition between nanocrystalline and amorphous phase 65
4.5 Amorphization of pentanary alloy systems 67
4.5.1 Content of softer Al or Cu phase for the pentanary alloys made by ARB 67
4.5.2 Comparison of Zr52Ti5Ni15Cu18Al10 alloys made by different routes 69
5 Summary ..71
References ..75
Tables ...........83
Figures ...........100
1.E. O. Hall, Pro. Phys., Soc. London, B64, 1951, p. 747.
2.N. J. Petch, Iron and Steel Inst., 174,1953, p. 25.
3.L. L. Shaw, J. Met., 52, 2001, p. 41.
4.H. J. Guntherodt and H. Beck (ed.): Glassy Metals Ⅰ, Springer-Verlag, Berlin Heidelberg, Germany, 1981.
5.H. Beck and H. J. Guntherodt (ed.): Glassy Metals Ⅱ, Springer-Verlag, Berlin Heidelberg, Germany, 1983.
6.R.W. Cahn, P. Hassen and E. J. Kramer (ed.): Materials Science and Technology, Volume 9, VCH, New York, USA, 1991.
7.M. Atzmon: A Study of Bulk Amorphous Alloys Formed by Solid-State Reaction in Elemental Composites, Ph. D. Thesis, California Institute of Technology, California, USA, 1985.
8.C. K. Lin: The Amorphization of TM-Si (TM: transition metal) Alloy Powders by Mechanical Alloying, Master Thesis, Tatung Institute of Technology, Taiwan, 1991.
9.Y. H. Hsu: A Study on the Multicomponent Alloy Systems with Equal-Mole FCC or BCC Elements, Master Thesis, National Tsing Hua University, Taiwan, 2000.
10.W. Klement, Jr., R. H. Willens and P. Duwez, Nature, 187, 1960, p. 869.
11.A. Inoue, K. Ohtera, A. P. Tsai and T. Masumoto, Japan. J. Appl. Phys., 27, 1988,
L479.
12.F. E. Luborsky (ed.): Amorphous Metallic Alloys, Butterworths, London, U.K., 1983.
13.J. J. Gilman and H. J. Leamy (ed.): Metallic Glasses, ASM, 1979.
14.R.W. Cahn, P. Hassen and E. J. Kramer (ed.): Materials Science and Technology, Volume 9, VCH, New York, USA, 1991.
15.R. W. Cahn and H. H. Liebermann, Rapidly Solidified Alloys, New York: Marcel Dekker Inc, 1993.
16.A. Sagel, N. Wanderka, R. K. Wunderlich, P. Schubert-Bischoff and H. J. Fecht, Scripta Mater., 38, 1998, p. 163.
17.A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Japan. J. Appl. Phys., 27, 1988, L2248.
18.A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, 1995, p. 866.
19.A. Inoue, Mater. Sci. Engng., A226-228, 1997, p. 357.
20.A. Inoue, T. Zhang and A.Takeuchi, Mater. Sci., Forum, 269-272, 1998, p. 855.
21.A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, 1998, p. 1779.
22.A. Inoue: Bulk Amorphous Alloys,Trans. Tech. Publications, Zurich, 1998.
23.Y. H. Kim, A. Inoue and T. Masumoto, Mater. Trans. JIM., 31, 1990, p. 747.
24.L. B. Davies and P. J. Grundy, J. Non-Cryst. Solids, 11, 1972, p. 179.
25.L. Holland: Vacuum Deposition of Thin Films, Chapman, London, U.K., 1966.
26.P. Chardhari, J.J. Cuomo and R.J. Gambino, IBN J. Res. Dev., 17,1973, p. 66.
27.J. Bloch, J. Nucl. Mater., 6, 1962, p. 203.
28.J. L. Brimhall and E. P. Simonen, Nuc. Inst. Meth. Phys. Res., B, 16, 1986, p. 187.
29.S. Veprek, Z. Iqbal and F. -A. Sarott, Phil. Mag., B45, 1982, p. 137.
30.X. L. Yeh, K. Samwer and W. L. Johnson, Appl. Phys. Lett., 42, 1983, p. 242.
31.Z. P. Xing, S. B. Kang, and H. W. Kim, Metall. Mater. Trans., A33, 2002, p. 1521.
32.J. Lee, F. Zhou, K. H. Chung, N. J. Kim, and E. J. Lavernia, Metall. Mater. Trans., A32, 2001, p. 3109.
33.C. C. Koch, O. B. Cavin, C.G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett., 43, 1983, p. 1017.
34.L. Schultz, Mater. Sci. Eng., 97, 1988, p. 15.
35.J. Eckert, Mater. Sci. Eng., A226-A228, 1997, p. 364.
36.M. Sherif El-Eskandarany, A. Inoue, Metall. Mater. Trans., A33, 2002, p. 135.
37.R. M. German: Powder Metallurgy Science, Metal Powder Industries Federation, New Jersey, USA, 1994.
38.Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1998,
p. 1221.
39.R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 1983, p. 415.
40.A. Sagel, H. Sieber, H. J. Fecht and J. H. Perepzko, Acta Mater., 46, 1998, p. 4233.
41.H. S. Chen, Rep. Prog. Phys., 43, 1980, p. 353.
42.H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett., 45, 1984, p. 615.
43.A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, 1993, p. 25.
44.A. Inoue, Acta Mater., 48, 2000, p. 279.
45.T. G. Park, S. Yi and D.H. Kim, Scripta Mater., 43, 2000, p. 109.
46.T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 78, 2001, p. 1213.
47.A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 29, 2001, p. 2645.
48.A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res., 16, 2001, p.2836.
49.T. D. Shen and R. B. Schwarz, J. Mater. Res., 14, 1999, p. 2107.
50.T. D. Shen and R. B. Schwarz, Appl. Phys. Lett., 75, 1999, p. 49.
51.B. S. Murty and K. Hono, Mater. Trans., JIM 41, 2000, p. 1538.
52.Z. P. Lu and C. T. Liu, Acta Mater, 50, 2002, p. 3501.
53.R. E. Reed- Hill: Physical Metallurgy Principles, PWS, Boston, USA, 1994.
54.M. H. Cohen and D. Turnbull, Nature, 189, 1961, p. 131.
55.吳學陞, 工業材料,149期,1999, p. 154.
56.A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 36, 1995,
p. 391.
57.Y. Saito, H. Utsunomiya, N. Tsuji and T. Saka, Acta Mater., 47, 1999, p. 579.
58.鄭振東, 非晶質金屬漫談, 建宏出版社, 1990, p. 69.
59.D. H. Bae, H. K. Lim, S. H. Kim, D. H. Kim and W. T. Kim, Acta Mater., 50, 2002,
p. 1749.
60.T. Zhang, A. P. Tasi, A. Inoue and T. Masumoto, Boundary, 7, 1991, p. 39.
61.A. Inoue, Mater. Sci. Eng., A 267, 1999, p. 171.
62.Y. Kawamura, H. Kato, A. Inoue and T. Masumoto, Scripta Mater., 39, 1998, p. 301.
63.A. Inoue, Y. H. Kim and T. Masumoto, Trans. JIM, 33, 1992, p. 487.
64.T. G. Nieh, T. Mukai, C. T. Liu and J. Wadsworth, Scripta Mater., 40, 1999, p. 487.
65.R. Hasegawa (ed.): Glassy Metal: Magnetic, Chemical and Structure Properties, CRC press, Boca Raton, Florida,1983.
66.莊裕仁: 機械月刊, 四月號, 2000, p. 357.
67.C. Suryanarayana, A. Inoue and T. Masumoto, J. Mater. Sci., 15, 1980, p. 1993.
68.G. S. Choi, Y. H. Kim, H. K. Cho, A. Inoue and T. Masumoto, Scripta Mater., 33,
1995, p. 1301.
69.A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Msumoto, Mater. Trans. JIM, 35, 1994, p. 95.
70.N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40, 1999, p. 795.
71.W. H. Wang, Q. Wei and H. Y. Bai, Appl. Phys. Lett., 71, 1997, p. 58.
72.M. Sherif El-Eskandarany and A. Inoue, Mater. Trans., A33, 2002, p. 2145.
73.G. Wilde, H. Sieber and J. H. Perepzko, Scripta Mater., 40, 1999, p. 779.
74.C. Suryanarayana, Progress in Mater. Sci., 46, 2001, p. 1.
75.N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu and M. Kiritani, Mater. Sci. Eng., A350, 2003, p. 108.
76.H. Sieber, J. S. Park, J. Weissmuller and J. H. Perepezko, Acta Mater, 49, 2001, p. 1139.
77.B. E. Warren, X-Ray Diffraction. Addison-Wesley Pub. Inc., London. 1969.
78.B. D. Cullity (ed), Elements of X-ray Diffraaction, 2nd ed. Addison-Wesley Pub. Inc., Indiana. 1978.
79.C. Suryanaraya, M. Norton, X-ray Diffraction, a Practical Approach. Plenum Press, New York. 1998.
80.M. H. Loretto: Electron Beam Analysis of Materials, 2nd ed., Chapman & Hall Pub, 1994.
81.洪英博, 以累積滾壓加工製做奈米或非晶質合金之研究, 國立中山大學材料科學研究所碩士論文, 2002.
82.邱薰毅, 以累積滾壓及熔液噴旋法開發奈米或非晶質輕量Zr-Cu基合金, 國立中山大學材料科學研究所碩士論文, 2003.
83.P. Y. Lee, J. Jang and C. C. Koch, J. Less-Common Metals., 140, 1988, p. 73.
84.T. H. Hung, J. S. C. Jang and J. C. Huang, unpublished research, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2004.
85.張量然, 添加硼對ZrAlCuNi塊狀非晶質合金結晶行為的影響, 義守大學材料科學與工程學系碩士論文, 2003.
86.M. Atzmon, J. D. Verhoeven, E. D. Gibson and W. L. Johnson, Appl. Phys. Lett., 45, 1984, p. 1052.
87.F. Zhou, S. R. Nutt, C. C. Bampton and E. J. Lavernia, Metall. Mater. Trans., A34, 2003, p. 1985.
88.F. Zhou, X. Z. Liao, Y. T. Zhu, S. Dallek and E. J. Lavernia, Acta Mater., 51, 2003, p. 2777.
89.P. G. Shewmon: Diffusion in Solids, McGraw-Hill Book Co., NY, 1973.
90.D. E. Grady and J. R. Asay, J. Appl. Phys., 53, 1982, p. 7350.
91.K. Kato: Metal Plastic Working, Maruzen, Tokyo, Japan, 1970, p. 161.
92.R. E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed, PWS Pub. Co., Boston, 1992, p. 373.
93.Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu and K. Lu, Acta Mater., 51, 2003, p. 4319.
94.K. Tsuchiya, H. Nakayama, Z. G. Liu, M. Umemoto, K. Morii and T, Shiizu, Mater. Trans. JIM, 42, 2001, p. 1987.
95.C. A. Schuh, T. G. Nieh and T. Yamasaki, Scripta Mater., 46, 2002, p. 735.
96.W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, 1992, p. 1564.
97.G. M. Pharr, W. C. Oliver and F. R. Brotzen, J. Mater. Res., 7, 1992, p. 613.
98.J. Eckert, A. Reger-Leonhard, B. Wei�� and M. Heilmaier, Mater. Sci. and Eng., A301, 2001, p. 1.
99.J. C. H. Spence: Experimental High-Resolution Electron Microscopy, 2nd ed, Oxford University Press, NY, 1988.
100.A. W. Weeber, J. Phys., F17, 1987, p. 809.
101.M. Atzmon, K. M. Unruh and W. L. Johnson, J. Appl. Phys. 58, 1985, p. 3865.
102.M. S. Tsao, C. B. Guang, G. C. Hsu, T. F. Gin, T. G. Wang and G. S. Gi: Nano Mater., HIT Press, Harbin, China, 2001, p. 13.
103.Y. G. Chen and B. X. Liu, Acta Mater., 47, 1999, p. 1389.
104.M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama and K. Suzuki, Scripta Mater., 36, 1997, p. 1001.
105.B. S. Murty and S. Ranganathan, Int. Mater. Rev., 43, 1998, p. 101.
106.J. S. C. Jang and C. C. Koch, J. Mater. Res., 5, 1989, p. 124.
107.S. Veprek, Z. Iqbal and F. A. Sarott, Phil. Mag. B, 45, 1982, p. 137.
108.J. S. C. Jang and H. P. Shih, Mater. Chem. Phys., 70, 2001, p. 217.
109.Y. Yokohama, K. Fukaura and A. Inoue, Intermetallics, 10, 2002, 1113.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top