跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姬俊宇
研究生(外文):Chun-yu Chi
論文名稱:摻鉻釔鋁石榴子石晶體光纖之微觀組織及酸性溶解
論文名稱(外文):Microstructures and Dissolution of Cr:YAG Crystal Fiber
指導教授:沈博彥沈博彥引用關係
指導教授(外文):Pouyan Shen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:111
中文關鍵詞:溶蝕丘晶體光纖摻鉻釔鋁石榴子石
外文關鍵詞:crystal fiberhillockchromium-doped yttrium aluminum garnet (Cr:YAG)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文將經由LHPG長晶法,沿[111]結晶方向生長及以玻璃材質進行外層包覆之Cr:YAG晶體光纖,分別對其橫向截面和縱向截面作微觀組織分析及酸性溶解實驗。經[111]方向生長之晶纖單晶端截面大部分呈現似六邊形狀,而生長過程中由融熔態凝固後,因偏析行為而使富Cr成份顆粒富集於晶纖表面,且由於製程參數控制及其它動力學因素致使表面產生不規則直徑與晶面之段落,經包覆後之晶纖直徑亦有如此變化。外部以硼矽玻璃和融熔矽石玻璃材質包覆之晶纖,則因為元素相互擴散及局部融熔行為,造成纖衣與包覆層間形成非晶質相的擴散環帶,而其中試片之包覆層出現似尖晶石型結構之γ-(Cr-Al)2O3結晶析出。晶纖截面之酸性溶解實驗發現,晶體光纖可能因內部雜質或摻雜之抗溶元素,而於截面形成溶蝕丘,且隨溶解時間之增長而相互聚集合併變大,此溶蝕丘之成核生長可能與抗溶Cr離子濃度或者應力分佈相關,以致於晶纖截面的溶蝕丘由外而內之分佈從密集轉而稀疏。此外,由電子顯微鏡和酸性溶解實驗之觀察結果,研判晶體光纖內部之差排密度極低。
摘 要 Ⅰ
圖索引 Ⅳ
表索引 Ⅸ
一、前 言 1

二、文獻回顧 4

三、Cr:YAG光纖形貌與製程 10
3-1 單晶形貌與包覆 10
3-2 LHPG晶體生長方法與架構 11
3-3 Cr:YAG晶體光纖之特性 13

四、實驗步驟與方法 20
4-1 實驗流程 20
4-2 偏光顯微鏡 20
4-3 掃瞄式電子顯微鏡(SEM) 21
4-4 解析式電子顯微鏡(AEM) 21
4-5 酸性溶解實驗 23

五、實驗結果 28
5-1 偏光顯微鏡之觀察 28
5-2 掃瞄式電子顯微鏡(SEM)之觀察 28
5-3 解析式電子顯微鏡(AEM)之觀察 31
5-4 酸性溶解實驗之觀察 33

六、討 論 92
6-1 晶體光纖表面之偏析 92
6-2 晶體光纖表面之纖徑波動 93
6-3 晶體光纖之非晶質化 94
6-4 晶纖包覆層之結晶析出 96
6-5 溶蝕丘之形成 97

七、結 論 101

參考文獻 102

英中文名詞對照 105

附 錄 110
附錄一 BCC晶格之Kikuchi map及選區繞射圖形 110
附錄二 Al5Y3O12結構之JCPDS卡 111
附錄三 γ-Al2O3結構之JCPDS卡 111
1. Deer, W.A., Howie, R.A. & Zussman, J., 1992. An
introduction to the rock-forming minerals. 2nd ed.
Longman Scientific and Technical, Essex, England, 696p.
2. Novak, G.A. & Gibbs, G.V., 1971. The crystal chemistry
of the silicate garnets. American Mineralogist, 56, 791-
825.
3. Eilers, H., Dennis, W.M., Yen, W.M., Kück, S.,
Peterman, K., Huber, G., & Jia, W., 1993. Performance of
a Cr:YAG laser. IEEE J. Quant. Electron, Vol. 29, No.9,
2508-2512.
4. Burns, R.G. Mineralogical applications of crystal field
theory. Cambridge University Press, 1970.
5. Meagher, E.P., 1982. Silicate garnets. in “Ortho-
silicates,” (ed. Ribbe, P.H.) Ch. 2, Reviews in
Mineralogy, Vol. 5 second edition, Mineralogical Society
of America, p.25-66.
6. Chang, I.F. & Shafer, M.W., 1979. Efficiency enhancement
in manganese-doped zinc silicate phosphor with AlPO4
substitution. Appl. Phys. Lett. 35, 229-231.
7. Lin, C.C. & Shen, P., 1993. Directional dissolution
kinetics of willemite. Geochimica et Cosmochimica Acta,
57, 27-35.
8. Tu, S.Y. & Huang, S.L., 2003. The study and fabrication
of Cr4+:YAG crystal fiber laser. 國立中山大學光電工程研究
所碩士論文.
9. Tracy, R.J., 1982. Compositional zoning and inclusions
in metamorphic minerals. In: Review in Mineralogy, vol.
10 Characterization of metamorphism through mineral
eqrilibria. ( ed. Ferry, J.M. ), pp. 355-397,
Mineralogical Society of America, Washington D.C.
10.de Béthune, p. & Laduron, D., 1975. Diffusion process
in resorbed in garnets. Contributions to Mineralogy and
Petrology, 50, 197-204.
11.Hwang, S.L., Shen, P., Yui, T.F. & Chu, H.T., 2003. On
the mechanism of solid-state resorption zoning in
metamorphic garnet. Journal of Metamorphic Geology. 21, 1-9.
12.Doo, V.Y. & Balluffi, R.W., 1958. Structural changes in
single crystal copper-alpha brass diffusion couple. Acta
Metallurgica, 6, 428-438.
13.Balluffi, R.W. & Chan J.W., 1918. Mechanism for
diffusion-induced grain boundary migration. Acta
Metallurgica, 29, 493-500.
14.Chang, C.P. & Loretto, M.H., 1988. Diffusion-induced
dislocations in RSP Al-Mo. Acta Metallurgica, 36, 805-
810.
15.Wu, M.L. Shen, P. and Gan, D., 2001. Phase
transformation in reaction-sintered Gd3Fe5-ZrO2 (ΙΙ).
Mater. Sci. Eng. (A) 297, 124-131.
16.Peng, C.H., Lin, Y.C. and Shen, P.,1995. Shape
modification of ZrO2 particles in yttrium-iron garnet.
Mater. Sci. Eng. A203, L5-L9.
17.Schwarz, R.B. & Johnson, W.L., 1983. Formation of an
amorphous alloy by solid-state reaction of the pure
polycrystalline metals. Phys. Rev. Lett. 51, 415.
18.Sennaroglu, A., 2001. Analysis and optimization of
lifetime thermal loading in continuous-wave Cr4+-doped
solid-state lasers. J. Opt. Soc. Am. B, Vol. 18, 1578-1586.
19.Huang, K.Y. & Huang, S.L., 2003. The study of super-
wideband ASE light source generated by Cr4+:YAG crystal
fiber. 國立中山大學光電工程研究所碩士論文.
20.Porter, D.A., Easterling, K.E., 1992. Phase
transformations in metals and alloys. Van Nostrand,
Reinhold, p.1-446.
21.Feigelson, R.S., 1986. Pulling optical fibers. Journal
of Crystal Growth, 79, 669-680.
22.Herd, S., Tu, K.N., & Ahn, K.Y., 1983. Formation of an
amorphous Rh-Si alloy by interfacial reaction between
amorphous Si and crystalline Rh thin films. Appl. Phys.
Lett. 42, 597.
23.Atzmon, M., Unruh, K.M., Johnson, W.L., 1985. Formation
and characterization of amorphous erbium-based alloys
prepared by near-isothermal cold-rolling of elemental
composites. J. Appl. Phys. 58, 3865.
24.Johnson, W.L., 1986. Thermodynamic and kinetic aspects
of the crystal to glass transformation in metallic
materials. Progress in Materials Science, 30, 81.
25.Bragg, L., Claringbull, G.F., 1965. Crystal structures
of minerals. Cornell University Press, Ithaca, New York.
26.Chiang, Y.M., Birnie, D.P., Kingery, W.D., 1997.
Physical ceramics. John Wiley & Sons, p.49-58.
27.Bakish, R., 1958. Dislocation configurations and
densities in tantalum crystals. Acta. Met. 6, 120-122.
28.Rozgonyi, G.A., Mahajan, S., Read, M.H. and Brasen, D.,
1976. Sources of oxidation-induced stacking faults in
Czochralski silicon wafers. Appl. Phys. Lett. 29, 531-
533.
29.Batterman, B.W. 1957. Hillocks, pits, and etch rate in
germanium crystals. J. Appl. Phys. 28, 1236-1241.
30.Sprycha, R. 1982. Determination of electrical charge at
Zn2SiO4/ solution interface. Colloids Surf. 5, 147-157.
31.Tuck, B. 1975. The chemical polishing of semiconductors.
J Mat. Sci. 10, 321-339.
32.Weyher, J. and Van Enckevort, W.J.P., 1983. Selective
etching and photoetching of {100} gallium arsenide CrO3-
HF aqueous solutions. Ⅱ. The nature of etch hillocks.
J. Cryst. Growth, 63, 292-298.
33.Tuck, B. and Baker, A.J., 1973. Chemical etching of
{111} and {100} surface of InP. J. Mat. Sci. 8, 1559-
1566.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top